数值分析典型习题资料
数值分析典型习题

特别声明:考试时需带计算器作辅助计算1.2015x *=是经四舍五入得到的近似值,则其相对误差*r e ≤-31104⨯。
2。
01(),(),,()n l x l x l x 是以01,,,n x x x 为节点的拉格朗日插值基函数,则(1)()nn kk k xl x =-=∑(1).n x -3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,13-.4。
利用Simpson 公式求⎰212dx x =7.35. 设求积公式10()d (),(1)nk k k f x x A f x n ≈≥∑⎰=是Gauss 型求积公式,则3nk k k A x ==∑1.46. 数值微分公式(2)(2)()i i i f x h f x h f x h+≈--'的截断误差为2().O h7。
设1101A ⎛⎫= ⎪⎝⎭,则A 的谱半径()A ρ=1,A 的条件数1cond ()A =4。
8。
用牛顿下山法求解方程303x x -=根的迭代公式是 2133(1),3n n n n x x x x x λ+-=-- 下山条件是1()().n n f x f x +<9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ<B10. 应用幂法迭代公式(+1)()k k A x =x 当k 充分大时有p q ≈()(1)(),k+2k+k x x x ++0 则A 的按模最大的特征值 1,2λ=11。
设数据12,x x 的绝对误差分别为0。
005和0.002,则12x x -的绝对误差约为( D )A. 0。
005 B 。
0。
002 C. 0。
003 D 。
0.00712. 对于多项式2012()n n n P x a a x a x a x =++++在某点0x 处函数值的秦九韶算法基于如下公式:0121()(((())))n n n P x a x a x a x x a a x -=+++++算法计算的始点为n a ,而这一算法的优点在于( C )A. 精度高 B 。
数值分析试题集

..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。
二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。
12四( 15 分)计算13 dx ,10 2。
x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。
六( 10 分)证明改进的尢拉法的精度是 2 阶的。
七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。
八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。
2 12 A,则 A1 4----------- ,( A) ----------------- 。
a 1 2 时, A 可作 LU 分解。
3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。
数值分析典型例题

1数值分析典型例题例1 对下列各数写出具有5位有效数字的近似值。
236.478, 0.00234711,9.000024, 9.000034310⨯.解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310⨯。
注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9是1位有效数字。
例2 指出下列各数具有几位有效数字。
2.0004, -0.00200, -9000, 9310⨯,2310-⨯。
解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程*s 的近似值s=800m ,所需时间*s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。
解:因为t s v /=,所以)()(1)()()(2t e tss e t t e t v s e s v v e -=∂∂+∂∂≈ 从而05.00469.0358005.0351|)(||||)(|1|)(|22≤≈+⨯≤+≤t e t s s e t v e同样v v e v e r )()(≈)()()()(t e s e t e vtt v s e v s s v r r r -=∂∂+∂∂=所以00205.03505.08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r因此绝对误差限和相对误差限分别为0.05和0.00205。
例4试建立积分20,,1,05=+=n dx x x I nn 的递推关系,并研究它的误差传递。
解:151--=n n I nI ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。
但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可知近似值之间的递推关系为151--=n n I nI ……………………………………………….…..(2) (1)-(2)可得01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。
数值分析练习题加答案(一)

数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
数值分析(课后习题答案详解).ppt

x x 41 2 0 . 25 0 . 5451 1 1 再解 3 x 0 . 875 ,得 x 1 . 2916 2 2 2 0 3 1 . 7083 . 5694 x x 3 3
4 41 2 T 故得 GG 分解: A 1 2 3 2 2 3 3 3 1 1 16 11 4 2 T 3 1 LDL 分解为: A 1 4 4 1 2 3 1 1 9 1 2 2
一.习题1(第10页)
1-1.下列各数都是经过四舍五入得到的近似值 ,试分 别指出它们的绝对误差限,相对误差限和有效数字的位数.
x1=5.420,x2=0.5420,x3=0.00542,x4=6000,x5=0.6105.
解 绝对误差限分别为: 1=0.510-3,2=0.510-4, 3=0.510-5,4=0.5,5=0.5104 . 相对误差限分别为: r1=0.510-3/5.420=0.00923%, r2=0.00923%,r3=0.0923%,4=0.0083%,5=8.3%. 有效数位分别为: 4位,4位,3位,4位,1位. 1-2.下列近似值的绝对误差限都是0.005,试问它们有
2 11 2 1 2 故得 Crout 分解: A 4 3 13 6 12 1 1
1 2 11 2 1 2 LDM 分解为: A 21 13 3 3 4 1 1 1
几位有效数字. a=-1.00031,b=0.042,c=-0.00032
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析典型例题

