操作系统实验三 时间片轮转法完成进程调度
操作系统实验报告进程调度

操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。
其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。
实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。
实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。
在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。
实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。
在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。
2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。
在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。
3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。
在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。
实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。
在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。
因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。
结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。
同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。
时间片轮转调度算法实验报告

xx大学操作系统实验报告姓名:学号:班级:实验日期:实验名称:时间片轮转RR进程调度算法实验二时间片轮转RR进程调度算法1.实验目的:通过这次实验,理解时间片轮转RR进程调度算法的运行原理,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。
2.需求分析(1) 输入的形式和输入值的范围;输入:进程个数n 范围:0<n<=100时间片q依次输入(进程名进程到达时间进程服务时间)所有进程平均带权周转时间:(3) 程序所能达到的功能1)进程个数n,输入时间片大小q,每个进程的到达时间T1, … ,T n和服务时间S1, … ,S n。
2)要求时间片轮转法RR调度进程运行,计算每个进程的周转时间和带权周转时间,并且计算所有进程的平均周转时间和带权平均周转时间;3)输出:模拟整个调度过程,输出每个时刻的进程运行状态;4)输出:输出计算出来的每个进程的周转时间、带权周转时间、所有进程的平均周转时间以及带权平均周转时间。
(4) 测试数据,包括正确的输入及其输出结果和含有错误的输入及其输出结果。
正确输入:错误输入:2、概要设计所有抽象数据类型的定义:static int MaxNum=100int ArrivalTime //到达时间int ServiceTime //服务时间int FinishedTime //结束时间int WholeTime //周转时间double WeightWholeTime //带权周转时间double AverageWT //平均周转时间double AverageWWT //平均带权周转时间主程序的流程:●变量初始化●接受用户输入的n,q ,T1…..Tn,S1….Sn;●进行进程调度,计算进程的开始运行时间、结束时间、执行顺序、周转时间、带权周转时间;●计算所有进程的平均周转时间、平均带权周转时间;●按照格式输出调度结果。
各程序模块之间的层次(调用)关系Main函数通过对Input函数进行调用,对函数的成员变量进行赋值,再通过RRAlgorithm函数求出题目要求的各个数据结果,最后通过display函数对结果进行格式输出。
操作系统--时间片轮转法进行CPU调度[1]
![操作系统--时间片轮转法进行CPU调度[1]](https://img.taocdn.com/s3/m/ade193f6d15abe23482f4d8a.png)
目录一、设计目的 (1)二、设计内容 (2)三、设计原理 (3)四、算法实现 (4)五、流程图 (5)六、源程序 (6)七、运行示例及结果分析 (11)八、心得体会 (13)九、参考资料 (14)时间片轮转法进行CPU调度一、设计目的进程调度是处理机管理的核心内容。
本设计要求用高级语言编写和调试一个简单的进程调度程序。
通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先权调度算法和时间片轮转调度算法的具体实施办法。
并通过课程设计,让我们更好的掌握操作系统的原理以及实现方法,加深对操作系统基础理论和重要算法的理解,加强我们自身的动手能力。
在多道程序或多任务系统中,系统同时处于就绪状态的进程有若干个,为了使系统中的各进程能有条不紊的进行,选择某种调度策略,以选择一进程占用处理机因此使用时间片轮转算法模拟单处理机调度。
系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。
时间片的大小从几MS到几百MS。
