三年级数学奥数精讲与测试- 奇数与偶数

合集下载

奥数题(数的奇偶性问题)

奥数题(数的奇偶性问题)
奥数题(数的奇偶性问题)
• 奇偶性基础概念 • 数的奇偶性判断方法 • 数的奇偶性在数学中的应用 • 奥数题中的数的奇偶性问题 • 解题技巧和思路
01
奇偶性基础概念
奇数Байду номын сангаас偶数的定义
奇数
不能被2整除的整数,如1、3、5等。
偶数
能被2整除的整数,如2、4、6等。
奇偶性的性质
奇数与奇数相加得到 偶数,如3+5=8。
数来判断。如果余数为0,则该数为偶数;如果余数为1,则该数为奇数。
02 03
判断一组数的奇偶性
对于一组数,可以分别判断每个数的奇偶性,然后根据奇偶性的性质 (奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数)来判断整 个表达式的奇偶性。
判断一个表达式的奇偶性
对于一个复杂的表达式,可以将其拆分成若干个简单的部分,分别判断 每个部分的奇偶性,然后根据奇偶性的性质来判断整个表达式的奇偶性。
奇数与偶数相加得到 奇数,如3+4=7。
偶数与偶数相加也得 到偶数,如4+6=10。
奇偶性的运算规则
奇数乘以奇数得到奇数,如 3x5=15。
偶数乘以偶数也得到偶数,如 4x6=24。
奇数乘以偶数得到偶数,如 3x4=12。
02
数的奇偶性判断方法
判断一个数是奇数还是偶数
总结词
通过数学性质判断
详细描述
在数论中的应用
奇偶性在整除理论中的应用
通过奇偶性可以判断一个数是否能被另一个数整除,以及整 除后的余数。
奇偶性在数论函数中的应用
数论函数中经常涉及到奇偶性的判断,如欧拉函数、莫比乌 斯函数等。
04
奥数题中的数的奇偶性问题

(小学奥数)奇数与偶数的性质与应用

(小学奥数)奇数与偶数的性质与应用

5-1奇數與偶數的性質與應用教學目標本講知識點屬於數論大板塊內的“定性分析”部分,小學生的數學思維模式大多為“純粹的定量計算,拿到一個題就先去試數,或者是找規律,在性質分析層面幾乎為0,本講力求實現的一個主要目標是提高孩子對數學的嚴密分析能力,培養孩子明白做題前有時要“先看能不能這麼做,再去動手做”的思維模式。

無論是小升初還是杯賽會經常遇到,但不會單獨出題,而是結合其他知識點來考察學生綜合能力。

知識點撥一、奇數和偶數的定義整數可以分成奇數和偶數兩大類.能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

通常偶數可以用2k(k為整數)表示,奇數則可以用2k+1(k 為整數)表示。

特別注意,因為0能被2整除,所以0是偶數。

二、奇數與偶數的運算性質性質1:偶數±偶數=偶數,奇數±奇數=偶數性質2:偶數±奇數=奇數性質3:偶數個奇數的和或差是偶數性質4:奇數個奇數的和或差是奇數性質5:偶數×奇數=偶數,奇數×奇數=奇數,偶數×偶數=偶數三、兩個實用的推論推論1:在加減法中偶數不改變運算結果奇偶性,奇數改變運算結果的奇偶性。

推論2:對於任意2個整數a,b ,有a+b與a-b同奇或同偶例題精講模組一、奇偶分析法之計算法【例 1】1231993++++……的和是奇數還是偶數?【考點】奇偶分析法之計算法【難度】2星【題型】解答【解析】在1至1993中,共有1993個連續自然數,其中997個奇數,996個偶數,即共有奇數個奇數,那麼原式的計算結果為奇數.【答案】奇數【例 1】從1開始的前2005個整數的和是______數(填:“奇”或“偶”)。

