高一数学必修1_幂函数_ppt
合集下载
高一数学《幂函数》PPT课件

根据n, m, p的取值不同,图像形状各 异。
03
幂函数运算规则与技巧
同底数幂相乘除法则
01
02
03
同底数幂相乘
底数不变,指数相加。公 式:a^m × a^n = a^(m+n)
同底数幂相除
底数不变,指数相减。公 式:a^m ÷ a^n = a^(m-n)
举例
2^3 × 2^4 = 2^(3+4) = 2^7;3^5 ÷ 3^2 = 3^(5-2) = 3^3
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
计算圆的面积
$S=pi r^2$,$r$为圆半 径,利用幂函数表示圆的 面积与半径关系。
增长率、衰减率问题中应用
细菌增长模型
假设细菌以固定比例增长,则细 菌数量与时间关系可用幂函数表
示。
放射性物质衰变
放射性物质衰变速度与剩余质量 之间的关系可用幂函数描述。
投资回报计算
投资回报率与时间关系可用幂函 数表达,用于预测未来收益。
利用积的乘方法则进行化简
如(ab)^n = a^n × b^n
举例
化简(x^2y)^3 ÷ (xy^2)^2,结果为x^4y
04
幂函数在生活中的应用举例
面积、体积计算中应用
计算正方形面积
$S=a^2$,其中$a$为正 方形边长,利用幂函数表 示面积与边长关系。
高中数学人教A版必修1第二章 基本初等函数——幂函数(共14张PPT)

f(x 1 )f(x2 )x 1x2(x 1x x 2 1 )+ (x x 2 1+x2)
x1 x2 x1 + x2
方法技巧:分子有理化
因 x 1 x 2 , x 为 1 , x 2 [ 0 , + ) 所 ,x 1 x 2 以 0 ,x 1 + x 2 0 ,
所 f(x 以 1 )f(x2 )即 , 幂 f(x) 函 x在 [0 数 ,+)上 的 .
课堂小结
(1) 幂函数的定义; (2)五个基本幂函数的图像画法及特征; (3) 幂函数的性质。
作业:P79习题2.3: 1,2,3。
谢谢指导
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了��
高一数学人必修一课件第二章幂函数

感谢观看
THANKS
性质
一次幂函数具有比例性质 ,即y/x=n(常数),且 增减性与n的正负有关。
二次幂函数
定义
形如y=ax^2+bx+c(a≠0 )的函数。
图像
二次幂函数的图像是一条 抛物线,对称轴为x=b/2a,顶点坐标为(b/2a,(4ac-b^2)/4a)。
性质
二次幂函数具有对称性、 有界性和单调性等性质, 其增减性取决于a的正负和 x的取值范围。
自由落体运动的位移
自由落体运动中,物体下落的位移h与时间t的关系可以表示为h=1/2gt^2(g为 重力加速度)。这个关系式是一个幂函数,其中指数为2。
经济生活中应用举例
复利计算
在金融领域,复利是一种计算利息的方法。假设本金为P,年利率为r,经过n 年后,本金和利息的总和为A=P(1+r)^n。这个公式中的(1+r)^n部分就是一 个幂函数。
06
练习题与课堂互动环节
练习题选讲
题目一
求函数$y = x^{2}$在 区间$[1,2]$上的最大值 和最小值。
题目二
判断函数$y = x^{3}$ 在$R$上的单调性,并 证明。
题目三
已知函数$y = x^{-2}$ ,求其在点$(1,1)$处的 切线方程。
学生自主函数的奇偶性?
高一数学人必修一课
件第二章幂函数
汇报人:XX
20XX-01-22
• 幂函数基本概念与性质 • 常见幂函数类型及其特点 • 幂函数在生活中的应用举例 • 幂函数与指数、对数等其他类型
函数关系探讨 • 求解幂函数相关数学问题方法技
巧总结 • 练习题与课堂互动环节
目录
01
幂函数教学讲解ppt课件

