复旦大学精品课程《线性代数》课件,第四章欧几里得空间课件复习精品资料
合集下载
复旦大学精品课程《线性代数》课件,行列式性质课件复习精品资料

上三角形行列式,从而算得行列式的值.
1 −1 2 −3 1 ×3 ⊕
−3 3 −7 9 −5 例1 D = 2 0 4 − 2 1
3 − 5 7 − 14 6 4 − 4 10 − 10 2
1 −1 2 −3 1 ×3 ⊕
−3 3 −7 9 −5 解 D= 2 0 4 −2 1
3 − 5 7 − 14 6 4 − 4 10 − 10 2 1 −1 2 −3 1 0 0 −1 0 −2 r2 + 3r1 2 0 4 − 2 1 3 − 5 7 − 14 6 4 − 4 10 − 10 2
4 − 4 10 − 10 2
1 −1 2 −3 1
r3 − 3r1
r4 − 4r1
0 0 0
0 2 −2
−1 0 1
0 4 −5
−2 −1 3
验证
我们以三阶行列式为例. 记
a11 a12 a13 D = a21 a22 a23 ,
a31 a32 a33
a11 D1 = ka21
a31
a12 ka22 a32
a13 ka23 a33
根据三阶行列式的对角线法则,有
a11 D1 = ka21
a31
a12 ka22 a32
a13 ka23 a33
验证 我们以三阶行列式为例. 记
a11 a12 a13
a11 a12 + ka13 a13
D = a21 a22 a23 , D1 = a21 a22 + ka23 a23
a31 a32 a33
a31 a32 + ka33 a33
则 D = D1.
二、应用举例
计算行列式常用方法:利用运算 ri + krj把行列式化为
1 −1 2 −3 1 ×3 ⊕
−3 3 −7 9 −5 例1 D = 2 0 4 − 2 1
3 − 5 7 − 14 6 4 − 4 10 − 10 2
1 −1 2 −3 1 ×3 ⊕
−3 3 −7 9 −5 解 D= 2 0 4 −2 1
3 − 5 7 − 14 6 4 − 4 10 − 10 2 1 −1 2 −3 1 0 0 −1 0 −2 r2 + 3r1 2 0 4 − 2 1 3 − 5 7 − 14 6 4 − 4 10 − 10 2
4 − 4 10 − 10 2
1 −1 2 −3 1
r3 − 3r1
r4 − 4r1
0 0 0
0 2 −2
−1 0 1
0 4 −5
−2 −1 3
验证
我们以三阶行列式为例. 记
a11 a12 a13 D = a21 a22 a23 ,
a31 a32 a33
a11 D1 = ka21
a31
a12 ka22 a32
a13 ka23 a33
根据三阶行列式的对角线法则,有
a11 D1 = ka21
a31
a12 ka22 a32
a13 ka23 a33
验证 我们以三阶行列式为例. 记
a11 a12 a13
a11 a12 + ka13 a13
D = a21 a22 a23 , D1 = a21 a22 + ka23 a23
a31 a32 a33
a31 a32 + ka33 a33
则 D = D1.
二、应用举例
计算行列式常用方法:利用运算 ri + krj把行列式化为
复旦大学精品课程《线性代数》课件,线性变换课件复习资料

O x·n n
x
L x
图5.2: 镜像变换
∴ y1 + y2 = σ (x1 ) + σ (x2 ) = σ (x1 + x2 ) ∈ Im (σ ) (3). 数乘封闭性, 对∀c ∈ F ∀x ∈ Ker (σ ) , ∀y ∈ Im (σ ) , σ (cx) = cσ (x) = c0 = 0 ⇒ cx ∈ Ker (σ ) ∃x ∈ V 使得y = σ (x) , 则cy = cσ (x) = σ (cx) ∈ Im (σ )
由此左分配律成立,即 σ · (τ + π ) = σ · τ + σ · π . 同理可证明右分配律成立. 对∀c ∈ F, σ, τ ∈ L(V ), 有 [(cσ ) · τ ] (•) = (cσ ) (τ (•)) = cσ (τ (•)) = c (σ · τ ) (•) 从而, (cσ ) · τ = c (σ · τ )成立. 同理可证 σ · (cτ ) = c (σ ·). 综上所述, L(V )是F 上的代数. 例 7. 设σ, τ 为R2 空间上的线性变换, 分别定义如下: ∀ 求α= −3 2
第五章
线性变换
上 一 章 中 介 绍 了 线 性 空 间 的 概 念, 本 章 将 讨 论 线 性 空 间 之 间 的 联 系. 它 们 之 间 的 联 系 主 要 反 映 为 线 性 空 间 之间的映射, 所以研究定义域和值域都是线性(子)空间的映射是数学分析的基本目标之一, 其中最简单和最基 本的一类映射是线性变换(Linear Transformation). 它也是线性代数中一个主要研究对象.