当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后再把处理机分配给就绪队列中的新的队首进程,同时也让他执行一个时间片。
这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。
换言之,系统能在给定时间内相应所有用户的请求。
四、算法实现每个程序用一个进程控制块PCB来代表。
PCB代表:进程名、链接指针、到达时间、估计运行时间和进程状态。
其中进程名既进程标识。
链接指针之处下一个到达进程的进程控制块地址,按照进程到达的顺序排队,统设置一个队头和队尾指针分别指向第一个和最后一个进程,新生成的进程放队尾。
设计者任意指定一个运行时间,进程创建时用户指定到达时间,调度时,总是选择到达时间最早的进程。
进程有就绪和完成状态,进程一创建就处于就绪状态,用R表示,一个程序运行结束时,就将其设置为完成状态,用C表示。
进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。
二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。
2. 实现三种调度算法:FCFS、RR和DP。
3. 创建一个进程队列,用于存储所有进程。
4. 实现调度函数,根据所选算法选择下一个执行的进程。
5. 模拟进程执行过程,打印进程执行状态和就绪队列。
四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。
时间片轮转法完成进程调度(操作系统实验报告)

时间片轮转法完成进程调度【实验目的】(1)加深对进程的理解(2)理解进程控制块的结构(3)理解进程运行的并发性(4)掌握时间片轮转法进程调度算法【实验内容】(1)建立进程控制块(2)设计三个链队列.分别表示运行队列、就绪队列和完成队列(3)用户输入进程标识符以及进程所需的时间.申请空间存放进程PCB信息。
(4)每一个时间片结束输出各进程的进程号.CPU时间(即已经占用的CPU时间).所需时间(即还需要的CPU时间).以及状态(即用W表示等待.R表示运行.F表示完成)【程序代码】#include "stdio.h"#include"stdlib.h"struct PCB{int pid; //进程标识符int rr; //已运行时间int time; //进程要求运行时间char sta; //进程的状态struct PCB *next; //链接指针};struct PCB pcb1,pcb2,pcb3,pcb4,pcb5,*tail,*head,*rp;init(){int i,time;pcb1.pid = 1;pcb2.pid = 2;pcb3.pid = 3;pcb4.pid = 4;pcb5.pid = 5;pcb1.rr =pcb2.rr =pcb3.rr =pcb4.rr =pcb5.rr = 0;pcb1.sta = pcb2.sta = pcb3.sta = pcb4.sta = pcb5.sta = 'w'; printf("请输入时间片p1需要运行的时间:");scanf("%d",&time);pcb1.time = time;printf("请输入时间片p2需要运行的时间:");scanf("%d",&time);pcb2.time = time;printf("请输入时间片p3需要运行的时间:");scanf("%d",&time);pcb3.time = time;printf("请输入时间片p4需要运行的时间:");scanf("%d",&time);pcb4.time = time;printf("请输入时间片p5需要运行的时间:");scanf("%d",&time);pcb5.time = time;pcb1.next=&pcb2;pcb2.next=&pcb3;pcb3.next=&pcb4;pcb4.next=&pcb5;pcb5.next=&pcb1;head = &pcb1;tail = &pcb5;}void printf1(){printf("+---------------|---------------|---------------|---------------+\n");printf("|\tpid\t|\trr\t|\ttime\t|\tSTA\t|\n");printf("|---------------|---------------|---------------|---------------|\n");}printf2(){printf("processes p%d running\n",head->pid);printf1();printf("|\t%d\t|\t%d\t|\t%d\t|\t%c\t|\n",head->pid,head->rr,head->time,head->sta);printf("|---------------|---------------|---------------|---------------|\n");rp=head;while(rp!=tail){rp=rp->next;printf("|\t%d\t|\t%d\t|\t%d\t|\t%c\t|\n",rp->pid,rp->rr,rp->time,rp->sta);printf("|---------------|---------------|---------------|---------------|\n");}}operation(){int flag=1;while (flag<=5){head->rr ++;if ((head->rr==head->time)||(head->time==0)){tail->sta='w';head->sta='f';printf2();head=head->next;tail->next=head;flag++;}else{tail->sta='w';head->sta='r';printf2();tail=head;head=head->next;}}}void main(){init(); //初始化printf("this is the begin state :\n"); printf2(); //显示初始状态operation(); //运行}【结果截图】。
