FIFO页面置换算法

合集下载

【算法】页面置换算法FIFO、LRU和LFU的概述以及实现方式

【算法】页面置换算法FIFO、LRU和LFU的概述以及实现方式

【算法】页⾯置换算法FIFO、LRU和LFU的概述以及实现⽅式【算法】页⾯置换算法FIFO、LRU和LFU的概述以及实现⽅式页⾯置换算法,我们最常⽤的页⾯置换算法包括FIFO先来先服务,LRU最近最久未被使⽤,LFU最近最少被使⽤以及我们的时钟置换算法。

⼀、FIFO算法——先来先服务1、简述FIFO算法FIFO算法是我们⽐较简单的置换算法,就是先来先服务或者说是先进先出。

也就是说在进⾏页⾯置换的时候,最先来的那个会被最先置换出去。

先进⼊的指令先完成并引退,跟着才执⾏第⼆条指令。

2、FIFO算法的简单实现FIFO算法的简单实现:可以通过维护⼀个链表结构去存储当前调⼊的页⾯;将最先进⼊的页⾯维护在链表的最前,最后进⼊的页⾯维护在链表的最后;这样,当发⽣缺页中断时,需要进⾏置换的时候,淘汰表头的页⾯并将新调⼊的页⾯加到链表的尾部;当然除了链表以外我们还可以采⽤数组或者队列等来进⾏实现。

3、FIFO算法的特点(1)FIFO算法实现简单,易于理解易于编程。

FIFO算法实现简单,⽆须硬件⽀持,只需要⽤循环数组管理物理块即可。

(2)FIFO算法可能会出现Belady现象。

也就是在FIFO算法中,如果未分配够⼀个进程所要求的页⾯,有时就会出现分配的页⾯数增多,却也率反⽽增加Belady现象。

(3)FIFO算法可能会置换调重要的页⾯,其效率不⾼。

(4)在FIFO算法可能中会导致多次的页⾯置换。

当页⾯置换的时间⼤于所要操作的时间的时候,这时候其效率就会很低。

当其不停的进⾏页⾯置换的时候会出现⼤量的系统抖动现象。

⼆、LRU算法——最近最久未被使⽤1、简述LRU算法LRU算法是最近最久未被使⽤的⼀种置换算法。

也就是说LRU是向前查看。

在进⾏页⾯置换的时候,查找到当前最近最久未被使⽤的那个页⾯,将其剔除在内存中,并将新来的页⾯加载进来。

2、LRU算法的实现LRU的实现就相对于FIFO的实现复杂⼀点。

我们可以采⽤哈希映射和链表相结合。

操作系统页面置换算法(opt,lru,fifo,clock)实现

操作系统页面置换算法(opt,lru,fifo,clock)实现

操作系统页⾯置换算法(opt,lru,fifo,clock )实现选择调出页⾯的算法就称为页⾯置换算法。

好的页⾯置换算法应有较低的页⾯更换频率,也就是说,应将以后不会再访问或者以后较长时间内不会再访问的页⾯先调出。

常见的置换算法有以下四种(以下来⾃操作系统课本)。

1. 最佳置换算法(OPT)最佳(Optimal, OPT)置换算法所选择的被淘汰页⾯将是以后永不使⽤的,或者是在最长时间内不再被访问的页⾯,这样可以保证获得最低的缺页率。

但由于⼈们⽬前⽆法预知进程在内存下的若千页⾯中哪个是未来最长时间内不再被访问的,因⽽该算法⽆法实现。

最佳置换算法可以⽤来评价其他算法。

假定系统为某进程分配了三个物理块,并考虑有以下页⾯号引⽤串: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1进程运⾏时,先将7, 0, 1三个页⾯依次装⼊内存。