证: 验证L(V )上关于线性变换的乘法满足定义5.4中的三个条件: (1) 对 ∀σ, τ, π ∈ L(V ), 有 (σ · τ ) · π = (σ · τ ) (π (•)) = σ (τ (π (•))) = σ ((τ · π ) (•)) = σ · (τ · π ) (2) L(V )中元素V 上的恒等变换“1V ”即为e, 且对∀σ ∈ V , 满足 1V · σ = σ · 1V = σ , 因此恒等变换 是L(V )的恒等元. (3) 对∀σ, τ, π ∈ L(V ), 有 [σ · (τ + π )] (•) = σ ((τ + π ) (•)) = σ (τ (•) + π (•)) = σ (τ (•)) + σ (π (•)) = (σ · τ ) (•) + (σ · π ) (•)
x
L x
图5.2: 镜像变换
∴ y1 + y2 = σ (x1 ) + σ (x2 ) = σ (x1 + x2 ) ∈ Im (σ ) (3). 数乘封闭性, 对∀c ∈ F ∀x ∈ Ker (σ ) , ∀y ∈ Im (σ ) , σ (cx) = cσ (x) = c0 = 0 ⇒ cx ∈ Ker (σ ) ∃x ∈ V 使得y = σ (x) , 则cy = cσ (x) = σ (cx) ∈ Im (σ )
由此左分配律成立,即 σ · (τ + π ) = σ · τ + σ · π . 同理可证明右分配律成立. 对∀c ∈ F, σ, τ ∈ L(V ), 有 [(cσ ) · τ ] (•) = (cσ ) (τ (•)) = cσ (τ (•)) = c (σ · τ ) (•) 从而, (cσ ) · τ = c (σ · τ )成立. 同理可证 σ · (cτ ) = c (σ ·). 综上所述, L(V )是F 上的代数. 例 7. 设σ, τ 为R2 空间上的线性变换, 分别定义如下: ∀ 求α= −3 2
第五章
线性变换
上 一 章 中 介 绍 了 线 性 空 间 的 概 念, 本 章 将 讨 论 线 性 空 间 之 间 的 联 系. 它 们 之 间 的 联 系 主 要 反 映 为 线 性 空 间 之间的映射, 所以研究定义域和值域都是线性(子)空间的映射是数学分析的基本目标之一, 其中最简单和最基 本的一类映射是线性变换(Linear Transformation). 它也是线性代数中一个主要研究对象.
证: 验证L(V )上关于线性变换的乘法满足定义5.4中的三个条件: (1) 对 ∀σ, τ, π ∈ L(V ), 有 (σ · τ ) · π = (σ · τ ) (π (•)) = σ (τ (π (•))) = σ ((τ · π ) (•)) = σ · (τ · π ) (2) L(V )中元素V 上的恒等变换“1V ”即为e, 且对∀σ ∈ V , 满足 1V · σ = σ · 1V = σ , 因此恒等变换 是L(V )的恒等元. (3) 对∀σ, τ, π ∈ L(V ), 有 [σ · (τ + π )] (•) = σ ((τ + π ) (•)) = σ (τ (•) + π (•)) = σ (τ (•)) + σ (π (•)) = (σ · τ ) (•) + (σ · π ) (•)
复旦大学精品课程《线性代数》,矩阵初等变换复习资料

矩阵形式:
0 5 −2 x1 2 4 −3 2 x2 = 6 1 −2 1 x3 1
增广矩阵:
0 5 −2 4 −3 2 1 −2 1
倪卫明
2 6 1
第二讲 矩阵的初等变换
利用矩阵变换求解线性方程组
消元法: (1) 交换等式(1)与(3).
(6) 矩阵第三行数乘常数0.1. (7) 第三行数乘−4加到第一行. (8) 第三行数乘2加到第二行.
x1 − 3 x2 x2 x3
= −6 = 2 = 2
(10) (11) (9)
1 −3 0 0 1 0 0 0 1
−6 2 2
(9) 式(11)两端同乘3加到(10)得(12).
(9) 第二行数乘3加到第一行.
