北师大版七年级上册数学第五章测试题附答案

合集下载

北师大版七年级数学上册第五章《一元一次方程》单元练习题(含答案)

北师大版七年级数学上册第五章《一元一次方程》单元练习题(含答案)

北师大版七年级数学上册第五单元《一元一次方程》单元练习题(含答案)一、单选题1.已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( ) A .﹣2 B .2 C .±2 D .±1 2.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( ) A .1800元 B .1700元 C .1710元 D .1750元 3.一艘轮船在甲、乙两地之间航行,已知水流速度是5千米/小时,顺水航行需要6小时,逆水航行需要8小时,则甲乙两地间的距离是( )A .220千米B .240千米C .260千米D .350千米 4.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .12y y+= 5.某商品的标价为300元,打六折销售后获利50元,则该商品进价为( ) A .120元B .130元C .140元D .150元 6.在以下的式子中:3x +8=3;12-x ;x -y =3;x +1=2x +1;3x 2=10;2+5=7;其中是方程的个数为( )A 、3B 、4C 、5D 、67.下列方程是一元一次方程的是( )A .x+3y=-4B .21231()()n n n b b b b b b ⋅==2C .2x -3=0D .5-3=1-(-1)8.下列各组方程中,解相同的是( )A .x =3与4x +12=0B .x +1=2与2(x +1)=2xC .7x -6=25与7165x -= D .x =9与x+9=0 9.若a=b ,则下列各式不一定成立的是( )A .-a=-bB .a-2=b-2C .a b c c =D .22a b = 10.若关于x 的方程x m ﹣1+2m +1=0是一元一次方程,则这个方程的解是( ) A .﹣5 B .﹣3 C .﹣1D .511.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为小时,则可列方程得( ) A .B .C .D .12.一列匀速前进的火车,从它进入600m 的隧道到离开,共需20s ,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5s ,则这列火车的长度是( )A .100mB .120mC .150mD .200m二、填空题13.若关于x 的方程3x -7=2x +a 的解为x=-1,则a 的值为 .14.若关于x 的方程315ax x -=的解为5x =,则a 等于__________.15.已知数组:11211222,,,,123211333334,,,,,,234331444444,,,,,,…记第一个数为a 1,第二个数为a 2,第n 个数为a n ,若a n 是方程13123x x +--=1的解,则n 等于_____.16.若方程213x +=和203a x --=的解相同,则a 的值是__________. 17.方程2x ﹣3=0的解是__.18.当a 、b 满足关系式________时,等式99a b -=-成立.19.一项工程,甲单独做 10 天可以完成,乙单独做 15 天可以完成,甲队先做两天,余下的工程由两队合做 x 天可以完成,则由题意可列出的方程是________.20.一家商店将某款棉衣按进价提高40%标价,又以8折卖出,结果每件棉衣可获利15元,则这款棉衣的进价是_____元.三、解答题21.将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用式子表示十字框中的五个数之和;(3)若十字框中的五数之和为220,求十字框中的正中心的数是多少?(4)若将十字框上、下、左、右平移,可框住另外的五个数,则十字框中的五个数之和可能等于2010吗?若可能,写出这五个数;如不可能,请说明理由.22.当x为何值时,整式12x++1和24x-的值互为相反数?23.如果13a+1与273a-的值互为相反数,求a的值.24.将正整数1至2019按照一定规律排成下表:记a ij表示第i行第j个数,如a14=4表示第1行第4个数是4.(1)直接写出a42=_________,a53=_________;(2)①如果a ij=2019,那么i=_________,j =_________;②用i,j表示a ij=_____________;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由。

北师大版七年级上数学第五章测试题含答案

北师大版七年级上数学第五章测试题含答案

第五章 一元一次方程一、选择题1、下列方程中,是一元一次方程的是( )A 、03=+y xB 、32=-x xC 、11=xD 、x x 2131=- 2、方程1212+=x x 的解是 ( ) A 、23 B 、32 C 、23- D 、32- 3、用一根长为10米的铁丝围成一个长方形,有下列四种情况,其中( )情况围成的长方形面积最大A 、使该长方形的长比宽多1.4米B 、使该长方形的长比宽多0.8米C 、使该长方形的长比宽多0.4米D 、使该长方形的长和宽相等4、一个三位数,3个数位上的数字和是15,百位上的数字比十位上的数字小1,个位上的数字比十位上的数字大1,则这个三位数是( )A .345B .357C .456D .5675、已知关于x 的方程ax -4=14x +a 的解是x =2,则a 的值是( )A .24B .-24C .32D .-326、爸爸为小明存了一个3年期储蓄(3年期的年利率为2.7%),3年后能取5405元,小明爸爸开始存入了( )元。

A 、5000B 、5045C 、1万元D 、以上都不对二、填空题7、 已知x = -2是方程2x +a=-5的解,则a+ 1a =8、 如果方程35 x+1=1910 与3-3m-2x 2 =0的解相同,则m 的值为______.9、笼子里有一些鸡和兔,总共有28个头,80只脚。

设鸡有x 只, 则兔有_______只,列方程10、已知方程是关于x 的一元一次方程,则m =______.三、解方程11、x x x 213832-=- 12、x x 3.15.67.05.0-=- 13、)2(512)1(21+-=-x x 14、14.0132.01=--+x x 15、 16、四、解答题17.据了解,个体服装销售要高出进价的20%方可盈利,一销售老板以高出进价的60%标价,如果一件服装标价240元,那么:(1)进价是多少元?(2)最低售价多少元时,销售老板方可盈利?18.某甲、乙、丙三个圆柱形容器,甲的内径是20厘米,高32厘米;乙的内径是30厘米,高32厘米;丙的内径是40厘米,甲、乙两容器中都注满了水.问:如果将甲、乙两容器中的水全部倒入丙容器而使水不溢出来,丙容器至少要多高?19.某剧团为“希望工程”募捐组织了一次义演,共卖出800张票,成人票1张9元,学生票1张6元,共筹得票款6180元,问成人票与学生票各售出多少张?20.敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,在距敌军0.6千米处向敌军开火,48分钟将敌军全部歼灭。

北师大版七年级数学上第五章检测卷(含答案)

北师大版七年级数学上第五章检测卷(含答案)

北师大版七年级数学上第五章检测卷(含答案)第五章检测卷时间:100分钟,满分:120分一、选择题1.下列方程中,是一元一次方程的是()A。

xB。

x2-4x=3C。

3x-1=2D。

x+2y=12.一元一次方程x-1=2的解表示在数轴上,是图中数轴上的哪个点()A。

D点B。

C点C。

B点D。

A点3.下列说法错误的是()A。

若xy=,则x=yB。

若x2=y2,则-4ax2=-4ay2C。

若a=b,则a-3=b-3D。

若ac=bc,则a=b4.某班分两组去两处植树,第一组22人,第二组26人。

现第一组在植树中遇到困难,需第二组支援。

问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程()A。

22+x=2×26B。

22+x=2(26-x)C。

2(22+x)=26-xD。

22=2(26-x)5.小马虎在做作业时,不小心将方程中的一个常数污染了,被污染的方程是2(x-3)-●=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,那么这个被污染的常数是()A。