进程要访问页⾯2时,产⽣缺页中断,根据最佳置换算法,选择第18次访问才需调⼊的页⾯7予以淘汰。

然后,访问页⾯0时,因为已在内存中所以不必产⽣缺页中断。

访问页⾯3时⼜会根据最佳置换算法将页⾯1淘汰……依此类推,如图3-26所⽰。

从图中可以看出⾤⽤最佳置换算法时的情况。

可以看到,发⽣缺页中断的次数为9,页⾯置换的次数为6。

图3-26 利⽤最佳置换算法时的置换图2. 先进先出(FIFO)页⾯置换算法优先淘汰最早进⼊内存的页⾯,亦即在内存中驻留时间最久的页⾯。

该算法实现简单,只需把调⼊内存的页⾯根据先后次序链接成队列,设置⼀个指针总指向最早的页⾯。

但该算法与进程实际运⾏时的规律不适应,因为在进程中,有的页⾯经常被访问。

图3-27 利⽤FIFO 置换算法时的置换图这⾥仍⽤上⾯的实例,⾤⽤FIFO 算法进⾏页⾯置换。

进程访问页⾯2时,把最早进⼊内存的页⾯7换出。

然后访问页⾯3时,再把2, 0, 1中最先进⼊内存的页换出。

页式虚拟存储管理FIFO、LRU和OPT页面置换算法

页式虚拟存储管理FIFO、LRU和OPT页面置换算法

目录1 需求分析 (2)1.1 目的和要求 (2)1.2 研究内容 (2)2 概要设计 (2)2.1 FIFO算法 (3)2.2 LRU算法 (3)2.3 OPT算法 (3)2.4 输入新的页面引用串 (3)3 详细设计 (4)3.1 FIFO(先进先出)页面置换算法: (4)3.2 LRU(最近最久未使用)置换算法: (4)3.3 OPT(最优页)置换算法 (4)4 测试 (5)5 运行结果 (5)6 课程设计总结 (9)7 参考文献 (10)8 附录:源程序清单 (10)1 需求分析1.1 目的和要求在熟练掌握计算机虚拟存储技术的原理的基础上,利用一种程序设计语言模拟实现几种置换算法,一方面加深对原理的理解,另一方面提高学生通过编程根据已有原理解决实际问题的能力,为学生将来进行系统软件开发和针对实际问题提出高效的软件解决方案打下基础。

1.2 研究内容模拟实现页式虚拟存储管理的三种页面置换算法(FIFO(先进先出)、LRU (最近最久未使用)和OPT(最长时间不使用)),并通过比较性能得出结论。

前提:(1)页面分配采用固定分配局部置换。

(2)作业的页面走向和分得的物理块数预先指定。

可以从键盘输入也可以从文件读入。

(3)置换算法的置换过程输出可以在显示器上也可以存放在文件中,但必须清晰可读,便于检验。

2 概要设计本程序主要划分为4个功能模块,分别是应用FIFO算法、应用LRU算法、应用OPT算法和页面引用串的插入。

1.1各模块之间的结构图2.1 FIFO 算法该模块的主要功能是对相应页面引用串进行处理,输出经过FIFO 算法处理之后的结果。

2.2 LRU 算法该模块的主要功功能是对相应的页面引用串进行处理,输出经过LRU 算法处理之后的结果。

2.3 OPT 算法该模块的主要功功能是对相应的页面引用串进行处理,输出经过OPT 算法处理之后的结果。

2.4 输入新的页面引用串该模块的主要功能是用户自己输入新的页面引用串,系统默认的字符串是0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,用户可以自定义全新的20个数字页面引用串。