增广阵
2 −6 8 4 A = −1 −1 6 2 −6
倪卫明
4 6 −8
第二讲 矩阵的初等变换
利用矩阵变换求解线性方程组
消元法 (1) 式(1)两端同乘常数0.5得式(4). (2) 将式(4)加到等式(2)得式(5). (3) 等式(4)乘−6加到(3), 得式(6). 对矩阵的变换: (1) 矩阵第一行数乘常数0.5. (2) 第一行加到第二行. (3) 第一行数乘−6加到第三行.
(2) 第一行数乘−4加到第二行.
1 −2 1 0 5 −2 0 5 −2
1 2 2
倪卫明
第二讲 矩阵的初等变换
利用矩阵变换求解线性方程组
(3) 等式(6)减去等式(5). (4) 等式(5)两端乘2/5加到式(4). (5) 等式(5)两端乘1/5.
x1 x2 9 1 + x3 = 5 5 2 2 − x3 = 5 5 0 = 0 (7) (8) (9) 9 1 − t 5 5 2 2 x2 = + t 5 5 x3 = t x1 =
复旦大学精品课程《线性代数》课件,齐次线性方程组课件复习精品资料

若 Cm n = Am l Bl n ,即
×
××
c c L c a a L a b b L b
11
c 21
M
12
c 22 M
L
1n 11
c 2n M
=
a 21 M
12
a 22 M
L
1l 11
a 2l
b 21
12
b 22
L
1n
b 2n
M M M
M
c m1
c m2
L
c mn
a m1
向量组及其线性组合
定义:n 个有次序的数 a1, a2, …, an 所组成的数组称为n 维向
量(vector),这 n 个数称为该向量的 n 个分量,第 i 个数 ai 称 为第 i个分量.
分量全为实数的向量称为实向量.
分量全为复数的向量称为复向量.
备注:
本书一般只讨论实向量(特别说明的除外) .
向量组 B:b1, b2, …, bl 能由向量组 A:a1, a2, …, am 线性表示 存在矩阵 K,使得 AK = B
矩阵方程 AX = B 有解
R(A) = R(A, B) R(B) ≤ R(A)
因为 R(B) ≤ R(A, B)
推论:向量组 A:a1, a2, …, am 及 B:b1, b2, …, bl 等价的充分 必要条件是 R(A) = R(B) = R(A, B).
对于 b1 ,存在一组实数 k11, k21, …, km1 ,使得 b1 = k11a1 + k21 a2 + … + km1 am ;
对于 b2 ,存在一组实数 k12, k22, …, km2 ,使得 b2 = k12a1 + k22 a2 + … + km2 am ;
高等代数欧几里得空间课件

矩阵的定义
矩阵是一个由数字组成的矩形阵列,可 以表示向量之间的关系和线性变换。
VS
矩阵的性质
矩阵具有一些重要的性质,如矩阵的加法、 标量乘法和乘法满足相应的运算规则,矩 阵的转置、行列式、逆等也具有相应的性 质和定义。
矩阵的运算规则
1 2 3
矩阵的加法 矩阵的加法满足交换律和结合律,即 $A+B=B+A$和$(A+B)+C=A+(B+C)$。
运算规则二
如果 $W_1$ 和 $W_2$ 是子空间,且 $W_1 cap W_2 = {0}$, 则 $W_1 + W_2$ 是子空间。
运算规则三
如果 $W$ 是子空间,且 $u in W$,则存在唯一的 $v in W$ 使得 $u + v = 0$。
欧几里得空的同
06
构与等价
同构的定义与性质
等价性质
等价的欧几里得空间具有相同的秩,且线性变换在等价 下是可逆的。
THANKS.
矩阵运算对应线性变换运 算
矩阵的加法、标量乘法和乘法分别对应线性 变换的加法、标量乘法和复合运算。
特征与特征向量
04
特征值与特征向量的定义
特征值
对于一个给定的矩阵A,如果存在一个非零的数λ和相应的非零向量x,使得Ax=λx成立, 则称λ为矩阵A的特征值,x为矩阵A的对应于λ的特征向量。
特征向量
与特征值λ对应的非零向量x称为矩阵A的对应于λ的特征向量。
助于学生更好地理解和掌握这一概念。
04
复数域上的全体二维向量构成的集合是一个二维复数 欧几里得空间。
向量与向量的运算
ห้องสมุดไป่ตู้02
向量的定义与表示
复旦大学精品课程《线性代数》课件,线性方程组与矩阵课件复习资料

倪卫明
第一讲 从线性方程组谈起
矩阵
简单介绍运算、代数系统、域等概念. 定义 2.2: 设 F 为给定的集合, F 上的二元运算(用符号 ◦ 表示)定义为:
◦:F×F →F
其中 F × F 为集合 F 的笛卡尔积, 这个定义可以推广到 n元运 算. 若运算的结果还是 F 中的元素, 则称运算是封闭的. 运算性质的定义:
如整数集 Z 上的普通加法、乘法, 构成代数系统 Z, + , Z, × , Z, +, × .
