六年级上知识点总结
小学六年级上数学重点知识点归纳

一、整数运算
1.整数的概念和表示法
2.整数的相反数和绝对值
3.整数的加减法运算
4.整数的乘法运算
5.整数的除法运算
二、小数和分数
1.小数的概念和表示法
2.小数的加减法运算
3.小数的乘法运算
4.小数的除法运算
5.分数的概念和表示法
6.分数的加减法运算
7.分数的乘法运算
8.分数的除法运算
三、平方根
1.平方根的概念
2.平方根的求法和性质
四、面积与体积
1.平面图形的面积计算(矩形、正方形、三角形、梯形)
2.立体图形的体积计算(长方体、正方体、棱柱)
五、比和比例
1.比的概念和表示法
2.比的相等性质和比的大小性质
3.比例的概念和表示法
4.比例的等比性质和比例的大小性质
5.解比例问题的方法
六、图形的相似
1.相似图形的概念和性质
2.相似三角形的性质
3.两个图形是否相似的判断方法
七、统计与概率
1.数据的收集和整理方法
2.数据的图表表示
3.数据的统计指标(平均数、中位数、众数)
4.概率的概念和计算方法
总结:以上是小学六年级上数学重点知识点的归纳。
掌握这些知识点可以帮助学生在数学学习中打下坚实的基础,并为进一步学习中学阶段的数学知识做好准备。
六年级上数学知识点归纳总结

六年级上数学知识点归纳总结一、分数乘法(一)分数乘法的意义和计算方法分数乘法的意义:分数乘法的意义是求一个数的几分之几是多少。
分数乘法的计算方法:分数乘法是分子乘整数,分母乘整数,分子乘分子,分母乘分母。
(二)分数乘法的运算定律分数乘法交换律:a×b=b×a分数乘法结合律:(a×b)×c=a×(b×c)分数乘法分配律:a×(b+c)=a×b+a×c(三)求一个数的几分之几是多少的应用题解题思路:根据题目中的条件和问题,确定要解决的问题是求一个数的几分之几是多少,然后根据单位“1”确定已知量和未知量之间的关系,最后列式计算。
列式方法:用已知量除以单位“1”所对应的分数,得到答案。
二、分数除法(一)倒数的意义和计算方法倒数的意义:一个数的倒数是1除以这个数得到的商。
倒数的方法:一个非零整数的倒数等于这个数分之一;一个带分数或小数的倒数,先把小数化成分数,再求倒数。
(二)分数除法的意义和计算方法分数除法的意义:分数除法是已知两个分数的商或差,求另一个分数是多少。
分数除法的计算方法:将被除数除以除数,得到商或差。
(三)比的意义和性质比的意义:两个数相除叫做比。
比的前项是分子,后项是分母。
比值是前项除以后项得到的商。
比的性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
三、圆(一)圆的认识圆的概念:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆心和半径的作用:圆心决定了圆的位置,半径决定了圆的大小。
圆的画法:用圆规画圆,先确定圆心,再根据半径确定圆的大小。
六年级上册知识点重点

六年级上册知识点重点一、语文知识点重点1. 词语的类别和用法:名词、动词、形容词、副词等词性及其在句子中的作用。
2. 句子的结构:主语、谓语、宾语、定语、状语的概念及其在句子中的位置和作用。
3. 词语的词义:通过上下文推断词语的意思,掌握运用词语的丰富词义。
4. 修辞手法:比喻、拟人、夸张等修辞手法的运用,增加语言表达的生动和趣味。
5. 阅读理解:提升阅读理解能力,如找主题句、判断事实与推理、推断作者意图等。
二、数学知识点重点1. 数的四则运算:加减乘除的计算和应用,掌握运算法则和运算顺序。
2. 分数的认识和运算:分数的概念、读法、表示法及其加减乘除的运算法则。
3. 小数的认识和运算:小数的概念、读法、表示法及其加减乘除的运算法则。
4. 数的整除和倍数:整数的性质,如质数、合数、最大公约数、最小公倍数等。
5. 平方数和平方根:平方数的概念、判断和求解,掌握平方根的计算。
三、英语知识点重点1. 词汇积累:掌握常用词汇的读音、拼写及词义,积累并灵活运用在日常对话和阅读中。
2. 句型构造:学习常用句型的结构和用法,如一般现在时、一般过去时等。
3. 语法知识:掌握名词、动词、形容词、副词等基础语法知识,理解句子的结构。
4. 听力训练:通过听力练习提高对英语语音、语调、节奏的理解和听力反应能力。
5. 阅读理解:培养英语阅读理解能力,提高对文章的整体理解和细节把握能力。
四、科学知识点重点1. 自然科学:了解生物、物理、化学等自然科学的基础知识和实验方法。
2. 自然现象:探索和解释各种日常自然现象,如天气变化、植物生长、物体的运动等。
3. 科学实验:通过实验学习科学知识,培养观察、分析、推理和实验方法的能力。
4. 环境保护:培养环境保护意识,了解环境问题,掌握环保知识和行为准则。
5. 科学探究:培养科学探究和创造性思维,提出问题、观察、假设、实验和总结。
总结:六年级上册知识点重点包括语文、数学、英语和科学四个学科的核心知识,学生应注重词语的理解与运用、句子结构的掌握、数学运算的灵活应用、英语词汇和语法的积累、科学的实验探究和环保意识的培养。
六年级上册必考知识点归纳总结