第一章典型例题例3…,精确到10-3的近似值是多少?解 精确到10-3=0.001,即绝对误差限是?=0.0005, 故至少要保留小数点后三位才可以。
ln2?0.693 第二章典型例题例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式⎪⎪⎩⎪⎪⎨⎧+--=+--=++-=+++5223122)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1X (2)=(5,-3,-3)T第3次迭代,k =2X (3)=(1,1,1)T第4次迭代,k =3X (4)=(1,1,1)T例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。
证明 例2中线性方程组的系数矩阵为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-122111221 于是 D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001 D -1=D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=022001000L ~ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=000100220U ~ 雅可比迭代矩阵为B 0=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。
高斯-赛德尔迭代矩阵为G =-U ~)L~D (1-+ =-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2003202200001002201200110010001002201220110011解得特征根为?1=0,?2,3=2。
《数值分析》练习题及答案解析

《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析典型习题特别声明:考试时需带计算器作辅助计算1.2015x *=是经四舍五入得到的近似值,则其相对误差*r e ≤-31104⨯. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,13-.4. 利用Simpson 公式求⎰212dx x =7.35. 设求积公式10()d (),(1)nk k k f x x A f x n ≈≥∑⎰=是Gauss 型求积公式,则3nk k k A x ==∑1.46. 数值微分公式(2)(2)()i i i f x h f x h f x h+≈--'的截断误差为2().O h7. 设1101A ⎛⎫= ⎪⎝⎭,则A 的谱半径()A ρ=1,A 的条件数1cond ()A =4.8. 用牛顿下山法求解方程303x x -=根的迭代公式是 2133(1),3n n n n x x x x x λ+-=-- 下山条件是1()().n n f x f x +<9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ<B10. 应用幂法迭代公式(+1)()k k A x =x 当k 充分大时有p q ≈()(1)(),k+2k+k x x x ++0 则A 的按模最大的特征值 1,2λ=11. 设数据12,x x 的绝对误差分别为0.005和0.002,则12x x -的绝对误差约为( D ) A. 0.005 B. 0.002 C. 0.003 D. 0.00712. 对于多项式2012()n n n P x a a x a x a x =++++L 在某点0x 处函数值的秦九韶算法基于如下公式: 算法计算的始点为n a ,而这一算法的优点在于( C )A. 精度高B. 计算量小C. 精度高,且计算量小D. 既收敛又稳定13. 给定数据由它们所确定的Lagrange 多项式与Newton 多项式,以下说法正确的是( C )A.从数值算法上讲,它们是不同的,不过, 一般而言, 后者计算结果精度会更高B.无论从数值算法还是从数学意义上讲,它们都是相同的, 只是后者计算更灵活C.从数值算法讲它们不同,但数学意义上讲它们却是相同的D.无论从数值算法还是从数学意义上讲,它们都是不同的 14. 利用求解方程0)(=x f 根的牛顿迭代法公式为)()(1n n n n x f x f x x '-=+。
利用这一方法进行求解时,迭代所用初始点的选取很关键,以下最好的说法是( B )A.对于单重根是局部二阶收敛的,初始点应选取较接近于根的值,但不一定收敛B.它是局部二阶收敛的,初始点选用较接近于根的值即收敛C.对于单重根是二阶收敛的,初始值0x 任意选取D.对于多重根是超线性收敛的,且初始点0x 任意选取15.求解方程0)(=x f 时,可将方程变形而得到迭代格式)(1n n x x ϕ=+,当迭代格式)(1n n x x ϕ=+中函数)(x ϕ满足( D )条件时,这一迭代格式必收敛。
A.1)(<x ϕ B.1)(<'x ϕ C. 1)(<x ϕ D.()1x φ'<16. 求矩阵特征值与特征向量的幂法与反幂法,分别可以用于求矩阵的( A ) A. 按模最大特征值与最小特征值,及其对应特征向量 B. 所有特征值及其对应特征向量 C. 按模最大特征值及其对应特征向量 D. 按模最小特征值及其对应特征向量17.求解微分方程初值问题数值解的改进的欧拉折线法,其局部截断误差的阶是 ( B ) A. 1 B. 2 C.3 D. 418. 已知n 对观测数据n k y x k k ,...,2,1),,(=, 这n 个点的拟合直线01y a x a =+,10,a a 是使( D )最小的解。