【考點】奇偶分析法之計算法【難度】2星【題型】填空【關鍵字】希望杯,4年級,初賽,5題【解析】1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇數【答案】奇數【巩固】2930318788+++++……得數是奇數還是偶數?【考點】奇偶分析法之計算法【難度】2星【題型】解答【解析】偶數。

新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)

新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)

新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)阅读思考:其实,在日常生活中同学们就已经接触了很多的奇数、偶数.凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数.因为偶数是2的倍数,所以通常用这个式子来表示偶数(这里是整数).因为任何奇数除以2其余数都是1,所以通常用式子来表示奇数(这里是整数).奇数和偶数有许多性质,常用的有:性质1 两个偶数的和或者差仍然是偶数.例如:8+4=12,8-4=4等.两个奇数的和或差也是偶数.例如:9+3=12,9-3=6等.奇数与偶数的和或差是奇数.例如:9+4=13,9-4=5等.单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数.性质2 奇数与奇数的积是奇数.例如:等91199⨯=偶数与整数的积是偶数.例如:等.性质3 任何一个奇数一定不等于任何一个偶数.例1.有5张扑克牌,画面向上.小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下.要想使5张牌的画面都向下,那么每张牌都要翻动奇数次.5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下.而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数.所以无论他翻动多少次,都不能使5张牌画面都向下.例2.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?分析与解答:不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.例3.如图(1-1)是一张的正方形纸片.将它的左上角一格和右下角一格去掉,剩下的部分能否剪成若干个的长方形纸片?图(1-1)图(1-2)分析与解答:如图1-2,我们在方格内顺序地填上奇、偶两字.这时就会发现,要从上面剪下一个的长方形纸片,不论怎样剪,都会包含一个奇,一个偶.我们再数一下奇字和偶字的个数,奇字有30个,偶字有32个.所以这张纸不能剪成若干个的长方形纸片.2. 一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每个数都是前两个数的和,也就是:1,1,2,3,5,……那么这串数的第100个是奇数还是偶数?分析与解:这道题的规律是两奇一偶,第100个为奇数.【模拟试题】(答题时间:30分钟)1. 30个连续自然数的乘积是奇数还是偶数?2.有6张扑克牌,画面都向上,小明每次翻转其中的5张.那么,要使6张牌的画面都向下,他至少需要翻动多少次?3.博物馆有并列的5间展室的电灯开关.他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?【试题答案】1. 30个连续自然数的乘积是奇数还是偶数?答:和是奇数2.有6张扑克牌,画面都向上,小明每次翻转其中的5张.那么,要使6张牌的画面都向下,他至少需要翻动多少次?答:5次3.博物馆有并列的5间展室的电灯开关.他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?答:第5展室灯亮着4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?答:不能.。