最佳页面置换算法

最佳页面置换算法

最佳页面置换算法(Optimal)(非常专业)评价一个算法的优劣,可通过在一个特定的存储访问序列(页面走向)上运行它,并计算缺页数量来实现。

1 先入先出法(FIFO)最简单的页面置换算法是先入先出(FIFO)法。

这种算法的实质是,总是选择在主存中停留时间最长(即最老)的一页置换,即先进入内存的页,先退出内存。

理由是:最早调入内存的页,其不再被使用的可能性比刚调入内存的可能性大。

建立一个FIFO队列,收容所有在内存中的页。

被置换页面总是在队列头上进行。

当一个页面被放入内存时,就把它插在队尾上。

这种算法只是在按线性顺序访问地址空间时才是理想的,否则效率不高。

因为那些常被访问的页,往往在主存中也停留得最久,结果它们因变“老”而不得不被置换出去。

FIFO的另一个缺点是,它有一种异常现象,即在增加存储块的情况下,反而使缺页中断率增加了。

当然,导致这种异常现象的页面走向实际上是很少见的。

现在来看下4块的情况:0 1 2 3 2 1 3 2 5 2 3 6 2 1 4 2【解答】刚开始内存并没有这个作业,所以发生缺页中断一次。

作业的0号页进入内存。

(1次缺页中断)而页1又不在内存,又发生缺页中断一次。

作业页1进入内存。

(2次缺页中断) 页2不在内存,发生缺页中断。

页2进入内存。

(3次缺页中断)页3不在内存,发生缺页中断。

页3进入内存。

(4次缺页中断)接下来调入页2,页1,页3,页2。

由于都在内存中,并不发生缺页中断。

页5不在内存,发生缺页中断。

页5进入内存,页5置换页0。

(5次缺页中断) 接下来调入页2,页3。

由于都在内存中,并不发生缺页中断。

页6不在内存,发生缺页中断。

页6进入内存。

页6置换页1。

(6次缺页中断) 页2在内存,不发生缺页中断。

页1不在内存(在发生第6次缺页中断时被置换了),发生缺页中断。

页1进入内存,页2被置换。

(7次缺页中断)页4置换页3,页4进入内存。

(8次缺页中断)现在调入页2,但页2在发生第7次缺页中断时被置换掉了。

页面置换算法

页面置换算法

页面置换算法2008-03-01 22:30评价一个算法的优劣,可通过在一个特定的存储访问序列(页面走向)上运行它,并计算缺页数量来实现。

1 先入先出法(FIFO)最简单的页面置换算法是先入先出(FIFO)法。

这种算法的实质是,总是选择在主存中停留时间最长(即最老)的一页置换,即先进入内存的页,先退出内存。

理由是:最早调入内存的页,其不再被使用的可能性比刚调入内存的可能性大。

建立一个FIFO队列,收容所有在内存中的页。

被置换页面总是在队列头上进行。

当一个页面被放入内存时,就把它插在队尾上。

这种算法只是在按线性顺序访问地址空间时才是理想的,否则效率不高。

因为那些常被访问的页,往往在主存中也停留得最久,结果它们因变“老”而不得不被置换出去。

FIFO的另一个缺点是,它有一种异常现象,即在增加存储块的情况下,反而使缺页中断率增加了。

当然,导致这种异常现象的页面走向实际上是很少见的。

2 最优置换算法(OPT)最优置换(Optimal Replacement)是在理论上提出的一种算法。

其实质是:当调入新的一页而必须预先置换某个老页时,所选择的老页应是将来不再被使用,或者是在最远的将来才被访问。

采用这种页面置换算法,保证有最少的缺页率。

但是最优页面置换算法的实现是困难的,因为它需要人们预先就知道一个进程整个运行过程中页面走向的全部情况。

不过,这个算法可用来衡量(如通过模拟实验分析或理论分析)其他算法的优劣。

3 最久未使用算法(LRU)FIFO算法和OPT算法之间的主要差别是,FIFO算法利用页面进入内存后的时间长短作为置换依据,而OPT算法的依据是将来使用页面的时间。

如果以最近的过去作为不久将来的近似,那么就可以把过去最长一段时间里不曾被使用的页面置换掉。

它的实质是,当需要置换一页时,选择在最近一段时间里最久没有使用过的页面予以置换。

这种算法就称为最久未使用算法(Least Recently Used,LRU)。

fifo 页面置换算法

fifo 页面置换算法

fifo 页面置换算法页面置换算法是操作系统中一种重要的内存管理技术,用于决定当内存中某个时间点所包含的页面(即帧)数量大于物理内存容量时,应该淘汰哪个页面,以便为新的页面腾出空间。

FIFO (FirstInFirstOut,先进先出)页面置换算法是一种常见的算法,其基本思想是优先淘汰最先进入内存的页面。

一、算法原理FIFO页面置换算法的基本原理是,当需要为新的页面分配内存时,选择最早进入内存的页面进行淘汰。

这种算法的优点是实现简单,缺点是对频繁调用的页面影响较大,因为这些页面最先进入内存,所以被淘汰的可能性也较大。

但是它能够确保被淘汰的页面是最早进入内存的页面,因此它能够提供一定的公平性。

二、算法步骤FIFO页面置换算法的实施步骤如下:1.记录每个页面进入和离开内存的时间;2.当需要为新的页面分配内存时,比较该页面与其最先进入内存的时间;3.优先淘汰最先进入内存的页面;4.将新页面放入空出的帧中。

三、算法优缺点1.优点:a.实现简单,易于实现;b.在许多场景下能提供较好的性能;c.有利于保持页面的有序性。

2.缺点:a.频繁调用的页面被淘汰的可能性较大,可能导致频繁的页面加载和卸载操作;b.对于某些应用场景可能不够高效,因为一些页面可能长时间在内存中占据空间,而不会被频繁使用。