1B。

2C。

3D。

46.如图,在长方形ABCD中,AB=10cm,BC=6cm,动点P,Q分别从点A,B同时出发,点P以3cm/s的速度沿AB,BC向点C运动,点Q以1cm/s的速度沿BC向点C运动。

设P,Q运动的时间是t,当点P与点Q重合时t的值是() A。

5B。

4C。

5/2D。

6二、填空题7.下列方程:①x+2=2x+4;②4x=8;③x2+4x=3.其中解为x=2的是(填序号)。

①和③8.方程2x=3(5-x)的解是。

x=39.若2a-7a+1与-(2a-7a-1)互为相反数,则a=。

310.商店进了一批服装,进价为320元,售价定为480元,为了使利润为20%,则应打折销售。

打折的价格为384元。

11.在有理数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=-2a+3b,如1⊕5=-2×1+3×5=13,则方程2x⊕4=的解为。

北师大版七年级上册数学第五章 一元一次方程 含答案

北师大版七年级上册数学第五章 一元一次方程 含答案

北师大版七年级上册数学第五章一元一次方程含答案一、单选题(共15题,共计45分)1、有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是()A.50x﹣10=52x﹣2B.50x+10=52x﹣2C.50x+10=52x+2D.50x ﹣10=52x+22、如果关于的方程的解是,那么的值为()A. B. C. D.3、下列方程中,解为x=2的是( )A.3x+3=xB.-x+3=0C.4x=2D.5x-2=84、下列说法正确的是()A.在等式ax=bx两边都除以x,可得a=bB.在等式两边都乘以x,可得a=bC.在等式3a=9b两边都除以3,可得a=3D.在等式两边都乘以2,可得x=y﹣15、为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元6、已知下列方程:①x-2=;②-1=③=5x-1;④x2-4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.(1)(3)(4)B.(2)(3)(5)C.(2)(3)D.(2)(6)7、张明在做解方程作业时,不小心将方程中的一个常数污染了,导致看不清楚,被污染了常数的这个方程是:2y﹣=﹣y+■,怎么办呢?张明想了一下,便翻看了书后的答案,知道了此方程的解是:y=﹣1,于是他很快就补出了这个常数,你能补出这个常数吗?它应是()A.﹣1B.﹣3C.﹣2D.48、下列等式变形正确的是()A.若,则B.若,则C.若,则 D.若,则9、设P=2y-2,Q=2y+3,有2P-Q=1,则y的值是()A.0.4B.4C.-0.4D.-2.510、某商店以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是( )A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元11、下列四组变形中,属于移项变形的是()A.由5 x+10=0,得5 x=﹣10B.由,得x=12C.由3 y=﹣4,得D.由2 x﹣(3﹣x)=6,得2 x﹣3+ x=612、下列各方程中,不是一元一次方程的是()A.x﹣2=2x+1B.y+5=7﹣yC.3x+ =2D.4﹣2y= y13、以下等式变形不正确的是()A.由x+2=y+2,得到x=yB.由2a﹣3=b﹣3,得到2a=bC.由am=an,得到m=n D.由m=n,得到2am=2an14、若,则的值是()A. B. C. D.15、若不等式组的解集为0<x<1,则a的值为( )A.1B.2C.3D.4二、填空题(共10题,共计30分)16、关于x的方程(k﹣1)x|2k﹣1|+3=0是一元一次方程,那么k=________.17、实验室里,水平桌面上有甲、乙、丙三个相同高度的圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在10cm高度处连通(即管子底部离容器底10cm),现三个容器中,只有乙中有水,水位高4cm,如图所示.若每分钟同时向甲和丙注入相同量的水,开始注水1分钟,甲的水位上升3cm.则开始注入________分钟水量后,甲的水位比乙高1cm.18、已知,则________,________.19、某商品的进价是200元,标价300元出售,商店要求利润不低于5%,售货员最低可以打________折出售此商品.20、如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF 的度数是________.21、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则该彩电的标价为________元.22、已知是关于的方程的解,则的值是________.23、若代数式5x-5与2x-9的值互为相反数,则x=________.24、-2x与3x–1互为相反数,则________.25、饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为________.三、解答题(共5题,共计25分)26、若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.27、当为何值时,代数式的值与的值互为相反数?28、x等于什么数时,代数式的值比的值的2倍小1?29、当m是何值时,关于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2(1)是一元二次方程;(2)是一元一次方程;(3)若x=﹣2是它的一个根,求m的值.30、列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、B5、B6、B7、B8、D9、B11、12、C13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