数学奥赛辅导 第一讲 奇数、偶数、质数、合数

数学奥赛辅导 第一讲 奇数、偶数、质数、合数

数学奥赛辅导第一讲奇数、偶数、质数、合数知识、方法、技能Ⅰ.整数的奇偶性将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m(m∈Z),任一奇数可表为2m+1或2m -1的形式.奇、偶数具有如下性质:(1)奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;奇数×奇数=奇数;(2)奇数的平方都可表为8m+1形式,偶数的平方都可表为8m 或8m+4的形式(m∈Z).(3)任何一个正整数n,都可以写成l的形式,其中m为非n m2负整数,l为奇数.这些性质既简单又明显,然而它却能解决数学竞赛中一些难题.Ⅱ.质数与合数、算术基本定理大于1的整数按它具有因数的情况又可分为质数与合数两类.一个大于1的整数,如果除了1和它自身以外没有其他正因子,则称此数为质数或素数,否则,称为合数.显然,1既不是质数也不是合数;2是最小的且是惟一的偶质数.定理:(正整数的惟一分解定理,又叫算术基本定理)任何大于1的整数A 都可以分解成质数的乘积,若不计这些质数的次序,则这种质因子分解表示式是惟一的,进而A 可以写成标准分解式:n a n a a p p p A 2121⋅= (*).其中i n p p p p ,21<<< 为质数,i α为非负整数,i =1,2,…,n .【略证】由于A 为一有限正整数,显然A 经过有限次分解可分解成若干个质数的乘积,把相同的质因子归类整理可得如(*)的形式(严格论证可由归纳法证明).余下只需证惟一性.设另有j m n q q q q q q q A m,,212121<<<⋅= 其中βββ为质数,i β为非负整数,j=1,2,…,m .由于任何一i p 必为j q 中之一,而任一j q 也必居i p 中之一,故n=m .又因),,2,1(,,2121n i q p q q q p p p i i n n ==<<<<<则有,再者,若对某个i ,i i βα≠(不妨设i i βα>),用i i p β除等式n n n a n a a p p p p p p βββ 21122121⋅=两端得:.11111111n i i n i i n i i n i p p p p p p p ββββεβαα +-+--⋅=此式显然不成立(因左端是i p 的倍数,而右端不是).故i i βα=对一切i =1,2,…,n 均成立.惟一性得证.推论:(合数的因子个数计算公式)若nn p p p A ααα 2121=为标准分解式,则A 的所有因子(包括1和A 本身)的个数等于).1()1)(1(21+++n ααα(简记为∏=+ni i 1)1(α)这是因为,乘积2222212111()1()1(21nn p p p p p p p p ++++++⋅++++ αα )nn p α++ 的每一项都是A 的一个因子,故共有∏=+ni i 1)1(α个. 定理:质数的个数是无穷的.【证明】假定质数的个数只有有限多个,,,21n p p p 考察整数.121+=n p p p a 由于1>a 且又不能被),,2,1(n i p i =除尽,于是由算术基本定理知,a 必能写成一些质数的乘积,而这些质数必异于),,2,1(n i p i =,这与假定矛盾.故质数有无穷多个.赛题精讲例1.设正整数d 不等于2,5,13.证明在集合{2,5,13,d }中可以找到两个元素a ,b ,使得a b -1不是完全平方数. (第27届IMO 试题)【解】由于2×5-1=32,2×13-1=52,5×13-1=82,因此,只需证明2d -1,5d -1,13d -1中至少有一个不是完全平方数. 用反证法,假设它们都是完全平方数,令2d -1=x 2 ①5d -1=y 2 ②13d -1=z 2 ③x,y,z ∈N *由①知,x 是奇数,设x =2k -1,于是2d -1=(2k -1)2,即d =2k 2-2k+1,这说明d 也是奇数.因此,再由②,③知,y,z 均是偶数.设y=2m ,z =2n ,代入③、④,相减,除以4得,2d =n 2-m 2=(n+m)(n -m),从而n 2-m 2为偶数,n ,m 必同是偶数,于是m+n 与m -n 都是偶数,这样2d 就是4的倍数,即d 为偶数,这与上述d 为奇数矛盾.故命题得证.例2.