因此需要对其进行优化,以便在减少页面的浪费和提高系统性能之间找到平衡。

四、应用场景FIFO页面置换算法适用于各种操作系统和应用程序,包括但不限于Web服务器、数据库系统、桌面环境等。

它尤其适用于那些对响应速度要求较高且对内存使用效率要求不高的场景。

例如,一些网页浏览、邮件阅读等应用场景,由于页面加载频率较高,FIFO算法可能会影响性能。

五、总结总的来说,FIFO页面置换算法是一种简单易行的内存管理技术,但在实际应用中需要根据具体场景进行优化。

在实际操作中,需要根据应用的特点和需求选择合适的页面置换算法,以提高系统的性能和稳定性。

页面置换算法(FIFO算法_LRU算法)

页面置换算法(FIFO算法_LRU算法)

实验四页面置换算法一、实验目的理解并掌握模拟分页式虚拟存储管理的缺页中断,以及选择页面调度算法处理缺页中断。

二、实验内容及要求选择一种或几种页面置换算法进行编程以实现该算法。

三、实验流程图四、实验程序1、FIFO算法#include"stdio.h"#define n 20#define m 4void main(){int ym[n],i,j,q,mem[m]={0},table[m][n];char flag,f[n];printf("请输入页面访问序列\n");for(i=0;i<n;i++)scanf("%d",&ym[i]);printf("\n");for(i=0;i<n;i++) //查页表,看是否缺页{q=0;while((ym[i]!=mem[q])&&(q!=m)) q++;if(q==m) flag='*'; //缺页,则置标志flag为‘*’else flag='';if(flag=='*'){for(j=m-1;j>0;j--) //淘汰最先调入的页面调入当前访问的mem[j]=mem[j-1];mem[0]=ym[i];}for(j=0;j<m;j++)table[j][i]=mem[j];f[i]=flag;}printf("输出结果为下表(0代表为空,*代表有缺页):\n");for(i=0;i<m;i++){for(j=0;j<n;j++)printf("%3d",table[i][j]);printf("\n");}for(i=0;i<n;i++)printf("%3c",f[i]);}2、LRU算法#include"stdio.h"#define n 20#define m 5void main(){int ym[n],i,j,q,mem[m]={0},table[m][n];char flag,f[n];printf("请输入页面访问序列\n");for(i=0;i<n;i++)scanf("%d",&ym[i]);printf("\n");for(i=0;i<n;i++) //查页表,看是否缺页{q=0;while((ym[i]!=mem[q])&&(q!=m)) q++;if(q==m) flag='*'; //缺页,则置标志flag为‘*’else flag=' ';for(j=q;j>0;j--)mem[j]=mem[j-1];mem[0]=ym[i];for(j=0;j<m;j++)table[j][i]=mem[j];f[i]=flag;}printf("输出结果为下表(0代表为空,*代表有缺页):\n");for(i=0;i<m;i++){for(j=0;j<n;j++)printf("%3d",table[i][j]);printf("\n");}for(i=0;i<n;i++)printf("%3c",f[i]);}五、实验结果1、FIFO(四内存块)2、LRU(五内存块)。