A. ∑=--nk k k x a a y 110 B. ()∑=--nk k k x a a y 110C. )(2110knk k x a a y --∑= D. 2101)(a x a y k nk k --∑=19. 若复化梯形公式计算定积分dx e x ⎰-1,要求截断误差的绝对值不超过4105.0-⨯,则≥n ( A )A. 41B. 42C. 43D. 40 20. 已知函数)(x f y =的数据表251369xy - ,则)(x f y =的拉格朗日插值基函数=)(2x l ( A ) A.)15)(25(5)1)(2(----x x x B.)10)(50)(20()1)(5)(2(------x x x C. )12)(52(2)1)(5(----x x x D.)51)(21(1)5)(2(--⋅--x x x21. 求解初值问题00')(),,(y x y y x f y ==的近似解的梯形公式是=+1n y ( A )A. )],(),([211++++n n n n n y x f y x f h yB. )],(),([211++-+n n n n n y x f y x f hyC. )],(),([211+++-n n n n n y x f y x f h yD. )],(),([21n n n n n y x f y x f hy ++-22. 下面( D )不是数值计算应注意的问题A. 注意简化计算步骤,减少运算次数B. 要避免相近两数相减C. 要防止大数吃掉小数D. 要尽量消灭误差23. 对矩阵特征值满足12n λλλ>≥⋯⋯≥情况,幂法收敛速度由比值12λλ=r 确定,r 越小收敛速度( A )A. 越快B. 越慢C. 不变D. 不确定24. 令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
解:由1)(000===-e x y y ,111)(-==e x y y 可知,xe x e x x e x x x x x y x x x x y x L )1(1)1(0101011)(111010110101-+=+--=--⨯+--⨯=--+--=---,余项为()1,0),1(2))((!2)()(101∈-=--''=-ξξξx x e x x x x f x R , 故8141121)1(max max 21)(10101=⨯⨯=-⨯⨯≤≤≤-≤≤x x e x R x ξξ25. 已知函数()y f x =的相关数据由牛顿插值公式求三次插值多项式3()P x ()2P =的值近似值。
(注:要求给出差商表) 解:差商表由牛顿插值公式:26.给出计算x =, 并证明2x =。
解:由题意可得出其迭代格式为1k x += 02k x ≤≤且 当02x ≤≤时,()1,x ϕ'=< 所以迭代格式是收敛的.由1lim k k x x *+→∞=可得,x *= 22()2,()20.x x x x ****=+--= 解得:121, 2.x x **=-= 其中110x *=-<舍去。
可得 2.x *= 即解得 2.x =27. 应用紧凑格式的Doolitte 分解(即LU 分解)法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7173530103421101002014321x x x x 。
解:由紧凑格式的Doolitte 分解(略)得:1011210101L ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭及1020101212U ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,于是求解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7173510101211014321y y y y 可得⎪⎪⎩⎪⎪⎨⎧====46354321y y y y ,求解⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛463521************x x x x 可得⎪⎪⎩⎪⎪⎨⎧====22114321x x x x 。
28.设方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225321321321x x x x x x x x x ,(1) 考察用雅可比迭代法,高斯-赛德尔迭代法解此方程组的收敛性; (2) 写出雅可比迭代法及高斯-赛德尔迭代法解此方程组的迭代格式。
解: (1) 由系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--1032241125为严格对角占优矩阵可知,使用雅可比、高斯-赛德尔迭代法求解此方程组均收敛。
[精确解为2,3,4321==-=x x x ] (2) 使用雅可比迭代法:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=++=--+103551201035121041515203201210141510322011201014151)()()(1)(1)1(k k k k x x bD x U L D x ,使用高斯-赛德尔迭代法: 29. 写出求解线性代数方程组的Gauss-Seidel 迭代格式,并分析此格式的敛散性。
解:方程组的Gauss-Seidel 迭代格式为其迭代矩阵为 其特征方程为 解之得 谱半径26()121G B ρ=>,故迭代发散. 29. 已知012113,,,424x x x ===(1)推导以这三点为求积节点在[0,1]上的插值型求积公式10120113()()()()424f x dx A f A f A f ≈++⎰;(2)指明求积公式所具有的代数精度;(3)用所求公式计算120x dx ⎰。
解:(1)所求插值型的求积公式形如:故101113()[2()()2()]3424f x dx f f f ≈-+⎰。
(2)所求的求积公式是插值型,故至少具有2次代数精度,再将34(),f x x x =代入上述公式,可得故代数精度是3次。
(3)由2)可得:12222011131[2()()2()]34243x dx =-+=⎰。
30. 见教材P67例4.1.1。
31. 用Romberg 方法计算⎰31dx x ,写出计算过程并将结果填入下表(*号处不填).32.单原子波函数的形式为bx ae y -=,试按照最小二乘法决定参数a 和b ,已知数据如下:解:对bx ae y -=两边取对数得bx a y -=ln ln ,令y Y ln =,a A ln =,则拟合函数变为bx A Y -=,所给数据转化为取1)(0=x ϕ,x x =)(1ϕ,则()41)(),(4100==∑=i x x ϕϕ,()()7)(),()(),(410110===∑=i ix x x x x ϕϕϕϕ,()21)(),(41211==∑=i i x x x ϕϕ,而()2109.0)(),(410-==∑=i iy x y x ϕ,()6056.3)(),(411-==∑=i i i y x x y x ϕ。