北师大版七年级数学上册第五章达标测试卷附答案

北师大版七年级数学上册第五章达标测试卷附答案

北师大版七年级数学上册第五章达标测试卷一、选择题(每题3分,共30分)1.下列方程是一元一次方程的是( )A .x 2+x =3B .5x +2x =5y +3C .12x -9=3D .2x +1=2 2.下列一元一次方程中,解是x =2的是( )A .3x +6=0B .23x =2C .5-3x =1D .3(x -1)=x +13.下列等式变形错误..的是( ) A .若x -1=3,则x =4 B .若12x -1=x ,则x -1=2xC .若x -3=y -3,则x -y =0D .若3x +4=2x ,则3x -2x =-44.若关于y 的方程ay -1=0与y -2=-3y 的解相同,则a 的值为( )A .12B .2C .13D .35.将方程3x -23+1=x 2去分母,正确的是( )A .3x -2+1=xB .2(3x -2)+1=3xC .2(3x -2)+6=3xD .2(3x -2)+1=x6.若12m +1与m -2互为相反数,则m 的值为( )A .-23B .23C .-32D .327.一件服装标价200元,以六折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元8.“△”表示一种运算符号,其意义是a △b =2a -b .若x △(1△3)=2,则x 的值为( )A .1B .12C .32D .29.如图是由四种大小不同的八个正方形拼成的一个长方形,其中最小的正方形的边长为5,则这个长方形的周长为( )A .82B .86C .90D .9410.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,书中详述了传统的珠算规则,确立了算盘用法,书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是() A.大和尚有25人,小和尚有75人B.大和尚有75人,小和尚有25人C.大和尚有50人,小和尚有50人D.大、小和尚各有100人二、填空题(每题3分,共30分)11.若(a-1)x-13=2是关于x的一元一次方程,则a应满足的条件是____________.12.若代数式3x-3的值是3,则x=________.13.写出一个解为x=3的一元一次方程:______________.14.已知关于x的方程2x+a-5=0的解是x=2,则a=________.15.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓、1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出的一元一次方程为__________________.16.在400 m的环形跑道上,一男生每分钟跑320 m,一女生每分钟跑280 m,他们同时同地同向出发,t min后首次相遇,则t=________.17.一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的15,则这个两位数是________.18.一个底面半径为10 cm、高为30 cm的圆柱形大杯中存满了水,把水倒入底面直径为10 cm的圆柱形小杯中,刚好倒满12杯,则小杯的高为__________.19.王经理到襄阳出差给朋友们带回若干袋襄阳特产——孔明菜,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜______袋.20.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿照此方法,将0.4·5·化成分数是________.三、解答题(21,25,26题每题12分,其余每题8分,共60分)21.解下列方程:(1)3x -3=x +2;(2)4x -3(20-x )=4;(3)x +14-1=2x -16.22.当m 为何值时,代数式2m -5m -13与7-m 2的和等于5?23.某地为了打造风光带,将一段长为360 m 的河道整治任务交给甲、乙两个工程队接力完成,共用时20天.已知甲工程队每天整治24 m ,乙工程队每天整治16 m ,求甲、乙两个工程队分别整治了多长的河道.24.甲、乙两人分别从A,B两地同时出发,沿同一条路线相向匀速行驶,已知出发后3 h两人相遇,相遇时乙比甲多行驶了60 km,相遇后再经1 h乙到达A地.(1)甲、乙两人的速度分别是多少?(2)两人从A,B两地同时出发后,经过多长时间两人相距20 km?25.某校计划购买20个书柜和一批书架,现从A,B两家超市了解到:同型号的产品价格相同,书柜每个210元,书架每个70元;A超市的优惠政策为每买一个书柜赠送一个书架,B超市的优惠政策为所有商品打8折出售.设该校购买x(x>20)个书架.(1)若该校到同一家超市选购所有商品,则到A超市要准备________元货款,到B超市要准备________元货款;(用含x的代数式表示)(2)若规定只能到其中一家超市购买所有商品,当购买多少个书架时,无论到哪家超市所付货款都一样?(3)若该校想购买20个书柜和100个书架,且可到两家超市自由选购,你认为至少准备多少元货款?并说明理由.26.小东同学在解一元一次方程时,发现这样一种特殊现象:x +12=0的解为x=-12,而-12=12-1;2x +43=0的解为x =-23,而-23=43-2.于是,小东将这种类型的方程作如下定义:若关于x 的方程ax +b =0(a ≠0)的解为x =b -a ,则称之为“奇异方程”.请和小东一起进行以下探究:(1)当a =-1时,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由.(2)若关于x 的方程ax +b =0(a ≠0)为“奇异方程”,解关于y 的方程:a (a -b )y +2=⎝ ⎛⎭⎪⎫b +12y .答案一、1.C 2.D 3.B 4.B 5.C 6.B7.A8.B9.B10.A二、11.a≠112.213.x-3=0(答案不唯一)14.115.15(x+2)=33016.1017.4518.10 cm19.3320.5 11三、21.解:(1)移项,得3x-x=2+3.合并同类项,得2x=5.系数化为1,得x=5 2.(2)去括号,得4x-60+3x=4.移项、合并同类项,得7x=64.系数化为1,得x=64 7.(3)去分母,得3(x+1)-12=2(2x-1).去括号,得3x+3-12=4x-2.移项,得3x-4x=-2-3+12.合并同类项,得-x=7.系数化为1,得x=-7.22.解:由题意得2m-5m-13+7-m2=5.去分母,得12m-2(5m-1)+3(7-m)=30. 去括号,得12m-10m+2+21-3m=30. 移项,得12m-10m-3m=30-2-21.合并同类项,得-m=7.系数化为1,得m=-7.故当m=-7时,代数式2m-5m-13与7-m2的和等于5.23.解:设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360,所以乙工程队整治了20-5=15(天).甲工程队整治的河道长为24×5=120 (m),乙工程队整治的河道长为16×15=240 (m).答:甲、乙两个工程队分别整治了120 m,240 m的河道.24.解:(1)设甲的速度为x km/h,易得乙的速度为(x+20)km/h.根据题意,得3x+3(x+20)=4(x+20),解得x=10.则x+20=30.答:甲的速度是10 km/h,乙的速度是30 km/h.(2)设经过t h两人相距20 km.①相遇前相距20 km时,可得方程10 t+30 t+20=4×30,解得t=2.5;②相遇后相距20 km时,可得方程10 t+30 t=4×30+20,解得t=3.5.答:经过2.5 h或3.5 h两人相距20 km.25.解:(1)(70x+2 800);(56x+3 360)(2)解方程70x+2 800=56x+3 360,得x=40.答:当购买40个书架时,无论到哪家超市所付货款都一样.(3)至少准备8 680元货款.理由:先到A超市购买20个书柜,需货款210×20=4 200(元);再到B超市购买80个书架,需货款70×80×80%=4 480(元);共需货款4 200+4 480=8 680(元).26.解:(1)没有符合要求的“奇异方程”.理由如下:把a=-1代入原方程,解得x=b.若为“奇异方程”,则x=b+1.因为b≠b+1,所以不符合“奇异方程”的定义.(2)因为关于x 的方程ax +b =0(a ≠0)为“奇异方程”,所以x =b -a .所以a (b -a )+b =0,即a (a -b )=b .所以方程a (a -b )y +2=⎝ ⎛⎭⎪⎫b +12y 可化为by +2=⎝ ⎛⎭⎪⎫b +12y . 所以by +2=by +12y ,解得y =4.。