进程调度算法实验报告

操作系统实验报告(二)实验题目:进程调度算法实验环境:C++实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较各种算法的性能优劣。
实验内容:编程实现如下算法:1.先来先服务算法;2.短进程优先算法;3.时间片轮转调度算法。
设计分析:程序流程图:1.先来先服务算法2.短进程优先算法3.时间片轮转调度算法实验代码:1.先来先服务算法#include <iostream.h>#define n 20typedef struct{int id; //进程名int atime; //进程到达时间int runtime; //进程运行时间}fcs;void main(){int amount,i,j,diao,huan;fcs f[n];cout<<"请输入进程个数:"<<endl;cin>>amount;for(i=0;i<amount;i++){cout<<"请输入进程名,进程到达时间,进程运行时间:"<<endl; cin>>f[i].id;cin>>f[i].atime;cin>>f[i].runtime;}for(i=0;i<amount;i++) //按进程到达时间的先后排序{ //如果两个进程同时到达,按在屏幕先输入的先运行for(j=0;j<amount-i-1;j++){ if(f[j].atime>f[j+1].atime){diao=f[j].atime;f[j].atime=f[j+1].atime;f[j+1].atime=diao;huan=f[j].id;f[j].id=f[j+1].id;f[j+1].id=huan;}}}for(i=0;i<amount;i++){cout<<"进程:"<<f[i].id<<"从"<<f[i].atime<<"开始"<<","<<"在"<<f[i].atime+f[i].runtime<<"之前结束。
操作系统实验(时间片轮转)

操作系统实验报告实验名称:时间片轮转调度班级:姓名:学号:实验目的:用高级语言编写和调试一个简单的时间片轮转调度程序,算法要求使用高优先权优先来进行进程调度。
实验内容:(1)用户输入进程名和优先级,并发执行的进程调度程序,每一个进程用一个进程控制块PCB 来代表。
PCB中应包含下列信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间及进程的状态等,各进程的优先数以及进程运行需要地时间片数,由用户输入。
(2)根据先来先服务原则,执行进程,每执行一次,需要时间减1,CPU时间片加1,在进程运行结束后,会显示进程的周转时间;(3)每个进程处于运行R、就绪W和完成F 三种状态之一,假定初始状态都为就绪状态W。
(4)系统能显示或打印各进程状态和参数的变化情况。
实验步骤:一、输入运行进程数目(测试数据为3);二、输入选择项(选择时间片轮转调度R);三、输入进程名称和服务时间;实验结果:小结:在这次试验中,主要掌握的是时间片轮转算法的执行过程,按照先来先服务原则,将进程排成一个队列,进程在所分配的时间片内运行的时候,修改自己的状态位,还有计数器加1操作,所需时间减1操作,时间片用完后,排在进程执行队列的尾部,处理机进行切换。
在进程运行结束后打印周转时间。
在最初实现算法的时候,没有添加计算周转时间的函数,后来通过在修改状态位的循环中添加计数器的累加语句,实现了在进程将状态位修改为“F”的时候系统输出周转时间。
源码:#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct node{char name[20]; /*进程的名字*/int prio; /*进程的优先级*/int round; /*分配CPU的时间片*/int cputime; /*CPU执行时间*/int needtime; /*进程执行所需要的时间*/char state; /*进程的状态,W--就绪态,R--执行态,F--完成态*/int count;/*记录执行的次数*/int count2; /*周转时间*/struct node *next; /*链表指针*/}PCB;PCB *ready=NULL,*run=NULL,*finish=NULL; /*定义三个队列,就绪队列,执行队列和完成队列*/int num;void GetFirst(); /*从就绪队列取得第一个节点*/void Output(); /*输出队列信息*/void InsertPrio(PCB *in); /*创建优先级队列,规定优先数越小,优先级越高*/void InsertTime(PCB *in); /*时间片队列*/void InsertFinish(PCB *in); /*时间片队列*/void PrioCreate(); /*优先级输入函数*/void TimeCreate(); /*时间片输入函数*/void Priority(); /*按照优先级调度*/void RoundRun(); /*时间片轮转调度*/int main(void){char chose;printf("请输入要创建的进程数目:\n");scanf("%d",&num);getchar();printf("输入进程的调度方法:(P/R)\n");scanf("%c",&chose);switch(chose){case 'P':case 'p':PrioCreate();Priority();break;case 'R':case 'r':TimeCreate();RoundRun();break;default:break;}Output();return 0;}void GetFirst() /*取得第一个就绪队列节点*/{run = ready;if(ready!