设a 、b 、c 、d 为奇数,bc ad d c b a =<<<<并且,0,证明:如果a +d =2k ,b+c=2m ,k,m为整数,那么a =1. (第25届IMO 试题)【证明】首先易证:.22m k >从而add a d a c b a d m k 4)()(,(22+-=+->->于是因为 22)(4)(c b bc c b +=+->.再由,222,2,22a b a b b c a d bc ad k m m k -=⋅-⋅-=-==可得 因而))(()2(2a b a b a b m k m -+=⋅-- ①显然,a b a b -+,为偶数,a b m k --2为奇数,并且a b a b -+和只能一个为4n 型偶数,一个为4n+2型偶数(否则它们的差应为4的倍数,然而它们的差等于2a 不是4的倍数),因此,如果设f e a b m k ⋅=--2,其中e,f 为奇数,那么由①式及a b a b -+,的特性就有(Ⅰ)⎩⎨⎧=-=+-.2,21f a b e a b m 或(Ⅱ)⎩⎨⎧=-=+-.2,21e a b f a b m 由f a b a b a b efm k 222≤-<-≤-=- 得e=1, 从而.2a b f m k --=于是(Ⅰ)或(Ⅱ)分别变为⎪⎩⎪⎨⎧-=-=+--)2(2,21a b a b a b m k m 或⎪⎩⎪⎨⎧=--=+--12),2(2m m k a b a b a b 解之,得1122-+-=⋅m m k a .因a 为奇数,故只能a =1.例3.设n a a a ,,,21 是一组数,它们中的每一个都取1或-1,而且a 1a 2a 3a 4+a 2a 3a 4a 5+…+a n a 1a 2a 3=0,证明:n 必须是4的倍数. (第26届IMO 预选题)【证明】由于每个i a 均为1和-1,从而题中所给的等式中每一项321+++i i i i a a a a 也只取1或-1,而这样的n 项之和等于0,则取1或-1的个数必相等,因而n 必须是偶数,设n=2m.再进一步考察已知等式左端n 项之乘积=(n a a a 21)4=1,这说明,这n项中取-1的项(共m 项)也一定是偶数,即m=2k ,从而n 是4的倍数.例4.如n 是不小于3的自然数,以)(n f 表示不是n 的因数的最小自然数[例如)(n f =5].如果)(n f ≥3,又可作))((n f f .类似地,如果))((n f f ≥3,又可作)))(((n f f f 等等.如果2)))(((= n f f f f ,就把k 叫做n 的“长度”.如果用n l 表示n 的长度,试对任意的自然数n (n ≥3),求n l ,并证明你的结论.(第3届全国中学生数学冬令营试题)【解】令m t n m ,2=为非负整数,t 为奇数. 当m=0时,2)()(==t f n f ,因而l n =1;当0≠m 时,设u 是不能整除奇数t 的最小奇数,记).(t g u =(1)若.2,2))((,)(,2)(1===<+n m l n f f u n f t g 所以则(2)若.3,2)3()))(((,3)2())((,2)(,2)(111======>+++n m m m l f n f f f f n f f n f t g 所以则故⎪⎩⎪⎨⎧>>==+.,2);)((2)(,,0,2,3;,11其他情形如上且为奇数当为奇数时当t g t g t m t n n l m m n例5.设n 是正整数,k 是不小于2的整数.试证:k n 可表示成n 个相继奇数的和.【证明】对k 用数学归纳法.当k=2时,因),12(312-+++=n n 命题在立.假设k=m 时成立,即,)12()3()1(2n na n a a a n m +=-++++++= (a 为某非负数) 则,)()(2221n n n na n n n na n n n m m +-+=+=⋅=+若记n n na b -+=2(显然b 为非负偶数),于是1),12()3()1(21+=-++++++=+=+m k n b b b n nb n m 即 时,命题成立,故命题得证.例6.在平面上任画一条所有顶点都是格点的闭折线,并且各节的长相等.能使这闭折线的节数为奇数?