六年级上册必考知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义是把相同的数或单位“1”相加,求和。
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3. 乘法运算定律推广到分数:分数乘法也适合乘法交换律、结合律、分配律。
二、分数除法1. 分数除法的意义:与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
2. 分数除法的计算法则:除以一个数(0除外),等于乘上这个数的倒数。
3. “四则运算”中的“除法运算”:在混合运算中,先算括号内的,再算乘除法,最后算加减法。
三、比和比例1. 比的意义和性质:两个数相除又叫做两个数的比。
比是表示两个量相除的关系。
比的性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
2. 比例的意义和性质:表示两个比相等的式子叫做比例。
比例的性质:内项之积等于外项之积。
3. 化简比:根据比的基本性质,把比的前项和后项都乘或除以同一个数(0除外),比值不变。
4. 解比例:解比例的意义在于可以把一个难以解决的比较复杂的问题转化成一个易于解决的一元一次方程,然后解这个方程即可得出所求的比或比例值。
5. 正比例和反比例的意义:两个量中相对应的两个数的商一定,这两个量就成正比例;两个量中相对应的两个数的积一定,这两个量就成反比例。
6. 用字母表示数:用字母表示数可以简明地表达数量关系,同时也可以使一些与数量关系密切相关的性质更直观、更简洁地表达出来。
7. 用字母表示常见的数量关系、运算定律和性质、几何形体的周长、面积、体积公式。
六年级上册所有重要知识点

六年级上册所有重要知识点一、数学1. 整数与自然数整数的概念及特性自然数的概念及特性2. 有理数有理数的概念及特性正有理数、零和负有理数3. 分数分数的概念及特性真分数、假分数和带分数分数的比较和约分4. 小数小数的概念及特性有限小数和无限小数5. 平方与平方根平方的概念及性质平方根的概念及性质6. 运算法则加法与减法的运算规则乘法与除法的运算规则混合运算的优先级7. 数轴与坐标数轴的概念和绘制坐标的概念及表示方法8. 三角形三角形的概念及分类三角形的性质和判定9. 面积与周长面积的概念及计算公式周长的概念及计算公式矩形、正方形和三角形的面积公式10. 数据的整理与统计数据的分类和整理数据的统计和图表表示二、语文1. 词语积累同音异义词、近义词、反义词成语、词语拼音、词语释义2. 句子结构主语谓语宾语的概念及例题倒装句、省略句、比较句的特点与应用3. 语法要点名词的分类和用法动词的分类和时态形容词、副词的用法代词、介词的意义和作用4. 阅读理解理解短文的目的和方法提炼关键词、总结段落大意推理判断和问题回答技巧5. 写作技巧写作的主题和要点语言的准确性和表达的连贯性描述、叙事、议论文的写作技巧三、英语1. 词汇与拼写常用词汇的拼写和应用时态动词的变化规则2. 语法名词、动词、形容词的基本用法一般疑问句和否定句的构成3. 句型与对话日常用语的句型情景对话的情境和应答4. 阅读与听力阅读短文的技巧和理解听力材料的筛选和录音辨识5. 写作与口语撰写常见主题的短文和作文日常口语表达的练习和应用以上为六年级上册数学、语文和英语的重要知识点,涵盖了每个学科的基本概念、技巧和方法。
希望对你的学习有所帮助,加油!。
六年级上册知识点总结