第五章一元一次方程 单元测试题(含答案)初中数学北师大版七年级上册

第五章一元一次方程 单元测试题(含答案)初中数学北师大版七年级上册

第五章一元一次方程 单元测试卷一、选择题1.在方程3x -y =2,x +1=0,12x =12,x 2-2x -3=0中,一元一次方程的个数为( )A.1B.2C.3D.42.一元一次方程的解是( )A .B .C .D .3.关于x 的方程的解是,则m 的值是( )A .B .0C .2D .84.下列运用等式性质进行的变形中,正确的是( ) A. 若 ,则 B. 若,则C. 若,则D. 若,则6.方程去分母得( )A .B .C .D .7.某品牌电脑降价以后,每台售价为元,则该品牌电脑每台原价为( )A .元B .元C .元D .元8.如果关于x 的方程 和方程 的解相同,那么a 的值为( )A .6B .4C .3D .29.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A .B .C .D .10.如图,将长与宽比为的长方形分割成一个阴影长方形和由196个面积相等的小正方形构成的边框,(边框的宽度即为小正方形的边长),则阴影长方形的长与宽的比为( )10x -==1x -0x =1x =2x =240x m +-=2x =-8-247236x x ---=-22(24)(7)x x --=--122(24)7x x --=--12(24)(7)x x --=--122(24)(7)x x --=--213x +=213a x--=42(94)35x x +-=42(35)94x x +-=24(94)35x x +-=24(35)94x x +-=3:2ABCDA .B .C .D . .15.已知整式 是关于x 的二次二项式,则关于y 的一元一次方程 的解为 .三、解答题16.解方程:(1).(2).17.解下列一元一次方程 (1)2(x+3)=-x; (2)18.小明解方程2x -15+1=x +a 2时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x =4,试求a 的值,并正确地求出方程的解.四、解答题19.某届足球比赛即将举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元.其中小组赛球票每张550元,淘汰赛球票每张700元,则小李预定了小组赛和淘汰赛的球票各多少张?3:229:1929:1729:2132(24)7(3)2m x x n x --++-(3)160m n y ny -++=20.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形铁片和长方形铁片才能合理地将铁片配套?23.如图①,在数轴上有一条线段AB,点A,B表示的数分别是2和﹣7.(1)线段AB= ;(2)若M是线段AB的中点,则点M在数轴上对应的数为 ;(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B';处,若AB′=B′C,求点C在数轴上对应的数是多少?参考答案一、选择题1—5 BCDBC6—10 DCBDB二、填空题11.7212.3x-2x=10 13.2 14.2031 15.y=-2三、解答题16.解:(1)去括号得:,移项,合并同类项得:,未知数系数化为1得:.(2)去分母,得:,去括号,得:,移项,合并同类项,得:,系数化成1,得:.17.解:(1)去括号,得:2x+6=-x移项,得:2x+x=-6合并同类项,得:3x=-6系数化成1,得:x=-2(2)去分母,得:2(x-1)-12(x+1)=1去括号,得:2x-2-12x-12=1移项,合并同类项,得: -10x=15系数化成1,得:18..四、解答题19、解:设小李预定了小组赛球票x张,则预定了淘汰赛球票(10-x)张,根据题意,得550x+700(10-x)=5 800.解得x=8.则10-x=10-8=2(张).答:小李预定了小组赛球票8张、淘汰赛球票2张.20.解:设安排x人生产长方形铁片,则(42-x)人生产圆形铁片,依题意得120(42-x)=2x80x,解得x=18,所以42-18=24(人)则安排24人生产圆形铁片,18人生产长方形铁片21.解:设笔袋的单价为x元,则水笔的单价为(x-22)元,所以x=6(x-22)+2, 解得x=26,则x-22=26-22=4(元),答:笔袋的单价为26元,则水笔的单价为4元.(2)甲书店:50x26+4(a- 20) = 4a +1220(元),乙书店:50x 26 + 4a x 0.5 = 2a+1300(元),所以到甲书店购买所花的费用是(4a+1220)元,到乙书店购买所花的费用是(2a+1300)元(3) 甲书店:4a+1220≤1400,解得a ≤45,此时购买的笔袋和水笔的总数量为 50+a ≤50+45= 95<100,不满足题意,乙书店:2a+1300≤1400,解得a ≤50,此时购买的笔袋和水笔的总数量为50+a ≤50+50=100,满足题意,所以王老师到乙书店能完成本次采购任务.五、解答题22、解:(1)3x-(6+x)=-16, 解得 x=-5,2x+4=x+10, 解得 x=6.∵(-5)+6=1,∴方程3x-(6+x)=-16与方程2x+4=x+10互为“美好方程”.(2)x2+m=0, 解得 x=-2m ,3x=x+4,解得 x=2.∵关于x 的方程一+m=0与方程3x=x+4互为“美好方程”,.∴.-2m+2=1,解得 m=12.23(1)9(2)-2.5(3)解:设 AB'=x ,∵AB′=,则 B'C =5x .∴由题意BC =B′C =5x ,∴ AC =B'C ﹣AB'=4x ,∴ AB =AC+BC =AC+B'C =9x ,即9x =9,∴x=1,∴由题意AC=4,又∵点A表示的数为2,2﹣4=﹣2,∴点C在数轴上对应的数为﹣2.。

北师大版七年级数学上册第五章《一元一次方程》练习题含答案解析 (3)

北师大版七年级数学上册第五章《一元一次方程》练习题含答案解析 (3)