=NULL){run ->state = 'R';ready = ready ->next;run ->next = NULL;}}void Output() /*输出队列信息*/{PCB *p;p = ready;printf("进程名\t优先级\t轮数\tcpu时间\t需要时间\t进程状态\t计数器\t周转时间\n"); while(p!=NULL){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\t%d\n",p->name,p->prio,p->round,p->cputime,p-> needtime,p->state,p->count,p->count2);p = p->next;}p = finish;while(p!=NULL){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\t%d\n",p->name,p->prio,p->round,p->cputime,p-> needtime,p->state,p->count,p->count2);p = p->next;}p = run;while(p!=NULL){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needt ime,p->state,p->count,p->count2);p = p->next;}}void InsertPrio(PCB *in) /*创建优先级队列,规定优先数越小,优先级越低*/{PCB *fst,*nxt;fst = nxt = ready;if(ready == NULL) /*如果队列为空,则为第一个元素*/{in->next = ready;ready = in;}else /*查到合适的位置进行插入*/{if(in ->prio >= fst ->prio) /*比第一个还要大,则插入到队头*/{in->next = ready;ready = in;}else{while(fst->next != NULL) /*移动指针查找第一个别它小的元素的位置进行插入*/{nxt = fst;fst = fst->next;}if(fst ->next == NULL) /*已经搜索到队尾,则其优先级数最小,将其插入到队尾即可*/{in ->next = fst ->next;fst ->next = in;}else /*插入到队列中*/{nxt = in;in ->next = fst;}}}}void InsertTime(PCB *in) /*将进程插入到就绪队列尾部*/{PCB *fst;fst = ready;if(ready == NULL){in->next = ready;ready = in;}else{while(fst->next != NULL){fst = fst->next;}in ->next = fst ->next;fst ->next = in;}}void InsertFinish(PCB *in) /*将进程插入到完成队列尾部*/ {PCB *fst;fst = finish;if(finish == NULL){in->next = finish;finish = in;}else{while(fst->next != NULL){fst = fst->next;}in ->next = fst ->next;fst ->next = in;}}void PrioCreate() /*优先级调度输入函数*/{PCB *tmp;int i;printf("输入进程名字和进程所需时间:\n");for(i = 0;i < num; i++){if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL){perror("malloc");exit(1);}scanf("%s",tmp->name);getchar(); /*吸收回车符号*/scanf("%d",&(tmp->needtime));tmp ->cputime = 0;tmp ->state ='W';tmp ->prio = 50 - tmp->needtime; /*设置其优先级,需要的时间越多,优先级越低*/tmp ->round = 0;tmp ->count = 0;tmp ->count2 = 0;InsertPrio(tmp); /*按照优先级从高到低,插入到就绪队列*/}}void TimeCreate() /*时间片输入函数*/{PCB *tmp;int i;printf("输入进程名字和进程时间片所需时间:\n");for(i = 0;i < num; i++){if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL){perror("malloc");exit(1);}scanf("%s",tmp->name);getchar();scanf("%d",&(tmp->needtime));tmp ->cputime = 0;tmp ->state ='W';tmp ->prio = 0;tmp ->round = 1; /*假设每个进程所分配的时间片是1*/tmp ->count = 0;tmp ->count2 = 0;InsertTime(tmp);}}void Priority() /*按照优先级调度,每次执行一个时间片*/{int flag = 1;GetFirst();while(run != NULL) /*当就绪队列不为空时,则调度进程如执行队列执行*/{Output(); /*输出每次调度过程中各个节点的状态*/while(flag){int count3;run->prio -= 2; /*优先级减去2*/run->cputime++; /*CPU时间片加一*/run->needtime--;/*进程执行完成的剩余时间减一*/run ->count2++;count3 = run ->count2;if(run->needtime == 0)/*如果进程执行完毕,将进程状态置为F,将其插入到完成队列*/{run ->state = 'F';run->count++; /*进程执行的次数加一*/run ->count2=count3;InsertFinish(run);flag = 0;}else /*将进程状态置为W,入就绪队列*/{run->state = 'W';run->count++; /*进程执行的次数加一*/run->count2++;InsertTime(run);flag = 0;}}flag = 1;GetFirst(); /*继续取就绪队列队头进程进入执行队列*/}}void RoundRun() /*时间片轮转调度算法*/{int flag = 1;GetFirst();while(run != NULL){Output();while(flag){int count3;run->count++;run->cputime++;run->needtime--;run->count2++;count3 = run ->count2;if(run->needtime == 0) /*进程执行完毕*/{run ->state = 'F';run ->count2++;run ->count2=count3;// printf("进程运行结束,shijian %d\n",&count2);InsertFinish(run);flag = 0;}else if(run->count == run->round)/*时间片用完*/{run->state = 'W';run ->count++;run ->count2++;//run->count++;// run->round++;/*计数器清零,为下次做准备*/InsertTime(run);flag = 0;}}flag = 1;GetFirst();}}。
时间片轮转进程调度实验报告

时间片轮转进程调度实验报告实验目的通过实验,掌握时间片轮转调度算法的原理和实现方法,了解进程调度的过程,掌握进程调度的基本要素和调度过程,并能够通过编程实现时间片轮转调度算法。
实验要求1. 理解时间片轮转调度的基本原理;2. 编程实现时间片轮转进程调度算法;3. 运行程序,观察并分析进程的执行情况。
实验设备计算机一台,支持多进程操作系统。
实验原理时间片轮转调度算法是一种基于时间片的进程调度算法,主要应用于多道程序环境下。
它的基本原理是将CPU的运行时间划分为一段段的时间片,在每个时间片结束时,如果进程还未完成,就将该进程挂起,将CPU分配给下一个进程执行。
通过快速切换进程,使得每个进程都能平等地获得CPU时间。
实验过程1. 定义进程控制块(PCB)的数据结构,包括进程的ID、优先级、状态、已执行时间等;2. 定义进程队列的数据结构,使用循环队列实现,用于存储待调度的进程;3. 初始化进程队列,将待调度的进程加入队列中;4. 设置时间片大小;5. 开始执行进程调度算法:a) 从队列中取出一个进程,将其状态设置为运行状态;b) 执行该进程,计算其已执行时间;c) 如果已执行时间小于时间片大小,将进程重新加入队列;d) 如果已执行时间等于时间片大小,将进程的状态设置为挂起,并将其放回队列;6. 重复步骤5,直到队列中所有进程都执行完毕。
实验结果运行该程序,可以观察到进程按照时间片轮转调度算法依次执行,每个进程都能获得一段时间的CPU执行时间,保证了进程执行的公平性。
实验总结通过本次实验,我深入了解了时间片轮转调度算法的原理和实现方法。
时间片轮转调度算法采用了循环队列的数据结构,通过设置时间片大小来控制进程的执行时间。
该算法能够使进程获得公平的CPU时间,并且能够保证每个进程都能得到一定的执行时间。
这在多道程序环境下非常重要,可以避免某个进程长时间占用CPU资源而导致其他进程无法得到执行的情况。
掌握了时间片轮转调度算法的理论和实现方法后,我能够更好地理解进程调度的过程,并能够通过编程实现对进程的调度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三:时间片轮转法完成进程调度
一、实验目的:
(1)加深对进程的理解
(2)理解进程控制块的结构
(3)理解进程运行的并发性
(4)掌握时间片轮转法进程调度算法
实验内容:
(1)建立进程控制块
(2)设计三个链队列,分别表示运行队列、就绪队列和完成队列
(3)用户输入进程标识符以及进程所需的时间,申请空间存放进程PCB信息。
(4)每一个时间片结束输出各进程的进程号,CPU时间(即已经占用的CPU时间),所需时间(即还需要的CPU时间),以及状态(即用W表示等待,R表示运行,F表示完成)
