北师大版数学八年级上第二章课件
合集下载
新版北师大版八年级数学上册第二章实数全章课件

所以BD DC,则BD AB
由勾股定理得 : h
h
h不可能是整数;
B
D
C
h也不可能是分数.
四、强化训练
2、长,宽分别是3,2的长方形,它的对角线的长可能是整数 吗?可能是分数吗?
3 2
四、强化训练
3、如图是16个边长为1的小正方形拼成的,任意连接这些 小正方形的若干个顶点,可得到一些线段,试分别找出两 条长度是有理数的线段和两条长度不是有理数的线段.
, 3 3 9 ..... . 2 2 4,
a
结果都为分数,所以a不可能是以2为分母的
分数.
二、新课讲解
, ,
...... , ,
a
(3)(9)2 的算术平方根等于 3 .
四、强化训练
2.求下列各数的值
(1) 64
8
(3) (5)
21 4
3 2
32 42
5
(2) 0.81
0.9
(4) 0
0
(6)
1.44
1.2
四、强化训练
3.求下列各式中的正数x的值:
二、新课讲解
例 下列各数中,哪些是有理数?哪些是无理数?
解:有理数有: 无理数有:
三、归纳小结
1.任何有限小数或无限循环小数也都是有理数. 2.无限不循环小数称为无理数.
四、强化训练
1.选择题
(1)、正三角形的边长为4,高h是( D ) A.整数 B.分数 C.有理数 D.无理数
(2)、如果一个圆的半径是2,那么该圆的周长与直径的和 是( B ) A.有理数 B.无理数 C.分数 D.整数
北师大版八年级数学上册《用计算器开方》课件

(1) ;
(2) ;
(1)44.966 65
(2)12.645 24
(3) . ;
(4) -. ;
(3)0.818 54
(4)-0.755 95
(5) × -8÷(-5).
(5)9.083 31
知识点二: 用计算器比较数的大小
利用计算器比较数的大小,实际上是利用计算器计算出要比
较的各数的近似值,通过比较结果得出相应结论.
2.利用计算器比较 与 的大小.
解:∵
≈2.08, ≈1.73,∴
> .
3.【例1】在计算器上按键
( B )
A.3
B.-3
C.-1
D.1
显示的结果是4.【例Fra bibliotek】用计算器计算:(结果精确到0.01)
+23≈
9.82
.
5.【例3】用计算器求 × -π的值为 2.78
2.这节课你还掌握哪些知识?还有什么疑问?与同伴交流.
教师引导学生回顾所学知识,加强印象,达到熟练操作使
用计算器.找出疑问,及时解决,共同提高.
教学反思:
学生愿意使用计算器这一学习工具,帮助他们解决了学习上的不少较
为麻烦的运算,在轻松愉快的学习中获取数学知识,无疑增加了他们
学习数学的信心和热情.
先按“”键
再按“
”键
然后输入被开方数
最后按“=”键
注意:不同型号的计算器进行开方运算,按键顺序可能有所不同.
(2)用计算器求一个非负数的平方根时,显示的是它的算术
平方根,因此求平方根时,只要在算术平方根前面加“±”
号即可,通常求一个分数的平方根时,要先把这个分数化为
北师大版八年级数学上册第二章2.1认识无理数课件共23张PPT

讲授新课
一 无理数的认识
活动探究
活动:把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
1
1
1
还有好多方法哦!课余时间再动手试一试, 比比谁找的多!
11 11
1
1
1
1
11 22 11 22
11 11
11 11
11 11
问题1:设大正方形的边长为a,则a满足什么条件? 因为S大正方形=2,所以a2=2.
追问1:a是一个什么样的数?a可能是整数吗?
从“数”的角度:
a
因为 a2=2, 而12=1, 22=4
所以 12<a2<22 ,
所以 1< a< 2,a不是整数
a
a
从“形”的角度:
A
取出一个三角形 C
B
在三角形ABC中,AC=1,BC=1,AB=a 根据三角形的三边关系:
AC-BC< a<AC+BC 所以0<a<2,且 a≠1,所以a不是整数
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.988 1<S<2.016 4
1.414<a<1.415
1.999 396<S<2.002 225
1.414 2<a<1.414 3 1.999 961 64<S<2.000 244 49
想一想 (1)边长a会不会算到某一位时,它的平方恰好等于2 呢?为什么? (2) a可能是有限小数吗?它会是一个怎样的数呢?
D.面积为1.44的正方形.
无理数的概念及认识
北师大版数学八年级上册课件:2.1 认识无理数(共13张PPT)