一、选择题1.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x元,根据题意,可得到的方程是( )A.x(1+50%)80%=x−250B.x(1+50%)80%=x+250C.(1+50%x)80%=x−250D.(1+50%x)80%=250−x+3的解也为整数,则所有满足条件的数2.已知a为整数,关于x的一元一次方程2x+1=ax3a的和为( )A.0B.24C.36D.483.某商品提价25%后.欲恢复原价,则应降低( )A.40%B.25%C.20%D.15%4.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )A.80元B.85元C.90元D.95元5.妈妈将2万元为小明存了一个6年期的教育储蓄(免利息税),6年后,总共能得27056元,则这种教育储蓄的年利率为( )A.5.86%B.5.88%C.5.84%D.5.82%6.用一根绳子环绕一棵大树,环绕大树3周绳子还多4米,环绕4周又少了3米,则环绕大树一周需要的绳长为( )A.5米B.6米C.7米D.8米7.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元8.若关于x的方程(k−4)x=3有正整数解,则自然数k的值是( )A.1或3B.5C.5或7D.3或79.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A.400cm2B.500cm2C.600cm2D.300cm210.一台电视机成本价为a元,销售价比成本价增加了25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为( )A.(1+25%)(1+70%)a元B.70%(1+25%)a元C.(1+25%)(1−70%)a元D.(1+25%+70%)a元二、填空题11.9月6日,重庆来福购物中心正式开业,购物中心里的美食店推出了A,B两种套餐和其他美食,当天,A套餐的销售额占总销售额的40%,B套餐的销售额占总销售额的20%.国庆期间,重庆外来旅客增加,此店老板考虑外来游客的饮食口味推出了C套餐,在10月1日这一天,A,B套餐各自的销售额都比9月6日的销售额减少了15%,C套餐的销售额占10月1日当天总销售额的20%,其他美食的销售额不变,则10月1日的总销售额比9月6日的总销售额增加%.12.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人,这个物品的价格是元.13.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A,B两种商品的价格之和为27元,小明计划购买B商品的数量比A商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A商品正打九折销售,而B商品的价格提高了20%,小明决定将A,B 产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为元.14.如图,∠AOC是平角,∠AOB=60∘,在平面内,OA,OB绕点O顺时针转动,速度分别为每秒40∘和每秒20∘.经过t秒后,首次出现射线OA,OB,OC中的一条是另外两条组成角的角平分线,则t=.15.在一个长为3,宽为m(m<3)的矩形纸片上,剪下一个面积最大的正方形(称为第一次操作);再在剩下的矩形上剪下一个面积最大的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n=2时,m的值为.16.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为元.17.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,若设这种商品的进价是x元,由题意可列方程为.三、解答题18.如图,已知线段AB,点C是线段AB的中点,点D在AB延长线上.(1) 用直尺和圆规在答题纸上作出点C;(2) 已知线段AD的长是7,线段AC的长比线段BD长的一半少1,求线段AC的长.19.已知一张方桌由1个桌面和4条桌腿组成,1立方米木料可制作方桌桌面50张或桌腿300条.现有5立方米木料,那么多少木料做桌面,多少木料做桌腿,可以恰好配套成方桌?20.如图1,O为直线AB上点,过点O作射线OC,∠AOC=30∘,将一直角三角板(∠M=30∘)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1) 将图1中的三角板绕点O以每秒3∘的速度沿顺时针方向旋转一周,如图2经过t秒后,OM恰好平分∠BOC.①求t的值.②此时ON是否平分∠AOC?请说明理由.(2) 在(1)问的基础上,若三角板在转动的同时,射线 OC 也绕 O 点以每秒 6∘ 的速度沿顺时针方向旋转一周,如图 3,那么经过多长时间 OC 平分 ∠MON ?请你说明理由.(3) 在(2)问的基础上,经过多长时间 OC 平分 ∠MOB ?请画图并说明理由.21. “六一”期间,小张购进 100 只两种型号的文具并全部售出后获利 500 元,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A 型1012B 型1523问当初小张进货,用了多少元?22. 已知有理数 a ,b ,c 在数轴上对应的点分别为 A ,B ,C ,其中 b 是最小的正整数,a ,c 满足∣a +2∣+(c −5)2=0.(1) 填空:a = ,b = ,c = ;(2) 现将点 A ,点 B 和点 C 分别以每秒 4 个单位长度,1 个单位长度和 1 个单位长度的速度在数轴上同时向右运动,设运动时间为 t 秒.①定义:已知 M ,N 为数轴上任意两点,将数轴沿线段 MN 的中点 Q 进行折叠,点 M 与点 N 刚好重合,所以我们又称线段 MN 的中点 Q 为点 M 和点 N 的折点. 试问:当 t 为何值时,这三个点中恰好有一点为另外两点的折点?②当点 A 在点 C 左侧时(不考虑点 A 与点 B 重合),是否存在一个常数 m 使得 2AC +m ⋅AB 的值在一定时间范围内不随 t 的改变而改变?若存在,求出 m 的值;若不存在,请说明理由.23. 已知;如图,线段 AB =6,点 C 是线段 AB 的中点.动点 P 从点 A 出发,以每秒 1 个单位的速度沿 AB 向终点 B 运动,设点 P 运动的时间是 t (秒).(1) 用含t的代数式表示AP,则AP=.(2) 当点P与点C重合时,求t的值.(3) 用含t的代数式表示CP.(4) 若在点P出发的同时,动点Q从点B出发,以每秒2个单位的速度沿BA向终点A运动,当P,Q两点的距离是1时,直接写出t的值.24.我们把解相同的两个方程称为同解方程.例如:方程2x=6与方程4x=12的解都为x=3,所以它们为同解方程.(1) 若方程2x−3=11与关于x的方程4x+5=3k是同解方程,求k的值.(2) 若关于x的方程3[x−2(x−k3)]=4x和3x+k12−1−5x8=1是同解方程,求k的值.(3) 若关于x的方程2x−3a=b2和4x+a+b2=3是同解方程,求14a2+6ab2+8a+6b2的值.25.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1) 若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2) 若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?答案一、选择题1. 【答案】B【解析】标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%,则可列方程为:(1+50%)x×80%=x+250,故选B.【知识点】利润问题2. 【答案】D+3,【解析】∵2x+1=ax3∴(6−a)x=6,+3的解为整数,∵关于x的一元一次方程2x+1=ax3为整数,∴x=66−a∴6−a=±1或±2或±3或±6,又∵a为整数,∴a=5或7或4或8或3或9或0或12,∴所有满足条件的数a的和为:5+7+4+8+3+9+0+12=48.【知识点】含参一元一次方程的解法3. 【答案】C【知识点】利润问题4. 【答案】C【知识点】利润问题5. 【答案】B【知识点】和差倍分6. 【答案】C【解析】设环绕大树一周需要的绳长为x米.根据题意,得3x+4=4x−3,解得x=7,则环绕大树一周需要的绳长为7米.