03
幂函数的运算性质及应用
幂函数的加法、减法、乘法运算性质
总结词:掌握幂函数的基本运算性质是 理解幂函数应用的基础。
3. 幂函数的乘法运算性质: $(a^m)(a^n)=a^{m+n}$
2. 幂函数的减法运算性质:$(a^m)(a^n)=a^m-a^n$
详细描述
1. 幂函数的加法运算性质: $(a^m)+(a^n)=a^m+a^n$
课堂练习题
练习1:求解下列函数的奇 偶性
$y=x^2,x \in (-1,1)$;
$y=x^3,x \in (-1,1)$。
解析:对于$y=x^2,x \in (1,1)$,因为$-1<x<1$,所 以$-x<-1<1$,因此有$f(x)=(-x)^2=x^2=f(x)$,即 该函数为偶函数;对于 $y=x^3,x \in (-1,1)$,因为 $-1<x<1$,所以$-x<1<1$,因此有$f(-x)=(x)^3=-x^3=-f(x)$,即该函 数为奇函数。
02
在日常生活中,我们经常遇到幂 函数的实例,例如人口增长、金 融投资、计算机科技等。
幂函数的概念及重要性
定义
形如y=x^n的函数称为幂函数, 其中x是自变量,n是实常数。
幂函数的重要性
掌握幂函数的性质和变化规律, 有助于解决各种实际问题,培养 数学思维和解决问题的能力。
学习目标与学习方法
学习目标
详细描述
介绍幂函数的阶乘定义,通过实例阐述排列组合的基本概念,例如,组合公式、 排列公式等。
幂函数的对数运算
总结词
掌握幂函数的对数运算性质
详细描述
说明幂函数与对数函数之间的关系,推导基于幂函数的对数运算法则,例如,log(a^b)=b*log(a)。
《幂函数》新教材PPT完美课件

第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
பைடு நூலகம்
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
高一数学幂函数ppt课件.ppt

(4)只有1项; (5)这些例子中涉及的函数都是形 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
幂函数的定义
一 般 地 ,函 数 y x 叫 做 幂 函 数 ,其 中 x 是 自 变 量 ,
下面我们一起来尝试幂函数性质的简单应用:
(基础练习)例4:写出下列函数的定义域,并指出它们的奇偶
性和单调性.
(1)y x4
1
(2) y x 4
(3)y x3
解:(1)函数 y x4的定义域为R,它是偶函数,在 [0,)上是增函数,
在(,0)上是减函数.
1
(2)函数 y x 4 的定义域为[0,),它是非奇非偶函数,在[0,)上是增函数.
(3)yx2 x(×)(4)yx2 (1 ×)
(5)y x2
(×) (6)y
1 x3
(√)
[总结]要判断一个函数是幂函数,判断的标准是它的定
义.根据定义,可以把幂函数的形式特征概括为:两个系
数为1,只有一项.
4
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(巩固提升)例3:已知函数f(x)(m 22m )xm 2m 1,m为何值
时,是:(1)正比例函数;(2)反比例函数;(3)二次
函数;(4)幂函数.
解 :
(感受理解)例5:比较下列各组中两个值的大小,并说明理由.
1
幂函数人教版高中数学必修一PPT课件

•
所以当x∈[0,3]时,函数f(x)的值域为[0,27].
39
幂函数 图象
定义域
y=x R
y=x2 R
y=x3 R
3
知识点聚焦:
二、幂函数的图象与性质
4
知识点聚焦:
5
幂函数人教版高中数学必修一PPT课件
探究一 幂函数的概念
• 【例】函数f(x)=(m2-m-1)xm2+m-3是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求 f(x)的解析式.
幂函数人教版高中数学必修一PPT课件
•
3
(1)y=x5 ;
2
(2)y=x5 ;
8
(3)y=x5 ;
(4)y=x−45.
幂函数人教版高中数学必修一PPT课件
13
幂函数人教版高中数学必修一PPT课件
解析:
幂函数人教版高中数学必修一PPT课件
14
解析:
15
解析:
16
解析:
17
方法归纳:
• 作幂函数f(x)=xα图象的步骤: • (1)判断f(x)在(0,+∞)的单调性,并作出f(x)在(0,+∞)上的简图, •
7
幂函数人教版高中数学必修一PPT课件
方法归纳:
• (1)判断幂函数的依据: • 形如y=xα的函数叫幂函数,它具有三个特点: • ①系数为1. ②指数为一常数(也可以为0).③后面不加任何项. • (2)幂函数y=xα与指数函数y=ax(a>0且a≠1)的区别:
函数名称 幂函数 指数函数
函数解析式 y=xα
• (2)把f(x)=xα转化为无理根式,确定定义域. • (3)若f(x)的定义域不关于原点对称,则f(x)是非奇非偶函数,若f(x)的定义域关于原
高中数学人教版必修一 3.5幂函数的定义和性质(共19张PPT)