证明你的结论. (莫斯科数学竞赛试题)【解】令符合题设条件的闭折线为A 1A 2…A n A 1,则所有顶点i A 的坐标(i i y x ,)符合).,,2,1(,n i Z y x i i =∈并且C n i C Y X i i ,,2,1(22 ==+为一固定的正整数),其中),,,,,2,1(,111111y y x x n i y y Y x x X n n i i i i i i ===-=-=++++ 则由已知有∑==n i i X1,0 ① ∑==n i i Y1,0 ②2222222121n n Y X Y X Y X +==+=+ ③不妨设i i Y X 和中至少有一个为奇数(因为设m t X i m i ,2=是指数最小的,t i 为奇数,用2m 除所有的数后,其商仍满足①、②、③式),于是它们的平方和C 只能为4k+1或4k+2.当C=4k+2时,由③知,所有数对i i Y X 与都必须是奇数,因此,根据①、②式知,n 必为偶数.当C=4k+1时,由③知,所有数对i i Y X 与都必一奇一偶,而由①知,X i 中为奇数的有偶数个(设为2u ),余下的n -2u 个为偶数(与之对应的Y i 必为奇数),再由②知,这种奇数的Y i 也应有偶数个(设为u n 22-=ν),故)(2ν+=u n =偶数. 综上所述,不能作出满足题设条件而有奇数个节的闭折线.例7.求出最小正整数n ,使其恰有144个不同的正因数,且其中有10个连续整数.(第26届IMO 预选题)【解】根据题目要求,n 是10个连续整数积的倍数,因而必然能被2,3,…,10整数.由于8=23,9=32,10=2×5,故其标准分解式中,至少含有23·32·5·7的因式,因此,若设 ,11753254321 ααααα⋅⋅⋅⋅=n 则.1,1,2,34321≥≥≥≥αααα由,144)1)(1)(1)(1(4321=++++ αααα而,482234)1)(1)(1)(1(4321=⋅⋅⋅≥++++αααα故最多还有一个,2),5(0≤≥>j j j αα且为使n 最小,自然宜取.025≥≥α由)0(144)1)(1)(1)(1()0(144)1)(1)(1)(1)(1(54321554321时或时==++++≠=+++++ααααααααααα,考虑144的可能分解,并比较相应n 的大小,可知合乎要求的(最小),2,521==αα,1543===ααα故所求的.11088011753225=⋅⋅⋅⋅=n下面讲一个在指定集合内的“合数”的问题.这种合数与通常的合数有区别,题中的“素元素”是指在该集合内的素数,也与通常的素数有区别.例8.设n>2为给定的正整数,{}.,1*N k kn V n ∈+=试证:存在一数,n V r ∈这个数可用不只一种方式表示成数集V n 中素元素的乘积. (第19届IMO 试题)【证明】由于V n 中的数都不小于),2(1>+n n 因而n V n n n n ∈-⋅---)12()1(,)12(,)1(22.显然)12()1(,)1(2-⋅--n n n 是V n 中的素元素.又若(2n -1)2不是V n 中素元素,则有,)12()1()1(,12-=+⋅+≥≥n bn an b a 使由此有,44b a abn n ++=-于是,31≤≤ab 从而b=1,a =1;b=1,a =2,b=1,a =3,对此就有,8,28,2=n 故n=8.这说明 ,当2)12(,8-≠n n 时就是V n 中素元素. 当)]12)(1[()12()1(,.)12()1(,82222--=--=∈--=≠n n n n r V r n n r n n 且显然令时)].12)(1[(--n n 当n=8时,有1089=136×8+1=9×121=33×33,而9,121,33∈V 8.综上知,命题得证.例9.已知n ≥2,求证:如果n k k ++2对于整数k (30n k ≤≤)是质数,则n k k ++2对于所有整数)20(-≤≤n k k 都是质数.(第28届(1987)国际数学奥林匹克试题6)【证】设m 是使n k k ++2为合数的最小正整数.若n m m p n m n ++-≤<2,23是令的最小质因子,则n m m p ++≤2. (1)若m ≥p ,则p|(m -p)2+(m -p)+n. 又(m -p)2+(m -p)+n ≥n >p ,这与m 是使n k k ++2为合数的最小正整数矛盾.(2)若m ≤p -1,则n m p m p n m p m p +---=+--+--))(1()1()1(2被p 整除,且.)1()1(2p n n m p m p >≥+--+--因为n m p m p +--+--)1()1(2为合数,所以.12,1+≥≥--m p m m p 由 ,122n m m p m ++≤≤+ 即 ,01332≤-++n m m 由此得363123n n m <-+-≤ 与已知矛盾.所以,对所有的n k k n k n ++-≤<2,23为质数.。