【知识点】和差倍分7. 【答案】A【知识点】利润问题8. 【答案】C【解析】由 (k −4)x =3,解得 x =3k−4,又因为 (k −4)x =3 有正整数解,k 为自然数, 所以 k −4=1或3,所以 k =5或7,所以自然数 k 的值是 5 或 7. 【知识点】含参一元一次方程的解法9. 【答案】A【解析】设一个小长方形的长为 x cm ,宽为 y cm , 则可列方程组 {x +y =50,x +4y =2x,解得 {x =40,y =10,则一个小长方形的面积 =40 cm ×10 cm =400 cm 2. 【知识点】几何问题10. 【答案】B【解析】可先求销售价 (1+25%)a 元,再求实际售价 70%(1+25%)a 元. 【知识点】利润问题二、填空题11. 【答案】 13.75【解析】设 9 月 6 日的总销售额为 x 元, 则 9 月 6 日 A 套餐的销售额为 40%x 元, B 套餐的销售额为 20%x 元,其他美食的销售额为 (1−40%−20%)x =40%x ,则 10 月 1 日 A 套餐的销售额为 40%x ×(1−15%)=34%x 元, B 套餐的销售额为 20%x ×(1−15%)=17%x 元, 其他美食的销售额为 40%x ,则 10 月 1 日的总销售额为 (34%x +17%x +40%x )÷(1−20%)=1.1375x ,则 10 月 1 日的总销售额比 9 月 6 日的总销售额增加 (1.1375x −x )÷x =13.75%. 【知识点】利润问题12. 【答案】 7 ; 53【解析】设共有 x 人,则这个物品的价格是 (8x −3) 元, 依题意,得:8x −3=7x +4,解得:x =7, ∴8x −3=53. 【知识点】和差倍分13. 【答案】312【解析】设A商品的单价为x元/件,则B商品的单价为(27−x)元/件,计划购买A商品a件,则B商品为(a+2)件,根据题意可得:0.9x×(a+2)+1.2×(27−x)×a=xa+(27−x)(a+2)+8,∴x=62−5.4a−0.3a+3.8,∵a≥3,a+2≥3,a+a+2≤25,x,a均为整数,∴a=10,x=10,∴小明购买两种商品实际花费=9×12+1.2×10×17=312元.【知识点】和差倍分14. 【答案】4【知识点】几何问题15. 【答案】1或2【解析】由题意第一象操作后剩下的矩形长是宽的2倍,由此可得:3−m=2m或m=2(3−m),解得m=1或2.【知识点】几何问题16. 【答案】4【解析】设该商品每件的销售利润为x元,根据进价+利润=售价,得80+x=120×0.7,解得x=4,故答案为4.【知识点】利润问题17. 【答案】200×80%=(1+25%)x【知识点】利润问题三、解答题18. 【答案】(1) 图略.(2) 设AC的长为x,则BD的长为7−2x.由题意得x=12(7−2x)−1.解得x=54.答:线段AC的长是54.【知识点】几何问题、线段中点的概念及计算、线段的和差19. 【答案】设桌面用木料x立方米,则桌腿用木料(5−x)立方米,根据题意得,50x×4=300(5−x)解得x=35−3=2答:桌面3立方米,桌腿2立方米.【知识点】和差倍分20. 【答案】(1) ① ∵∠AON+∠BOM=90∘,∠COM=∠MOB,∵∠AOC=30∘,∴∠BOC=2∠COM=150∘,∴∠COM=75∘,∴∠CON=15∘,∴∠AON=∠AOC−∠CON=30∘−15∘=15∘,解得t=15∘÷3∘=5秒.②是,理由如下:∵∠CON=15∘,∠AON=15∘,∴ON平分∠AOC.(2) 5秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90∘,∠CON=∠COM,∵∠MON=90∘,∴∠CON=∠COM=45∘,三角板绕点O以每秒3∘的速度,射线OC也绕O点以每秒6∘的速度旋转,设∠AON为3t,∠AOC为30∘+6t,∵∠AOC−∠AON=45∘,可得:30+6t−3t=45∘,解得:t=5秒.(3) OC平分∠MOB,∵∠AON+∠BOM=90∘,∠BOC=∠COM,∵三角板绕点O以每秒3∘的速度,射线OC也绕O点以每秒6∘的速度旋转,设∠AON为3t,∠AOC为30∘+6t,(90∘−3t),∴∠COM为12∵∠BOM+∠AON=90∘,(90∘−3t).可得:180∘−(30∘+6t)=12秒.解得:t=703如图:【知识点】角平分线的定义、几何问题、角的计算21. 【答案】A文具为40只,B文具60只,进货用了1300元.【知识点】利润问题22. 【答案】(1) −2;1;5(2) ① t秒后,点A表示的数为−2+4t,点B表示的数为1+t,点C表示的数为5+t.(i)当点A为点B和点C的对折点时,有:(1+t)+(5+t)=2(−2+4t),解得t=53;(ii)当点B为点A和点C的对折点时,有:(−2+4t)+(5+t)=2(1+t),解得t=−13<0(舍去);(iii)当点C为点B和点A的对折点时,有:(−2+4t)+(1+t)=2(5+t),解得t=113.综上所述,满足条件的t的值是53或113.② t秒后,点A表示的数为−2+4t,点B表示的数为1+t,点C表示的数为5+t.(i)当点A在点B的左侧时,如图所示,AC=(5+t)−(−2+4t)=7−3t,AB=(1+t)−(−2+4t)=3−3t∴2AC+m⋅AB=2(7−3t)+m(3−3t)=(−3m−6)t+3m+14.∵2AC+m⋅AB的值在一定时间范围内不随t的改变而改变,∴−3m−6=0.∴m=−2;(ii)当点A在点B与点C之间时,如图所示,AC=(5+t)−(−2+4t)=7−3t,AB=−(1+t)+(−2+4t)=−3+3t∴2AC+m⋅AB=2(7−3t)+m(−3+3t)=(3m−6)t−3m+14.∵2AC+m⋅AB的值在一定时间范围内不随t的改变而改变,∴3m−6=0.∴m=2.综上:m的值是2或−2.【解析】(1) ∵最小的正整数是1,∴b=1,由题意得,a+2=0,c−5=0,解得a=−2,c=5.【知识点】数轴的概念、行程问题23. 【答案】(1) t(2) ∵AB=6,C是线段AB的中点,∴AC=3,则此时AP=AC=t=3,∴t=3.(3) 0≤t≤3时,PC=3−t,3<t≤6时,PC=t−3.(4) 53或73.【解析】(1) 由题AP=t.(4) AP=t,BQ=2t,P与Q在t=2时相遇,①则0≤t≤2时,PQ=6−3t=1,则t=53符合条件,② 2<t≤3时,PQ=3t−6=1,则t=73符合条件,故t=53或73.【知识点】行程问题、绝对值的几何意义、线段中点的概念及计算、线段的和差24. 【答案】(1) 2x−3=11,解得x=7,∵2x−3=11与4x+5=3k是同解方程,∴把x=7代入4x+5=3k中可得k=11.(2) 3[x−2(x−k3)]=4x,3(x−2x+23k)=4x,−3x+2k=4x,7x=2k,x=27k,3x+k 12−1−5x8=1,2(3x+k)−3(1−5x)=24,6x+2k−3+15x=24,21x=27−2k,x=27−2k21,∵原方程为同解方程,∴27k=27−2k21,6k=27−2k,8k=27,k=278.(3) 2x−3a=b2,x=b2+3a2,4x+a+b2=3,x=3−a−b24.∵原方程为同解方程,b2+3a2=3−a−b24,4b2+12a=6−2a−2b2,6b2+14a=6,14a2+6ab2+8a+6b2=(14a+6b2)+8a+6b2=6a+8a+6b2=14a+6b2= 6.【知识点】含参一元一次方程的解法、解常规一元一次方程25. 【答案】(1) 分三种情况计算:①设购进甲种电视机x台,乙种电视机(50−x)台.1500x+2100(50−x)=90000.解得x=25.则50−x=50−25=25.故购进甲种电视机25台,乙种电视机25台.②设购进甲种电视机y台,丙种电视机(50−y)台.1500y+2500(50−y)=90000.解得y=35.则50−y=15.故购进买甲种电视机35台,丙种电视机15台.③设购进乙种电视机z台,丙种电视机(50−z)台.2100z+2500(50−z)=90000.解得z=87.5.则50−z=−37.5(不合题意,舍去).故有以下两种进货方案:①甲、乙两种型号的电视机各购进25台;②购进甲种电视机35台,丙种电视机15台.(2) 方案一:25×150+25×200=8750(元).方案二:35×150+15×250=9000(元).故购进甲种电视机35台,丙种电视机15台获利最多.【知识点】利润问题、方案决策。