实验程序:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct node
{
char name[10];/*进程标识符*/
int prio;/*进程优先数*/
int round;/*进程时间轮转时间片*/
int cputime; /*进程占用CPU时间*/
int needtime; /*进程到完成还要的时间*/
int count;/*计数器*/
char state; /*进程的状态*/
struct node *next; /*链指针*/
}PCB;
PCB *finish,*ready,*tail,*run; //队列指针
int N,t; //进程数,时间片的大小
void firstin()
{
run=ready;//就绪队列头指针赋值给运行头指针
run->state='R'; //进程状态变为运行态
ready=ready->next; //就绪队列头指针后移到下一进程
}
void prt1(char a)//输出标题函数
{
if(toupper(a)=='P')//优先级法
printf("进程名占用CPU时间到完成还要的时间轮转时间片状态\n");} void prt2(char a,PCB *q)//进程PCB输出
{
if(toupper(a)=='P')//优先级法的输出
printf("%4s %8d %12d %14d %8c\n",q->name,q->cputime,q->needtime,q->roun d,q->state);
}
void prt(char algo)//输出函数
二、
三、
{
PCB *p;
prt1(algo);//输出标题
if(run!=NULL)//如果运行指针不空
prt2(algo,run);//输出当前正在运行的PCB
p=ready;//输出就绪队列PCB
while(p!=NULL)
{
prt2(algo,p);
p=p->next;
}
p=finish;//输出完成队列的PCB
while(p!=NULL)
{
prt2(algo,p);
p=p->next;
}
getchar(); //按住任意键继续
}
void insert(PCB *q)//时间片轮转的插入算法{
PCB *p1,*s,*r;
s=q;//待插入的PCB指针
p1=ready;//就绪队列头指针
r=p1;//*r做pl的前驱指针
while(p1!=NULL)
if(p1->round<=s->round)
{
r=p1;
p1=p1->next;
}
if(r!=p1)
{
r->next=s;
s->next=p1;
}
else
{
s->next=p1;//否则插入在就绪队列的头
ready=s;
}
}
void create(char alg)//时间片轮转法创建链表进程PCB
{
PCB *p;
int i,time;
char na[10];
ready=NULL;
finish=NULL;
run=NULL;
printf("输入进程名及其需要运行的时间(中间以空格隔开):\n"); for(i=1;i<=N;i++)
{
p=new PCB;
scanf("%s %d",&na,&time);
strcpy(p->name,na);
p->cputime=0;
p->needtime=time;
p->state='W';//进程的状态
p->round=0;
if(ready!=NULL)
insert(p);
else
{
p->next=ready;
ready=p;
}
}
printf("*************时间片轮转法进程调度过程*************\n"); prt(alg);
run=ready;
ready=ready->next;
run->state='R';
}
void timeslicecycle(char alg)//时间片轮转法
{
while(run!=NULL)
{
run->cputime=run->cputime+t;//处理时间加t
run->needtime=run->needtime-t;//完成需要时间减t
run->round=run->round+t;//运行完将其变为完成态,插入完成队列if(run->needtime<=0)//当进程完成时
{
run->next=finish;
finish=run;
run->state='F';
run=NULL;
if(ready!=NULL)//就绪队列不空,将第一个进程投入进行
firstin();
}
else
{
run->state='W';//将进程插入到就绪队列中等待轮转
insert(run);//将就绪队列的第一个进程投入运行
firstin();
}
prt(alg);
}
}
void main()//主函数
{
char algo='P';//算法标记
printf("输入进程的个数:");
scanf("%d",&N);//输入进程数
printf("定义时间片大小:");
scanf("%d",&t);//输入时间片大小
create(algo);//创建进程
timeslicecycle(algo);//时间片轮转法调度
}//main()
四、实验结果:
五、实验小结:
时间片轮转调度是一种最古老,最简单,最公平且使用最广的算法。
时间片轮转调度中关键的一点是时间片的长度的选取。
本实验可以自己设置时间片大小t,在试验过程中基本满足了实验要求。
通过本次实验,我更加了解了时间片轮转调度算法,通过翻看课本,对其的理解更加的深刻了,在以后的学习中,我会更加努力地学习操作系统的相关课程。
当然,实验中也遇到了问题,但都不是理论上的问题,而是编程的问题,根本原因还是编程基础不牢,以后会在编程方面加倍努力。