小学三年级奥数奇偶性

小学三年级奥数奇偶性

小学三年级奥数奇偶性1.小学三年级奥数奇偶性⑴两个偶函数相加所得的和为偶函数。

⑵两个奇函数相加所得的和为奇函数。

⑶两个偶函数相乘所得的积为偶函数。

⑷两个奇函数相乘所得的积为偶函数。

⑸一个偶函数与一个奇函数相乘所得的积为奇函数。

⑹几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。

⑺偶函数的和差积商是偶函数。

⑻奇函数的和差是奇函数。

⑼奇函数的偶数个积商是偶函数。

⑽奇函数的奇数个积商是奇函数。

⑾奇函数的绝对值为偶函数。

⑿偶函数的绝对值为偶函数。

2.小学三年级奥数奇偶性1、奇数和偶数整数可以分成奇数和偶数两大类。

能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。

特别注意,因为0能被2整除,所以0是偶数。

2、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数。

性质2:偶数±奇数=奇数。

性质3:偶数个奇数相加得偶数。

性质4:奇数个奇数相加得奇数。

性质5:偶数×奇数=偶数,奇数×奇数=奇数。

3.小学三年级奥数奇偶性在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝。

最后统计有1987次染红,1987次染蓝。

求证至少有一珠子被染上过红、蓝两种颜色。

奇偶性应用答案:假设没有一个珠子被染上过红、蓝两种颜色,即所有珠子都是两次染同色。

设第一次染m个珠子为红色,第二次必然还仅染这m个珠子为红色。

则染红色次数为2m次。

∵2m≠1987(偶数≠奇数)∴假设不成立。

∴至少有一个珠子被染上红、蓝两种颜色。

4.小学三年级奥数奇偶性桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”。

请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

奇偶性应用答案:要使一只杯子口朝下,必须经过奇数次“翻转"。

要使9只杯子口全朝下,必须经过9个奇数之和次"翻转"。

三年级奥林匹克数学专题讲解——奇数和偶数理论a篇学习

三年级奥林匹克数学专题讲解——奇数和偶数理论a篇学习

三年级奥林匹克数学专题讲解——奇数和偶数理论A篇一、知识介绍趣味小故事:傍晚小明做作业的时候,本来拉一次开关,灯就应该亮的,但是他连拉了5次开关。请你们说说这时灯是亮的还是不亮的?拉6次呢?那么什么是奇数?什么又是偶数呢?像1、3、5、7、9…这样的数,我们把它称做奇数,也叫单数。像0、2、4、6、8…这样的数,我们把它称做偶数,也叫双数。区别的方法:直接看这个数的个位上的数,如果这个数个位上的数为1、3、5、7、9中的一个,那么这个数为奇数(或单数);如果这个数的个位上的数为0、2、4、6、8中的一个,那么这个数为偶数(或双数)。奇数与偶数在加法和减法计算中的关系如下:① 偶数+偶数=偶数如:248+=② 偶数-偶数=偶数如:844-=③ 奇数+奇数=偶数如:5712+=④ 奇数-奇数=偶数如:752-=⑤ 奇数+偶数=奇数如:3811+=⑥ 奇数-偶数=奇数如:1165-=⑦ 偶数-奇数=奇数如:1239-=★奇数与偶数在乘法计算中的关系如下:①偶数×偶数=偶数如:6848⨯=②奇数×奇数=奇数如:5735⨯=③奇数×偶数=偶数如:5420⨯=奇数和偶数的分类,使得我们在使用数的时候产生了广泛的意义,也方便了人们对数学问题的分析,使得有些数学问题变得非常的简单。二、例题讲解例题1: 根据奇数和偶数的相关知识解答下面问题:⑴ 21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40这20个数中,哪些是奇数?哪些是偶数?请分类写出。⑵ 10个自然数1、2、3、4、5、6、7、8、9、10的和是奇数还是偶数?分析:⑴(略)⑵(1)通常解题方法:把这10个数相加,看最后结果是奇数还是偶数即可。(2)应用数的奇偶性来分析。①这10个数中2、4、6、8、10五个为偶数,形成了偶数+偶数+偶数+偶数+偶数=偶数(不管有多少个偶数相加,结果一定还是偶数);②剩下的五个数全部为奇数。