定义 2.5:
在集合 F 上定义了“ 加法”和“ 乘法”的二元运算(用符号 “+” 和 “×” 表示), 这些运算在 F 上封闭, 且它们还满足下述规则:
(1) 运算“+” 可结合. (2) 运算“+” 可交换. (3) F 中存在加法单位元 “0”. (4) ∀x ∈ F 存在加法逆元 y ∈ F 使得 x + y = 0, 通常将 y 记成 −x, 称加法
称为数域F 上的m行n列的矩阵, 简称m × n矩阵, 其中 aij (i = 1, 2, . . . , m; j = 1, 2, . . . , n) 称为矩阵的第i行第j列的元素.
本课程中无特殊说明, F 取实数域R. 常用Rm×n 表示所有 m × n 矩阵的集合. 如 A ∈ Rm×n 表示 A是m × n实矩阵. 有时, 也用 [aij ]m×n 表示m × n矩阵, 其中 aij 表示矩阵中的元素.
x3
=
3,
(6).
将得到的x3的解(6), 回代到(2) 得 x2 = 16, 在将它们回代到(1), 得x1 =
29.
倪卫明
第一讲 从线性方程组谈起
从线性方程组谈起
复旦大学精品课程《线性代数》课件,子空间的交、和与直和课件复习精品资料
线性代数
子空间的交、和与直和
张祥朝
复旦大学光科学与工程系
2013-5-9
两个线性子空间的交是线性子空间,但两个线性子空间
10:34则集合
也是一个线性子空间,
proof
性子空间的和的定义很容易看出:(3) 多个子空间的和:
10:34
以上4 个线性子空间都是2 维的10:34
引理2.3:线性子空间中的线性无关的向量组可以被扩充成该子空间的一组基。
proof proof
10:34
主元所在的列对应的向量组就是一个极大线性无关组10:34
基础解系:
10:34
下面介绍子空间的和的一种重要的特殊情形----直和.必要性是显然的, 下证充分性.
10:34
10:34
10:34
证明:
所以W 是线性子空间。
10:34
证明:由定义, 有10:34
引理2.3:线性子空间中的线性无关的向量组可以
这个向量组不是W的基, 则用同样的方法扩
性无关的向量组, 直到不能扩充为止.
10:34
证明:
10:34注意到
只要证明线性无关
设
有
10:34所以
即
有
back
明:由维数公式可以得到(2)与(3)的等价性。
证明(1)与(2)的等价性。
10:34
back
由于基的扩充是不唯一的,所以当W是不平凡子空间时,
它的补子空间是不唯一的。
10:34
证明:
10:34
=0所以
其中则有
于是
={0}所以
10:34。
《线性代数》第四章:线性方程组-PPT课件
三角形线性方程组要求方程组所含方程的个数等于未知量的个数且第个方程第个变量的系数三角形线性方程组是一类特殊的情形解法也简单由克莱姆法则可以判断其解惟一一般只需要从最后一个方程开始求解逐步回代就可求出方程组的全部解11定义416线性方程组中自上而下的各方程所含未知量个数依次减少这种形式的方程组称为n元阶梯形线性方程组