第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
六年级上册的笔记

六年级上册的笔记
数学笔记:
1. 分数乘法:分子乘分子,分母乘分母,得到结果。
对于带分数,先将其整数部分和分数部分分别相乘,再将结果相加。
2. 分数除法:将除数颠倒过来,与被除数相乘,对于带分数,先将其整数部分和分数部分分别相除,再将结果相加。
3. 百分数的应用:百分数表示一个数是另一个数的百分之几。
常用的百分数有10%,20%,50%等。
语文笔记:
1. 古诗词:重点记忆作者、朝代、注释和诗意。
对于名句,要重点掌握其含义和用法。
2. 现代文阅读:理解文章的主旨、结构和语言特点。
注意把握关键词句,理解作者的表达意图。
3. 作文:学会审题、立意和选材。
掌握各种文体的写作技巧,如记叙文、议论文、说明文等。
英语笔记:
1. 单词:记忆单词的拼写、读音和词义。
对于常用的动词和形容词,要掌握其过去式和过去分词形式。
2. 语法:理解各种时态、语态和语气,如现在进行时、一般过去时、将来时等。
注意主谓一致和名词的数。
3. 阅读:提高阅读速度和理解能力。
注意把握文章的结构和中心思想。
科学笔记:
1. 自然现象:了解常见的自然现象,如风雨雷电、地震等。
探究其形成的原因和规律。
2. 物质的变化:理解物质的三态变化和化学变化,如燃烧、氧化等。
探究其变化的原因和过程。
3. 宇宙探索:了解太阳系、银河系等宇宙结构。
探究宇宙的起源和发展。
小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冀教版六年级数学上册知识点总结
第一单元圆和扇形(重点)
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。
在同一个圆里,有无数条半径,且所有的半径都相等。
半径确定圆的大小。
直径d: 通过圆心且两端都在圆上的线段叫做直径。
在同一个圆里,有无数条直径,且所有的直径都相等。
直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2(重点)
4、等圆:半径相等的圆叫做等圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无数条对称轴的图形:圆,圆环
6、画圆(重点)
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、扇形
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
二、比例
表示两个比相等的式子叫做比例。
判断两个比能不能组成比例,要看它们的比值是不是相等。
组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积,这是比例的基本性质。
如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘,它们的积相等。
第三单元百分数(重点)
一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。
分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。
“%”的两个0要小写,不要与百分数前面的数混淆。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
(易考点)
2、小数、分数、百分数之间的互化(重点,易考点)
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数化成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
第四单元圆的周长和面积(重点)
一、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母
C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定不变的数,叫做圆周率,用字母π表示。
即:圆周率π=周长÷直径≈3.14
所以, 圆的周长(c)=直径(d)×圆周率(π)
周长公式:c=πd, c=2πr
注:圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圆周长=圆周长一半+直径=πr+d
二、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成近似的长方形,份数越多拼成的图像越接近长方形。
圆的半径= 长方形的宽
圆的周长的一半= 长方形的长
长方形面积= 长×宽
所以:
圆的面积= 长方形的面积 = 长×宽= 圆的周长的一半(πr)×圆的半径(r)
S = πr×r = πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
(易考点)
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
(重点,易考点)
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
则:S1∶S2∶S3=4∶9∶16
4、圆环面积 = 大圆面积–小圆面积(重点)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。
注:一个圆的半径增加a厘米,周长就增加2πa厘米
一个圆的直径增加b厘米,周长就增加πb 厘米
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π
7、常用数据π=3.14 2π=6.28 ……25π=78.5(非常有用)
第五单元百分数应用题(重点)
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几(甲-乙)÷乙
求乙比甲少百分之几(甲-乙)÷甲
3、求一个数的百分之几是多少。
一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣折扣、
打折的意义:几折就是十分之几也就是百分之几十
6、纳税缴纳的税款叫做应纳税额。
(应纳税额)÷(总收入)=(税率)
(总收入)×(税率)=(应纳税额)
7、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间(重点)
8、百分数应用题型分类
(1)求甲是乙的百分之几(甲÷乙)= 百分之几
(2)求甲比乙多(少)百分之几(甲-乙)÷乙= 百分之几或(乙-甲)÷乙= 百分之几
第六单元比例尺
1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、图上距离﹕实际距离=比例尺
3、求比例尺时要特别注意:图上距离和实际距离单位统一再化简。
比例尺是一个比,不应带计量单位。
为了计算简便,通常把比例尺写成前项(后项)为1的比。
4、根据比例尺的表现形式比例尺可分为:数值比例尺、线段比例尺
5、数值比例尺:1:2000000图上1厘米表示实际距离2000000厘米或图上1厘米表示实际距离20千米
第七单元、扇形统计图
1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)、扇形统计图直观显示部分和总量的关系。