奇偶性 奇
偶 奇 非奇非偶 奇
单调性
↗
[0,+∞)↗
(- ∞,0) ↘
↗
(0,+∞) ↘ ↗ (- ∞,0)↘
公共点
(1,1) (0,0)
(1)所有的幂函数y x 均在(0, )上有定义, 过 公 共 点(1, 1)
(2)当 0时,y x的图象过原点(0, 0), 当 0时,y x的图象不过原点;
【解析】(1)若 f(x)为正比例函数,
则mm22+ +m2m-≠1=0 1, ⇒m=1.
(2)若 f(x)为反比例函数,
则mm22+ +m2m-≠1=0 -1, ⇒m=-1.
(3)若 f(x)为二次函数,
则mm22+ +m2m-≠1=0 2,
⇒m=-1±2
13 .
(4)若 f(x)为幂函数,则 m2+2m=1,∴m=-1± 2.
y y x3
x
O
二、基础知识讲解
y
1
y x2
x
012
3
0 x0.5 1 1.414 1.732
x 456
x0.5 2 2.236 2.45
1
y x2
x
定义域:__[_0_,____)_____ 值 域:__[_0_,____)_____
奇偶性: 既__不__是__奇__函___数__也 不 是 偶 函 数
二、基础知识讲解
关于幂函数,主要学习下列几种函数的图象与性质.
(1) y x
1
(4) y x 2
(2) y x2 (5) y x1
(3) y x3
二、基础知识讲解
y
yx
O
定义域:____R________ 值 域:____R________ 奇偶性:___奇__函__数_________ 单调性:__在__R__上__是__增___函__数__
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
(1) 幂函数的定义;
一般地,函数y=xα叫做幂函数,其中x是自 变量,α是常数.
1
(2)掌握幂函数 yx,yx2,yx3,yx 1,yx2
的图象和性质
(3) 利用幂函数的单调性判别幂函数值大小
课堂小结:
1. 幂函数的定义
2. 幂函数的定义域
3. 幂函数的图象和性质
课后作业:
1.比较大小:
(1)0.53/5——0.493/5 (3)(3/5)- 5——(4/5)- 5 2.求下列函数的定义域:
(9)y
x3;(10)y
3
x2
• 则图象关于y轴对称的函数是___;
• 则图象关于原点对称的函数是___;
• 则互为反函数的两个函数是___。
1
1
例2、若 (x1)2(32x)2,求 x的范 .围
1
解:考虑函数 y x 2 在[0,+∞)上为单调增函数
∴由条件有
0
3 2x 0
x 1< 3 2 x
练习:比较下列各组数的大小。
(1)
1
1.5 3
和
1
1.7 3
1
1
(2) 4.12 和 3.82
练习 将下列函数序号填在相应 图象下面的括号里。
4
(1) y=x 5
4
(2) y=x 3
(3)
y=x
1 2
(4)
y=x
1 3
4 2
4
1 2
1 2
-4
-2
-6
-4
-2
2
4
6
2
4
6
-2 -1
-2
-1
-4 -4
练习 y幂 函xm 数y xn y x p
在第一象限的图象如图所示,
试比较m、n、p的大小。
6
6
m
4
m4
np
pn
2 2
-4
-2
-2
-4
2
4
6
-4
-2
-2
-4
2
4
6
• 练习、给定函数解析式:
1
2
1
2
(1)yx 3;(2)yx 3;(3)yx 2;(4)yx3;
1
1
3
(5)y x3;(6)y x2;(7)y x2;(8)y x3;
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 的增大而减小,即在
(0,+∞)上是减函数。
(3)在第一象限,图象向上与 y 轴无限接近,向右与 x 轴无限接近。
y x3