综合能力提升练
13.( 教材母题变式 )如图是16个边长为1的小正方形拼成的大正方形,其中CA,CB,CD,CE中 长度既不是整数,也不是分数的有 3 条.
14.( 改编 )把下列各数填入表示它所在的数集的大括号内: -2,-12,3.020020002…( 每两个 2 之间多 1 个 0 ),272,-π3,-( -3 ),0.333,0,34,-17,3.1·5·,0.12345678910111213…( 小数部分由相继的正整数组 成 ),-1.202020202…( 每两个 2 之间有 1 个 0 ).
( 4 )无理数集合: 3.020020002…( 每两个 2 之间多 1 个 0 ),-
π 3
,0.12345678910111213…(
小数部分由相继的正整数组成
)…
.
综合能力提升练
15.请你在方格纸上按照如下要求设计图形,每个单元格的边长为1.( 所设计图形顶点在格 点上 ) ( 1 )请在图1中设计一个直角三角形,使它三边中有两边边长不是有理数. ( 2 )请在图2中设计一个直角三角形,使它的三边边长都不是有理数.
综合能力提升练
( 1 )整数集合:{-2,-(-3 ),0,-17…}; ( 2 )分数集合: -12 , 272,0.333,-34,3.1·5·,-1.202020202…( 每两个 2 之间 有 1 个 0 )… ; ( 3 )负有理数集合: -2,-12,-34,-17,-1.202020202…( 每两个 2 之间有 1 个 0 )… ;
拓展探究突破练
17.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所 以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数 的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…… 使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相
北师大版八年级上册数学实数课件