奇数+奇数+奇数+奇数+奇数=奇数(奇数个奇数相加的结果一定还是奇数;与此同时,偶数个奇数相加的结果一定是偶数)配套练习1: 有一筐苹果,2个2个地拿,最后还剩1个,问这筐苹果的个数是奇数还是偶数?配套练习2:21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40这20个数相加的和是奇数还是偶数?配套练习3:想一想:2468+++的++的值呢?1357+++的值是奇数还是偶数?111315值呢?根据做的结果,你能想到些什么呢?配套练习4:三(2)班分本子,每人分2本,分到最后还剩1本,这堆本子的个数是偶数还是奇数?配套练习5:把142根跳绳分给两个班级的同学,如果一个班跳绳的根数是奇数,另一个班跳绳的根数肯定是( ),如果一个班跳绳的根数是偶数,另一个班跳绳的根数是( )。配套练习6:妈妈买了一些鸡蛋,两个两个地数,最后多一个;三个三个地数,最后也多一个。鸡蛋的总数不到10个,你知道妈妈买回来的鸡蛋的个数是奇数个还是偶数个?买回来鸡蛋共多少个?配套练习7:元旦前,同学们互相送贺年卡,如果每人接到贺年卡后,要回送一张,问所送贺年卡的总数是奇数还是偶数?例题2:一只鸭子在小河的两岸之间来回地游,从一岸游到另一岸就称做游1次。请回答下面的问题:⑴如果小鸭最初在右岸,来回游若干次之后,它又回到了右岸,那么这只小鸭游的次数是奇数还是偶数?⑵如果小鸭最初在右岸,来回共游101次,小鸭到了左岸还是右岸?分析:⑴一个“来回”即游两次,是个偶数,若干个“来回”,就是若干个偶数相加,所以游的次数一定是偶数。⑵游1次,3次,5次…游奇数次都是到左岸,101为奇数,所以最后小鸭到左岸。配套练习1:9个小朋友做运球游戏。第一个小朋友把球从操场东边运到西边,第二个小朋友接着把球从西边运回东边,第三个小朋友又接下去……最后球是在东边还是西边?如果是12个小朋友呢?55个呢?888个呢?配套练习2:31路汽车从东站开到西站,为开一趟,再从西站开到东站又为一趟,若31路汽车从东站出发,开了15趟之后,31路汽车停在东站还是西站?如果开了20趟呢?配套练习3:晚上,小明做作业时,突然停电,电灯不亮了。他很着急,“啪、啪……”一连按了6次开关。如果电来了,这时电灯是亮还是不亮?如果按17次、50次、95次呢?配套练习4:放暑假了,小刚参加了学校组织的游泳集训队,他每天都要在游泳池里来回地练习游泳。如果规定从左边游到右边叫做游一次,那么:(1) 如果小刚一开始在左边,来回游了几次之后,他又回到左边?这时,他游的次数是奇数还是偶数?(2) 如果小刚一开始在左边,来回游了几次之后,他又回到右边?这时,他游的次数是奇数还是偶数?(3) 如果小刚一开始在左边,来回游了50次之后,他到了左边还是右边?例题3:11个苹果分给3个小朋友,不要求每个小朋友分得一样多,但分得的苹果个数要是偶数,想一想,能分吗?分析:3个小朋友都必须分得偶数个苹果,即3个偶数。偶数+偶数+偶数=偶数,而11为奇数,所以这是不能分的。配套练习1:999张小卡片分给学习进步的5位同学,要求每位同学分得的小卡片张数为偶数张,想一想,能分吗?如果每位同学分得的小卡片张数是奇数张呢?能的话请你设计一种分法?配套练习2:高年级同学做了18朵红花送给低年级6个班的“三好学生”,要求每班得到的朵数是奇数,能分吗?三、脑筋急转弯练习1:有一盒茶叶蛋,4个装一袋,还剩下3个,盒子里原来有茶叶蛋的个数是奇数还是偶数?6个装一袋,还剩2个,盒子里原有茶叶蛋的个数是奇数还是偶数?练习2:ABC三人的名字分别叫真真,假假,真假(不对应),真真只说真话,假假只说假话,而真假有时候说真话有时候说假话。有一个人遇到了他们,于是问A:请问,B叫什么名字?A 回答说:他叫真真。这个人有问B:你叫真真么?B回答说:不,我叫假假。这个人又问C:B到底叫什么?C回答说:他叫假假。请问:你知道ABC中谁是真真,谁是假假,谁又是真假吗?四、复习题复习题1:有一位老师,他的年龄乘以2,减去16后,再除以2加上8,结果恰好是38,这位教师今年多少岁?复习题2:小虎做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577,这题的正确答案应该是多少?复习题3: 某人去储蓄所取款,第一次取了存款数的一半还多5元,第二次取了余下的一半还少10元,这时还剩125元,他原有存款有多少元?。