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn
《线代复习终极资料》课件
3
基和维数
了解向量空间的基的概念,并掌握计算向量空间维数的方法。
特征值与特征向量
特征值和特征向量
学习特征值和特征向量的定义和 性质,了解它们在线性代数中的 重要应用。
对角化
掌握对角化的概念和判定条件, 学习对角化的方法。
特征向量的应用
了解特征向量在几何变换和线性 代数中的应用。
线性变换
1 线性变换的定义
分享一些复习线性代数的有效方法和技巧,帮助您更高效地复习。
矩阵与运算
矩阵定义
矩阵乘法
逆矩阵
回顾矩阵的定义和基本性质,理 解矩阵在线性代数中的重要作用。
掌握矩阵乘法的运算规则和性质, 能够进行矩阵的乘法计算。
学习逆矩阵的定义和求解方法, 掌握逆程组
消元法
通过行变换将线性方程组转化为简化的行阶梯形。
高斯-约当消元法
了解高斯-约当消元法的算法步骤,能够通过此 方法求解线性方程组。
向量空间与线性相关
回顾向量空间的定义,了解线性相关和线性无关 的概念。
齐次线性方程组
学习齐次线性方程组的性质和求解方法。
向量空间
1
向量空间的定义
理解向量空间的基本定义和性质。
2
子空间
学习子空间的概念,掌握判定子空间的条件。
回顾线性变换的定义和性质。
2 线性变换的矩阵表示
学习线性变换的矩阵表示和计算方法。
3 线性变换的特征值和特征向量
了解线性变换的特征值和特征向量,及其在 几何变换中的应用。
4 线性变换的复合与逆
掌握线性变换的复合和逆变换的概念和性质。
矩阵的变换与相似性
相似矩阵的定义 对角化与相似
矩阵的谱定理
学习相似矩阵的定义,了解相似矩阵的性质。
复旦大学精品课程《线性代数》课件,线性空间课件复习资料
I. 封闭性公理 (1) 加法运算封闭, 即 ∀x, y ∈ V 则 x + y ∈ V . (2) 数乘运算封闭, 即 λ ∈ F, ∀x ∈ V 则 λx ∈ V .
II. 关于加法的公理 (3) 加法可交换, 即 ∀x, y ∈ V 有 x + y = y + x. (4) 加法可结合, 即 ∀x, y, z ∈ V 有 (x + y) + z = x + (y + z). (5) V 中存在零元0(加法单位元), 使得 ∀x ∈ V 有 x + 0 = 0 + x = x.
2
(6) V 中任意元素 x 都存在负元−x(加法逆元) 使得 x + (−x) = 0. III. 关于数乘的公理
(7) 数乘运算可结合, 即 ∀x ∈ V 以及数域中的任意数k, l ∈ F 成立: k (lx) = (kl) x
(8) 存在数乘的单位元“1”, ∀x ∈ V , 有 1x = x
x ⊕2 y = x + y mod 2 x ⊗2 y = xy mod 2
易证代数系统 F2, ⊕2, ⊗2 是域, 通常被称作二进制域. 当构成域的集合是有限集时, 也称为有限域.
4.1 线性空间的概念
4.1.1 线性空间的定义
定义 4.1. 集合 V 是由定义在数域 F 上的对象构成的非空集合, 称这些对象为元素, 关于这些元素及数域定义了“加法”和“ 数乘”运算, 若运算若满足下列公理
域是一种代数系统, 指在集合 F 上定义了“ 加法”和“ 乘法”的二元运算(分别用 符号“+” 和“×” 表示), 这两个运算在 F 上封闭, +” 可结合. 2. 运算“+” 可交换. 3. F 中存在加法单位元 “0”. 4. ∀x ∈ F 存在加法逆元 y ∈ F 使得 x + y = 0, 通常将 y 记成 −x, 称加法逆元为
II. 关于加法的公理 (3) 加法可交换, 即 ∀x, y ∈ V 有 x + y = y + x. (4) 加法可结合, 即 ∀x, y, z ∈ V 有 (x + y) + z = x + (y + z). (5) V 中存在零元0(加法单位元), 使得 ∀x ∈ V 有 x + 0 = 0 + x = x.
2
(6) V 中任意元素 x 都存在负元−x(加法逆元) 使得 x + (−x) = 0. III. 关于数乘的公理
(7) 数乘运算可结合, 即 ∀x ∈ V 以及数域中的任意数k, l ∈ F 成立: k (lx) = (kl) x
(8) 存在数乘的单位元“1”, ∀x ∈ V , 有 1x = x
x ⊕2 y = x + y mod 2 x ⊗2 y = xy mod 2
易证代数系统 F2, ⊕2, ⊗2 是域, 通常被称作二进制域. 当构成域的集合是有限集时, 也称为有限域.
4.1 线性空间的概念
4.1.1 线性空间的定义
定义 4.1. 集合 V 是由定义在数域 F 上的对象构成的非空集合, 称这些对象为元素, 关于这些元素及数域定义了“加法”和“ 数乘”运算, 若运算若满足下列公理
域是一种代数系统, 指在集合 F 上定义了“ 加法”和“ 乘法”的二元运算(分别用 符号“+” 和“×” 表示), 这两个运算在 F 上封闭, +” 可结合. 2. 运算“+” 可交换. 3. F 中存在加法单位元 “0”. 4. ∀x ∈ F 存在加法逆元 y ∈ F 使得 x + y = 0, 通常将 y 记成 −x, 称加法逆元为