把下列各数分别填入相应的集合内:
0.3737737773……
实数:有理数和无理数统称为实数。
有理数集合
无理数集合
• 请把下列各数分别填入相应的集合内:
正数集合
负数集合
2,实数分类:
• ①分类标准:是否是有理数。
实数
有理数 无理数
• ②分类标准:符号正负。
实数
正实数 0
负实数
• 课堂练习:课本40页,知识技能:1
与 互为倒数
,
,
想一想
1.
的绝对值是
2. a 是一个实数,它的相反数是
a的绝对值是 当a≠0时,它的倒数是
5,实数与数轴:
(1) 如图,OA=OB
数轴上的 点A对应的
数是什么? 它介于哪
两个整数之间?
1
-2
-1
O
(2) 如果将所有实数都 标到数轴上,那么数轴 被填满了吗?
B 1A 2
实数与数轴上的点的对应关系:
3.在数轴上作出 对应的点.
7,课堂小结
通过今天的学习,说说你的收获和体会?
8,课后作业:
1.课本习题2.8
2.求
的相反数和绝对值.
8,板书设计
6,实数
1,实数概念与分类。
3,实数与相反数,倒数,绝 对值。
2,实数运算律。
4,实数与数轴。
• 谢谢观赏!
•
•
再见!
•
3,实数的运算律
1.在有理数范围内能进行哪些运算? 用哪些运算律?那么在实数范围内呢?
2.判断下列各式成立吗?
结论:有理数的运算及运算律对实数仍然适用。
• 4,倒数,相反数,绝对值。
在实数范围内 ,相反数、倒数、绝对 值的意义 ,和有理数范围内的相反数、倒 数、绝对值的意义完全一样。
0.3737737773……
实数:有理数和无理数统称为实数。
有理数集合
无理数集合
• 请把下列各数分别填入相应的集合内:
正数集合
负数集合
2,实数分类:
• ①分类标准:是否是有理数。
实数
有理数 无理数
• ②分类标准:符号正负。
实数
正实数 0
负实数
• 课堂练习:课本40页,知识技能:1
与 互为倒数
,
,
想一想
1.
的绝对值是
2. a 是一个实数,它的相反数是
a的绝对值是 当a≠0时,它的倒数是
5,实数与数轴:
(1) 如图,OA=OB
数轴上的 点A对应的
数是什么? 它介于哪
两个整数之间?
1
-2
-1
O
(2) 如果将所有实数都 标到数轴上,那么数轴 被填满了吗?
B 1A 2
实数与数轴上的点的对应关系:
3.在数轴上作出 对应的点.
7,课堂小结
通过今天的学习,说说你的收获和体会?
8,课后作业:
1.课本习题2.8
2.求
的相反数和绝对值.
8,板书设计
6,实数
1,实数概念与分类。
3,实数与相反数,倒数,绝 对值。
2,实数运算律。
4,实数与数轴。
• 谢谢观赏!
•
•
再见!
•
3,实数的运算律
1.在有理数范围内能进行哪些运算? 用哪些运算律?那么在实数范围内呢?
2.判断下列各式成立吗?
结论:有理数的运算及运算律对实数仍然适用。
• 4,倒数,相反数,绝对值。
在实数范围内 ,相反数、倒数、绝对 值的意义 ,和有理数范围内的相反数、倒 数、绝对值的意义完全一样。
2022八年级数学上册第二章实数2.2平方根1算术平方根授课课件新版北师大版

第二章 实数
2.2
平方根
第1课时 算术平方根
学习目标
1 课时讲解 2 课时流程
算术平方根的定义 求算术平方根
算术平方根的非负性( ≥a 0, a≥0)
逐点 导讲练
课堂 小结
作业 提升
课时导入
(1)根据图填空: x2=___2____, y2=___x_2+_1__,
复习提问z2=___y_2+_1__, 引出问题w2=__z_2_+_1 __,
现 a , a 时,a只有为0才有意义.
课堂小结
无理数
1. a 表示的是a的算术平方根,由算术平方根的定 义知它具有“双重”非负性:a≥0, a ≥0,即算术平
方根及它的被开方数都为非负数. 2.对于所有的算术平方根,被开方数越大,对 应的算术平方根也越大;反之亦然.
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月23日星期三2022/3/232022/3/232022/3/23 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/232022/3/232022/3/233/23/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/232022/3/23March 23, 2022
由几个非负数相加和为0,可得每一个非负数都为 0,由此可求出x和y的值,进而求得答案. 解:由题意可得x-1=0,y-2=0. 所以x=1,y=2. 所以x-y=1-2=-1.
感悟新知
总结
知3-讲
(1)算术平方根和数的平方、绝对值一样,都是
2.2
平方根
第1课时 算术平方根
学习目标
1 课时讲解 2 课时流程
算术平方根的定义 求算术平方根
算术平方根的非负性( ≥a 0, a≥0)
逐点 导讲练
课堂 小结
作业 提升
课时导入
(1)根据图填空: x2=___2____, y2=___x_2+_1__,
复习提问z2=___y_2+_1__, 引出问题w2=__z_2_+_1 __,
现 a , a 时,a只有为0才有意义.
课堂小结
无理数
1. a 表示的是a的算术平方根,由算术平方根的定 义知它具有“双重”非负性:a≥0, a ≥0,即算术平
方根及它的被开方数都为非负数. 2.对于所有的算术平方根,被开方数越大,对 应的算术平方根也越大;反之亦然.
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月23日星期三2022/3/232022/3/232022/3/23 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/232022/3/232022/3/233/23/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/232022/3/23March 23, 2022
由几个非负数相加和为0,可得每一个非负数都为 0,由此可求出x和y的值,进而求得答案. 解:由题意可得x-1=0,y-2=0. 所以x=1,y=2. 所以x-y=1-2=-1.
感悟新知
总结
知3-讲
(1)算术平方根和数的平方、绝对值一样,都是
认识无理数课件北师大版八年级数学上册