北师版七年级数学上册第五章综合检测卷含答案

北师版七年级数学上册第五章综合检测卷含答案

北师版七年级数学上册第五章综合检测卷一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是()A.5x-2y=7 B.x2-5x+4=0 C.2x3+5x=3 D.x=02.如果4x2-2m=7是关于x的一元一次方程,那么m的值是()A.-12 B.12C.0 D.13.【2023·衡水桃城中学月考】方程x2 023+1=0的解是()A.x=-2 023 B.x=-12 023C.x=2 023 D.x=12 0234.【2022·杭州十三中期末】设x,y,c是有理数,下列结论正确的是() A.若x=y,则x+c=y-c B.若x=y,则xc=ycC.若x=y,则xc=yc D.若x2c=y3c,则2x=3y5.下列方程变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程23t=32,系数化为1,得t=1D.方程x-12-x5=1,去分母,得5(x-1)-2x=106.阅读课上王老师将一批书分给各小组,若每小组分8本,则剩余3本;若每小组分9本,则缺少2本,问有几个小组?若设有x个小组,则依题意列方程为()A.8x-3=9x+2 B.8x+3=9x-2C.8(x-3)=9(x+2) D.8(x+3)=9(x-2)7.若关于x的一元一次方程ax+b=0(a≠0)的解是负数,则() A.a,b异号B.b>0 C.a,b同号D.a<0 8.【母题:教材P131随堂练习T1(2)】足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分.一支足球队踢了14场比赛,负了4场,共得20分,那么该队胜的场数是()A.3 B.4 C.5 D.69.【2023·常州二十四中模拟】如图,用10张相同的长方形纸条拼成一个大长方形,则长方形纸条的长是( )A .15 cmB .30 cmC .45 cmD .50 cm10.【数学文化】《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )A .1.8升B .16升C .18升D .50升二、填空题(每题3分,共24分)11.【开放题】写出一个解是x =-2的一元一次方程:____________________.12.【母题:教材P 153复习题T 13】已知关于x 的方程x +k =1的解为x =5,则k=________.13.已知x -42与25互为倒数,则x =________. 14.当y =________时,1-2y -56与3-y 6的值相等.15.小丁在解方程5a -x =13(x 为未知数)时,误将-x 看作+x ,解得方程的解是x =-2,则原方程的解为__________.16.【新情境】如图,在编写数学谜题时,“”内要求填写同一个数字,若设“”内的数字为y ,则可列出方程______________.17.【新考法】对于任意四个有理数a ,b ,c ,d ,定义新运算:=ad -bc .已知=18,则x 的值为________.18.【母题:教材P 153复习题T 8】一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要做________天才能完成.三、解答题(19题16分,23题12分,24题14分,其余每题8分,共66分)19.【母题:教材P 152复习题T 1】解下列方程:(1)5x -3=2x +6;(2)12x +2⎝ ⎛⎭⎪⎫54x +1=8+x ;(3)3y -14-1=5y -76; (4)x 3-0.1x +0.40.2=16.20.如果方程x -43-8=-x +22的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,求a 的值.21.【2022·沈阳南昌中学期中】在寒冷的天气,为预防感冒,我国民间常用生姜、红糖和水按2∶5∶75的质量比煮成“姜汤”服用.煮一碗410克的“姜汤”,需要准备生姜多少克?(水分蒸发忽略不计)22.某玩具车间有80名工人生产大恐龙玩具和小恐龙玩具,已知一名工人每天可生产大恐龙玩具900个或小恐龙玩具1 200个,一套玩具里有1个大恐龙玩具和4个小恐龙玩具,该车间如何安排工人生产,才能使每天生产的大恐龙玩具和小恐龙玩具刚好配套?23.【母题:教材P146例题】小华、小颖、小明相约到“心连心”超市调查A品牌矿泉水的日销售情况,如图是调查后三名同学进行交流的情景.请你根据下面的对话,解答下列问题:(1)该超市每瓶A品牌矿泉水的标价为多少元?(2)该超市今天销售了多少瓶A品牌矿泉水?24.【2023·北京四中模拟】甲、乙两队相约沿相同的路线徒步,徒步的路程为24 km,甲队步行速度为4 km/h,乙队步行速度为6 km/h,甲队出发1 h后,乙队才出发.(1)乙队需要多长时间可以追上甲队?(2)从甲队出发开始到乙队完成徒步路程止,甲队出发多长时间,两队间隔的路程为2 km?答案一、1.D 2.B 3.A 4.B 5.D 6.B 7.C 8.C 9.C10.C 点拨:由题可知,3斗的粟即为30升的粟.设可以换得的粝米为x 升,则x 30=3050,解得x =18.所以可以换得的粝米为18升.二、11.2x -1=-5(答案不唯一) 12.-4 13.9 14.815.x =2 16.5(120+y )=100y +30 17.3 18.10三、19.解:(1)移项,得5x -2x =6+3.合并同类项,得3x =9.系数化为1,得x =3.(2)去括号,得12x +52x +2=8+x .去分母,得x +5x +4=16+2x .移项,得x +5x -2x =16-4.合并同类项,得4x =12.系数化为1,得x =3.(3)去分母,得3(3y -1)-12=2(5y -7).去括号,得9y -3-12=10y -14.移项,得9y -10y =3+12-14.合并同类项,得-y =1.系数化为1,得y =-1.(4)分母化为整数,得x 3-x +42=16.去分母,得2x -3(x +4)=1.去括号,得2x -3x -12=1.移项,得2x -3x =12+1.合并同类项,得-x =13.系数化为1,得x =-13.20.解:解x -43-8=-x +22,得x =10.因为方程x-43-8=-x+22的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,所以把x=10代入方程4x-(3a+1)=6x+2a-1,得4×10-(3a+1)=6×10+2a-1,解得a=-4.21.解:设需要准备生姜2x克,则需要准备红糖5x克、水75x克.依题意得2x+5x+75x=410,解得x=5.所以2x=10.答:需要准备生姜10克.22.解:设该车间安排x名工人生产大恐龙玩具,(80-x)名工人生产小恐龙玩具,才能使每天生产的大恐龙玩具和小恐龙玩具刚好配套.根据题意,得4×900x=1 200(80-x),解得x=20.则80-x=60.答:该车间安排20名工人生产大恐龙玩具,60名工人生产小恐龙玩具,才能使每天生产的大恐龙玩具和小恐龙玩具刚好配套.23.解:(1)设该超市每瓶A品牌矿泉水的标价为x元.依题意得0.8x=(1+20%)×1,解得x=1.5.答:该超市每瓶A品牌矿泉水的标价为1.5元.(2)3601.5×0.8=300(瓶).答:该超市今天销售了300瓶A品牌矿泉水.24.解:(1)设乙队需要x h才可以追上甲队.根据题意,得4×1+4x=6x,解得x=2.答:乙队需要2 h才可以追上甲队.(2)①当乙队未出发时,设甲队出发m h,两队间隔的路程为2 km.根据题意,得4m=2,解得m=0.5.②乙队追上甲队前,设甲队出发y h,两队间隔的路程为2 km.根据题意,得4y-6(y-1)=2,解得y=2.③乙队追上甲队后,设甲队出发z h,两队间隔的路程为2 km.根据题意,得6(z-1)-4z=2,解得z=4.综上所述,两队间隔的路程为2 km时,甲队和乙队徒步的路程都没有超过24 km.答:甲队出发0.5 h,2 h或4 h,两队间隔的路程为2 km.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级上册数学第五章测试题附答案(时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.在下列方程:x +y =1,1y +y =2,y -13=y ,12x =0中,是一元一次方程的有( B )A .1个B .2个C .3个D .4个2.已知等式ax =ay, 下列变形不正确的是( A ) A .x =y B .ax +2=ay +2C .5ax =5ayD .6-ax =6-ay 3.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本是( B )A .120 元B .125 元C .135 元D .140 元4.若关于x 的方程x -46-kx -13=13有解,则有( B )A .k =12B .k ≠12C .k =13D .k ≠135.一套仪器由两个A 部件和三个B 部件构成,用1 立方米钢材可做40个A 部件或240 个B 部件.现要用5 立方米钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,才能恰好配成这种仪器?若设应用x 立方米钢材做A 部件,则可列方程为( B )A .2×40x =3×240(5-x)B .3×40x =2×240(5-x)C.40(5-x )3= 240x 2D.40(5-x )2=240x36.A, B 两地相距 450 km, 甲、乙两车分别从A, B 两地同时出发,同向而行,甲车在后,乙车在前.