y x2
yx
1
y x2
y x1
例一、 比较大小:
> (1)1.53/5 < 1.73/5 (2)0.71.5
奇
单调性
增
[0,+∞)增 (-∞,0]减
增
非奇非 偶
增
奇
(0,+∞)减 (-∞,0)减
公共点 (1,1) (1,1) (1,1) (1,1)
(1,1)
探究:幂函数的性质
(1)幂函数的图象都通过点 (1,1) (2) 如果α>0,
在 区间[0,+∞)上是 增函数
如果a<0, 在区间(0,+∞)上是 减函数
解得: 1 x 2 3
改为:(x + 1 ) - 3 1 < ( 3 - 2 x ) - 3 1
• 例3:已知幂函数 f(x)=
为偶函数且在区间
xm2上2m是3(单m 调Z减)
函数,
0,
• (1)则函数解析式是___;
• (2)讨论函数g(x)= a f (x) b 的奇
偶性
xf(x)
例 3.证明幂函数 f (x) x 在[0,+∞)上是增函
(3) 当α为奇数时, 幂函数为 奇函数 当α为偶数时, 幂函数为 偶函数;
打开几何
y y=x3
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 的增大而增大,即
在[0,+∞)上是增函
在同一平面直角坐标系内作出幂函数y=x, y=x2,y=x3,y=x1/2,y=x-1的图象. 打开几何画板
函数 性质
y=x
定义域 R
常见幂函数的性质
1
y=x2 y=x3 y x 2
y=x-1
R
R [0,+∞) x|xR且x0
值域 R [0,+∞) R [0,+∞) y|yR且y0
奇偶性 奇
偶
看看未知数x是指数还是底数
指数函数
幂函数
1.判断下列函数是否为幂函数.
(1) y=x4 √
(2) y
1 x2
√
1
(4) y x 2 √
(5) y=3x2 x
(3) y= -x2 x
(6) y=x3-2 x
2.若幂函数y=f(x)的图象过点 ( 2 , 2 ) ,则函
数的解析式为__y_____x___
(2)8.1-1/5——8.01-1/5
1
1
(4) 3 3 —— 3 4
(1) y
1 3x
(2) y(2x5)3 2
习题3.3
我国著名数学家华罗庚教授在其 《数学的用场与发展》中指出:
“宇宙之大,粒子 之微,火箭之速,化 工之巧,地球之变, 生物之谜,日用之 繁,无处不用数 学。”
幂函数与指数函数的对比
式子
a
指数函数: y=a x 底数
名称
x
y
指数 幂值
幂函数: y= x a 指数 底数 幂值
判断一个函数是幂函数还是指数函数切入点
0.61.5
< > (3)2.2-2/3 1.8-2/3 (4)0.15-1.2 0.17-1.2
例二、求下列函数的定义域:
(1)y = (2x+5)1/2
(1)解:y = 2x 5
解不等式2x+5≥0 得
x≥-5/2
函数y = (2x+5)1/2 的 定义域为[ -5/2,+∞) .
(2)y = -(x 3)-1/5
数.
证明:任取x1,x2∈ [0,+∞),且x1<x2,则
f(x1)f(x2) x1 x2
(
x1
x2)(
x1
x2)
x1 x2
x1 x2
x1 x2
因 为 x1x20, x1x20,
所 以 f ( x 1 ) f ( x 2 ) , 即 幂 函 数 f ( x ) x 在 [ 0 , ) 上 是 增 函 数 .
解:y =
1 5 x3
解不等式 x – 3 ≠0得
X≠3
函数y=(x-3)-1/5的定 义域为(-∞,3)∪(3,+∞).
例1 比较下列各组数的大小:
(1)()3和 (-3)3
1
1
(2)3 2 和3.1 2
(3) 31.4和51.5 注意:
•利用幂函数的增减性比较两个数的大小.
•当不能直接进行比较时,可在两个数中间 插入一个中间数,间接比较上述两个数的大小