C.是有理数
D.不是有理数
(2)如图,在Rt△ABC中,AC=2 cm,BC=2 cm,那么AB 的长是有理数吗?
AB的长不是有理数
3.【例1】边长为2的正方形的对角线长( D )
A.是整数
B.是分数
C.是有理数 D.不是有理数
C
5.【例3】(北师8上P21改编)如图,在Rt△ABC中,两直角边 长分别为a=2,b=3,斜边长为c. (1)c满足什么关系式? (2)c是整数吗? (3)c是有理数吗?
解:(1)根据勾股定理,得c2=a2+b2=22+32=13, ∴c满足c2=13的关系式. (2)c不是整数. (3)c不是有理数.
6.【例4】(新题速递)如图,阴影部分是正方形,求出此正方 形的面积.此正方形的边长是有理数吗?为什么? 解:设正方形的边长为a, 根据勾股定理得 a2=152-82=161. 因为a不是整数也不是分数,所以a不是有理数.
教学反思:这节课的内容是无理数的概念以及判断一个数是有 理数还是无理数.是数的范围的又一次扩充,是很重要的一节.培 养了学生分类归纳的思想.但对概念的理解掌握一些同学还不是 很好,只能在以后的教学过程中不断的完善.
教学重难点
1.无理数的探索过程. 2.了解无理数与有理数的区别,并能正确判断. 3把两个边长为1的正方形拼成一个大正方形的动手操作过程.
1.通过拼图活动,感受无理数产生的实际背景和引入的必要 性. 2.从实际背景中发现“不可比的数”,感受到这样的数的广泛 性.
知识点一:有理数(复习) 整数和分数都可以化成有限小数或无限循环小数.
-5,3,0 -5,3,0
知识点二:无理数的产生 (1)用边长为1的两个小正方形剪拼成一个面积为2的大正方形, 大正方形的边长a应满足的条件是 a2=2 ;a 不是 整数,
北师大版八年级数学上册第二章实数2.1认识无理数课件(共23张PPT)

,-3.5,…
回顾 & 思考☞
有理数:整数和分数统称为有理数。
分数与有限小数和无限循环小数可以互化 所以我们把有限小数和无限循环小数都看作分数
有限小数 分数
无限循环小数
例如:
1 3
0.3333
•
0.3
1 32 0.03125
4 5
0.8
拼图活动
有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一 个大的正方形。看看能有几种拼法?
1.如图,正三角形的边长为2,高为h,h可能 是整数吗?可能是分数吗?
解:因为ABC是正三角形,且AD BC
A
所以BD DC,则BD 1 AB 1
2
由勾股定理得 : h2 22 12 3
h
h不可能是整数; h也不可能是分数。
B
D
C
生活中真的有很多不是有理数 的数吗?
1:右图是由16个边长 为1的小正方形拼成的, 任意连接这些小正方形 的若干个顶点,可得到 一些线段。试分别找出 两条长度是有理数的线 段和两条长度不是有理 数的线段。
q 为整数且互质),而无理数不能.
数学家寄语 是不 在 我是数 们我学 怎们天 么知地 毕 知道里 达 道什, 哥 么重 拉 ,要 斯 而的
——
无理数(1)
回顾 & 思考☞
什么叫有理数?
整数
有 理 数
分数
正整数:如:1,2,3,…
零:0
负整数:如-1,-2,-3,…
正分数:如 1 , 1 ,5.2, … 23
负分数如
1 5
,
5 6
越来越大,
所以a不可能是整数
a可能是以2为分母的分数吗?