已知甲车速度为120 km/h, 乙车速度为80 km/h, 经过t h 两车相距50 km, 则t 的值是( C )A .2或2.5B .2或0C .10或12.5D .2或12.5二、填空题(本大题共6小题,每小题3分,共18分)7.已知代数式9a +20与4a -10的差等于5,则a 的值为 -5 .8.若关于x 的方程3x +2a =13和3x -6=5的解互为倒数,则a 的值为6711.9.古代名著《算学启蒙》中有一题:良马日行二百四十里.弩马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240 里,跑得慢的马每天走150 里.慢马先走12 天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意,可列方程为 240x =150x +12×150 .10.定义运算“&”:a & b =2a +b, 则满足x & (x -6)=0的x 的值为 2 .11.有一系列方程:第1个方程是x +x 2=3,解为x =2;第2个方程是x 2+x3=5,解为x=6;第3个方程是x 3+x 4=7,解为x =12;…,根据规律第10个方程是 x 10+x11=21 ,其解为 x =110 .12.按下面的程序计算,若开始输入的x 值为正整数,最后输出的结果为556, 则开始输入的x 的值为 22或111 .选择、填空题答题卡一、选择题(每小题3分,共18分)题号 1 2 3 4 5 6 得分 答案BABBBC二、填空题(每小题3分,共18分) 得分:______ 7. -5 8.67119. 240x =150x +12×150 10. 2 11.x 10+x11=21 x =110 12. 22或111三、(本大题共5小题,每小题6分,共30分) 13.解下列方程: (1)3x +2=5x -7; 解:3x -5x =-7-2, -2x =-9,x =92. (2)x +24-2x -36=1.解:3(x +2)-2(2x -3)=12, 3x +6-4x +6=12, -x =12-12, x =0.14.已知y 1=6-x ,y 2=2+7x. (1)若y 1=2y 2,求x 的值;(2)当x 取何值时,y 1比y 2小-3? (3)当x 取何值时,y 1与y 2的差为0? 解:(1)由题意,得6-x =2(2+7x), 化简得-15x =-2,得x =215. (2)由题意,得6-x =2+7x -(-3),化简得-8x =-1,得x =18.(3)由题意,得(6-x)-(2+7x)=0, 化简得-8x =-4,得x =12.15.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.(分式的基本性质)去分母,得3(3x +5)=2(2x -1).(等式的性质2)去括号,得9x +15=4x -2.(去括号法则或乘法分配律) (移项),得9x -4x =-15-2.(等式的性质1) 合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2)16.用两根等长的铁丝,分别绕成一个正方形和一个圆.已知正方形的边长比圆的半径长2(π-2)米,求这两根等长的铁丝的长度,并通过计算说明哪个的面积大?解:设圆的半径为r ,则2π r =4(r +2π-4),解得r =4. 则圆的面积为π·42=16π,正方形的面积为4π2,16π>4π·π=4π2, 所以圆的面积较大.铁丝的长度为2π×4=8π(米).17.(宜春期末)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8 元,还盈余3 元;每人出7 元,则还差4 元,问共有多少人?这个物品的价格是多少?请解答上述问题.解:设共有x 人,根据题意,得 8x -3=7x +4,解得x =7,所以物品价格为8×7-3=53(元). 答:共有7人,物品的价格为53元.四、(本大题共3小题,每小题8分,共24分)18.已知(a +b)y 2-y 13a +2+5=0是关于y 的一元一次方程.(1)求a ,b 的值;(2)若x =a 是方程x +26-x -12+3=x -x -m3的解,求|a -b|-|b -m|的值.解:(1)由已知,得a +b =0,13a +2=1,解得a =-3,b =3.(2)由(1)知,x =-3是方程的解,代入,得-3+26--3-12+3=-3--3-m3, 解得m =412.所以|a -b|-|b -m|=|-3-3|-⎪⎪⎪⎪3-412 =6-352=-232.19.(新余期末)若有a ,b 两个数,满足关系式a +b =ab -1,则称a ,b 为“共生数对”,记作(a ,b).例如:当2,3满足2+3=2×3-1时,则(2,3)是“共生数对”. (1)若(x ,-3)是“共生数对”,求x 的值;(2)若(m ,n)是“共生数对”,判断(n ,m)是否也是“共生数对”,请通过计算说明;(3)请再写出两个不同的“共生数对”. 解:(1)因为(x ,-3)是“共生数对”, 所以x -3=-3x -1,解得x =12.(2)(n ,m)也是“共生数对”.说明:因为(m ,n)是“共生数对”, 所以m +n =mn -1,所以n +m =m +n =mn -1=nm -1, 所以(n ,m)也是“共生数对”. (3)由a +b =ab -1,得b =a +1a -1,当a =3时,b =2; 当a =-1时,b =0.所以(3,2)和(-1,0)是“共生数对”.20.定义新运算符号“※”的运算过程为a ※b =12a -13b ,试解方程2※(2※x)=1※x.解:根据新运算符号“※”的运算过程,有 2※x =12×2-13x =1-13x ,1※x =12×1-13x =12-13x ,2※(2※x)=12×2-13(2※x)=1-13⎝⎛⎭⎫1-13x =1-13+19x =23+19x , 故23+19x =12-13x.解得x =-38.五、(本大题共2小题,每小题9分,共18分)21.甲、乙两人在300米环形跑道上练习长跑,甲的速度是6米/秒,乙的速度是7米/秒.(1)如果甲、乙两人同地背向跑,乙先跑2秒,再经过多少秒两人相遇? (2)如果甲、乙两人同时同地同向跑,乙跑几圈后能首次追上甲?(3)如果甲、乙两人同时同向跑,乙在甲前面6米,经过多少秒后两人第二次相遇? 解:(1)设再经过x 秒甲、乙两人相遇,则 7×2+7x +6x =300,解得x =22.所以经过22秒甲、乙两人相遇. (2)设经过y 秒后乙能追上甲,则 7y -6y =300,解得y =300. 因为乙跑一圈需3007秒,所以乙跑了300÷3007=7(圈).所以乙跑7圈后首次追上甲. (3)设经过t 秒后两人第二次相遇,依题意得7t =6t +(300×2-6),解得t =594.所以经过594秒后两人第二次相遇.22.(宜春期末)为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92 人(其中七年级的人数多于八年级的人数,且七年级的人数不足90 人)准备统一购买服装参加比赛.下面是某服装厂给出的服装的价格表:(1)加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10 名同学被抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.解:(1)设七年级有x 人,则八年级有(92-x) 人. 根据题意,得50x +60(92-x)=5 000,解得x =52.八年级人数为92-52=40(人).答:七年级有52 人,八年级有40 人参加合唱比赛. (2)七年级实际参加比赛的人数为 52-10=42(人),两个年级联合购买费用为 50×(40+42)=4 100 (元),而此时比各自购买节约了(42×60+40×60)-4 100=820(元);若两个年级联合购买91 套只需 40×91=3 640(元),此时又比联合购买82 套节约了 4 100-3 640=460(元).因此,最省钱的购买方案是两校联合购买91 套服装, 即比实际人数多买91-(40+42)=9(套). 六、(本大题共12分)23.(抚州期末)阅读理解:【探究与发现】如图①,在数轴上点E 表示的数是-8,点F 表示的数是4,求线段EF 的中点M 所表示的数.对于求中点表示的数的问题,只要用点E 所表示的数-8,加上点F 所表示的数4.得到的结果再除以2,就可以得到中点M 所表示的数:即M 点表示的数为-8+42=-2.①【理解与应用】把一条数轴在数m 处对折,使表示-20和2 020两数的点恰好互相重合,则m =______. 【拓展与延伸】如图②,已知数轴上有A ,B ,C 三点,点A 表示的数是-6,点B 表示的数是8,AC =18.(1)若点A 以每秒3个单位的速度向右运动,点C 同时以每秒1个单位的速度向左运动,设运动时间为t 秒.①点A 运动t 秒后,它在数轴上表示的数表示为______(用含t 的代数式表示); ②当点B 为线段AC 的中点时,求t 的值;(2)若(1)中点A ,点C 的运动速度、运动方向不变,点P 从原点以每秒2个单位的速度向右运动,假设A ,C ,P 三点同时运动,求多长时间后点P 到点A ,C 的距离相等?解:(1)1 000 ①-6+3t ②由题意得(-6+3t )+(12-t )2=8,解得t =5.(2)当P 为AC 中点时,PA =PC , (-6+3t )+(12-t )2=2t ,t =3.当A ,C 重合时,PA =PC ,①3t +t =18,t =4.5, 或②(-6+3t)=(12-t),t =4.5.所以经过3 秒或4.5 秒后,点P 到点A ,C 的距离相等.。

相关文档
最新文档