说明fifo置换算法的置换过程。

说明fifo置换算法的置换过程。

说明fifo置换算法的置换过程。

1.引言1.1 概述FIFO(First In, First Out)置换算法是一种常用的页面置换算法,也被称为先进先出置换算法。

该算法基于一个简单的原则:最早进入内存的页面将是最早被替换出去的页面。

在现代操作系统中,内存管理是一个关键的任务,因为内存资源有限且需求不断增长。

为了实现有效的内存利用和保证系统的正常运行,当内存中的页框(页面的固定大小单元)不足时,操作系统需要选择某些页面进行替换,以便为新的页面提供空间。

FIFO置换算法尽管简单,但其实现简单和直观的特点使其成为操作系统中最常用的页面置换算法之一。

它不需要复杂的数据结构支持,只需要使用一个先进先出的队列来记录页面的进入顺序即可。

简单来说,FIFO算法根据页面被访问的时间顺序进行替换。

当某个页面需要装入内存但没有可用的页框时,操作系统会选择最早进入内存的页面进行替换,以便为新页面腾出空间。

这样,最早进入内存的页面总是被替换出去,而最晚进入内存的页面则相对较新,有更高的机会被保留在内存中。

然而,FIFO算法也存在一些缺点。

最主要的问题是不考虑页面的访问频率和重要性,只关注页面进入内存的时间顺序。

这可能导致一些重要的页面被替换掉,从而影响系统的性能。

此外,FIFO算法也容易遭受局部性原理(Locality Principle)的冲击,在某些访问模式下,可能导致频繁的页面调度,增加了页面调度的开销。

尽管存在这些限制,FIFO置换算法仍然是一种重要且常用的页面置换算法。

了解其置换过程对于理解操作系统的内存管理机制以及其他高级页面置换算法的实现原理都是非常有益的。

在接下来的正文中,我们将详细描述FIFO置换算法的执行过程及其与其他算法之间的比较。

1.2 文章结构本文按照以下结构进行展开讨论FIFO(First-In-First-Out)置换算法的置换过程:1. 算法介绍:在这一部分,将对FIFO置换算法进行详细介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FIFO 页面置换算法
什么是页面置换算法?
在操作系统中,进程需要使用内存来进行运行。

但是内存并不是无限的,所以
操作系统需要管理内存的分配和释放。

当进程需要使用内存时,操作系统会将必要的数据和指令从硬盘上加载到内存中。

但是当内存被占满时,操作系统需要使用一种称为“页面置换算法”的技术来更好地管理内存。

页面置换算法的主要作用是在内
存占满的情况下将最少使用的页面(或者是内存块)替换出去,以便其他进程可以使用内存。

页面置换算法是现代操作系统中非常重要的一部分。

什么是FIFO页面置换算法?
FIFO是一种古老的页面置换算法,也是最简单的一种页面置换算法之一。

FIFO的全称是First In First Out,中文名叫做先进先出算法。

FIFO算法的核心思
想是,先进入内存的页面(或内存块)是最先被替换出去的。

这就好比是一个排队等车的现象,先来的人先上车,后来的人只能等待。

FIFO页面置换算法的工作原理
数据结构
FIFO算法依赖于一个叫做FIFO队列的数据结构。

FIFO队列是一种先进先出的队列。

当一个页面进入内存时,它就被加入到FIFO队列的队尾。

当需要替换页时,页表中列出的第一个页面就是队列的第一个(最早加入)页面,这个页面就是要替换出去的页面。

工作流程
FIFO页面置换算法的工作流程可以分为以下几个步骤:
1.算法初始化。

在FIFO算法使用前,需要初始化一个FIFO队列来记
录进入内存的各个页面的顺序。

2.操作系统请求内存。

当操作系统需要加载新的页面或内存块时,检查
内存是否已经满了。

如果内存已满,则需要使用页面置换算法来选择要替换掉的页面。

3.根据FIFO队列来选择将要替换的页面。

从FIFO队列中选择最早加
入的页面来替换。

这个页面就是队列中的第一个元素。

4.更新FIFO队列。

因为要替换掉一个页面,所以我们需要更新FIFO
队列。

将新进入内存的页面加入到FIFO队列的队尾。

5.将替换出的页面写回到硬盘上。

在进行页面置换之前,需要将要替换
出去的页面的数据写回到硬盘上。

这个过程称为页面淘汰。

6.将新进入内存的页面载入到内存上。

这是FIFO页面置换算法中的最
后一步。

将我们的新页面加载到内存上。

FIFO页面置换算法优缺点
优点
FIFO页面置换算法非常简单,是实现起来非常容易的一种算法。

而且在处理
缓存高命中率的应用程序时比较有效。

因此,FIFO算法在某些系统中广泛使用。

缺点
FIFO页面置换算法的缺点也很明显。

FIFO算法只根据页面的进入顺序来进行
页面替换,没有考虑到页面在内存中的重要性或者使用频率。

这意味着如果一个页面进入内存后,长时间都没有被使用,但是因为有其他页面的进入和退出,这个页面却一直在内存中占据着位置。

这显然是一种浪费资源。

FIFO页面置换算法是一个非常简单的算法,容易实现。

但是由于其不考虑页
面的重要性和使用频率,在一些场景下表现会比较差。

当内存中页面的数量较多时,FIFO算法会影响系统的性能表现。

因此,在实际应用中,我们需要根据自己的特
定需求和场景来选择页面置换算法。

相关文档
最新文档