奥数奇数和偶数

奥数奇数和偶数

奇数和偶数--顾老师阅读思考:凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。

因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数)。

因为任何奇数除以2其余数都是1,所以通常用式子21k+来表示奇数(这里k是整数)。

奇数和偶数有许多性质,常用的有:性质1两个偶数的和或者差仍然是偶数。

例如:8+4=12,8-4=4等。

两个奇数的和或差也是偶数。

例如:9+3=12,9-3=6等。

奇数与偶数的和或差是奇数。

例如:9+4=13,9-4=5等。

单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。

性质2奇数与奇数的积是奇数。

例如:91199⨯=等偶数与整数的积是偶数。

例如:25102816,等。

⨯=⨯=性质3任何一个奇数一定不等于任何一个偶数。

奇数和偶数的性质:(一)两个整数和的奇偶性。

奇数+奇数=(),奇数+偶数=(),偶数+偶数=()。

一般的,奇数个奇数的和是(),偶数个奇数的和是(),任意个偶数的和为()。

(二)两个整数差的奇偶性。

奇数-奇数=(),奇数-偶数=(),偶数-偶数=(),偶数-奇数=()。

(三)两个整数积的奇偶性。

奇数×奇数=(),奇数×偶数=(),偶数×偶数=()一般的,在整数连乘当中,只要有一个因数是偶数,那么其积必为();如果所有因数都是奇数,那么其积必为()。

(四)两个整数商的奇偶性。

在能整除的情况下,偶数除以奇数得(),偶数除以偶数可能得(),也可能得(),奇数不能被偶数整除。

(五)如果两个整数的和或差是偶数,那么这两个整数或者都是(),或者都是()。

(六)两个整数之和与两个整数之差有相同的奇偶性,即A+B、A-B奇偶性相同(A、B为整数)。

(七)相邻两个整数之和为(),相邻两个整数之积为()。

(八)()的平方被4除余1,偶数的平方是4的倍数例1.有5张扑克牌,画面向上。

小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。

小学奥数 奇数与偶数的性质与应用 精选例题练习习题(含知识点拨)

小学奥数  奇数与偶数的性质与应用  精选例题练习习题(含知识点拨)

本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。

无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。

一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。

特别注意,因为0能被2整除,所以0是偶数。

二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。

推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶模块一、奇偶分析法之计算法【例 1】 1231993++++……的和是奇数还是偶数?【例 1】 从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。

例题精讲知识点拨教学目标5-1奇数与偶数的性质与应用【巩固】2930318788……得数是奇数还是偶数?+++++【巩固】123456799100999897967654321+++++++++++++++++++++的和是奇数还是偶数?为什么?【巩固】(200201202288151152153233……)(……)得数是奇数还是偶数?++++-++++【例 2】12345679899+⨯+⨯+⨯++⨯的计算结果是奇数还是偶数,为什么?【例 3】东东在做算术题时,写出了如下一个等式:1038137564=⨯+,他做得对吗?【例 4】一个自然数分别与另外两个相邻奇数相乘,所得的两个积相差150,那么这个数是多少?【巩固】一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?【例 5】能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档