【高中数学】2018-2019学年度最新北师大版必修三习题:课下能力提升(八) Word版含答案

合集下载

【最新】2018-2019学年度高中数学北师大版必修三习题:课下能力提升(十五) -含答案

【最新】2018-2019学年度高中数学北师大版必修三习题:课下能力提升(十五) -含答案

一、选择题1.“某彩票的中奖概率为1100”意味着( ) A .买100张彩票就一定能中奖B .买100张彩票能中一次奖C .买100张彩票一次奖也不中D .购买彩票中奖的可能性为11002.抛掷一枚骰子两次,用随机模拟方法估计上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较( )A .第一次准确B .第二次准确C .两次的准确率相同D .无法比较3.下列结论正确的是( )A .事件A 发生的概率P (A )满足0<P (A )<1B .事件A 发生的概率P (A )=0.999,则事件A 是必然事件C .用某种药物对患有胃溃疡的500 名病人进行治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%D .某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖4.给出下列三个命题,其中正确命题的个数为( )①设有一批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面朝上,则硬币出现正面朝上的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.A .0B .1C .2D .35.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%,下列解释正确的是( )A .100个手术有99个手术成功,有1个手术失败B .这个手术一定成功C .99%的医生能做这个手术,另外1%的医生不能做这个手术D .这个手术成功的可能性是99%二、填空题6.一个口袋装有除颜色外其他均相同的白球、红球共100个,若摸出一个球为白球的概率为34,则估计这100个球内,有白球________个. 7.在200件产品中,有192件一级品,8件二级品,则下列事件:。

【最新】2018-2019学年度高中数学北师大版必修三习题:课下能力提升(十二) -含答案

【最新】2018-2019学年度高中数学北师大版必修三习题:课下能力提升(十二) -含答案
答案
1.解析:选C①是顺序结构,②是选择结构,③④是循环结构.
2.解析:选C程序执行情况为S=31-30=2,n=2;S=2+32-31=8,n=3;S=8+33-32=26,n=4≥4,跳出循环.故输出26.
3.解析:选C框图的功能为计算S=1·20·21·22的值,计算结果为8.
4.解析:选A依题意当i≤99时,S=1+2+…+99,当i=100时,S= .
一、选择题
1.下面的框图中是循环结构的是()
A.①②B.②③C.③④D.②④
2.(天津高考)阅读下边的程序框图,运行相应的程序,则输出S的值为()
A.8 B.18 C.26 D.80
3.(北京高考)执行如图所示的程序框图,输出的S值为()
A.2 B.4 C.8 D.16
4.图中所示的是一个算法的框图,则其表达式为()
A. B. C. D.
5.(天津高考)阅读如图所示的算法框图,运行相应的算法.若输入x的值为1,则输出S的值为()
A.64B.73 C.512 D.585
二、填空题
6.阅读如图所示的框图,若输入m=4,n=3,则输出a=________,i=________.
7.(江西高考)下图是某算法的程序框图,则程序运行后输出的结果是________.
5.解析:选B第1次循环,S=1,不满足判断框内的条件,x=2;第2次循环,S=9,不满足判断框内的条件,x=4;第3次循环,S=73,满足判断框内的条件,跳出循环,输出S=73.
6.解析:由算法框图可知,当a=m×i=4×i能被n=3整除时输出a和i并结束程序.显然,当i=3时,a可以被3整除,故i=3,此时a=4×3=12.
∴条件应为k≤8或k<9.
答案:k≤8或k<9

高中数学课下能力提升十六北师大版必修3

高中数学课下能力提升十六北师大版必修3

——教学资料参考参考范本——高中数学课下能力提升十六北师大版必修3______年______月______日____________________部门1.下面是古典概型的是( )A.任意抛掷两粒骰子,所得的点数之和作为基本事件B.为求任取一个正整数,该正整数平方值的个位数字是1的概率,将取出的正整数作为基本事件C.从甲地到乙地共有n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币至首次出现正面为止2.下列对古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件总数为n,随机事件A若包含k个基本事件,则P(A)=.A.②④ B.①③④ C.①④ D.③④3.在5张卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,则得到的五位数能被2或5整除的概率是( ) A.0.2 B.0.4 C.0.6 D.0.84.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A. B. C. D.155.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A. B. C. D.346.三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为________.7.(江苏高考)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.7.(江苏高考)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.8.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是________.三、解答题9.设b和c分别是先后抛掷一枚骰子得到的点数,求方程x2+bx +c=0有实根的概率.10.(山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.答案1. 解析:选C 对于A,所得点数之和为基本事件,个数虽有限但不是等可能发生的;对于B,D,基本事件的个数都是无限的;只有C是古典概型.2. 解析:选B ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.3. 解析:选C 一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除”这一事件中含有基本事件2,4,5,概率为=0.6.4. 解析:选 A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P==.5. 解析:选C 从4张卡片中随机抽取2张,对应的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故基本事件总数n=6.且每个基本事件发生的可能性相等.设事件A=“取出的2张卡片上的数字之和为奇数”,则A中所含的基本事件为:(1,2),(1,4),(2,3),(3,4),故m=4,综上可知所求事件的概率P(A)==.6. 解析:三张卡片的排列方法有EEB,EBE,BEE,共3种.且等可能出现,则恰好排成英文单词BEE的概率为.答案:137. 解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为.答案:138. 解析:所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8组.设“恰好出现1次正面向上”为事件A,则A包含(正,反,反),(反,正,反),(反,反,正),共3个基本事件,所以P(A)=.答案:389. 解:设事件A为“方程x2+bx+c=0有实根”,则A={(b,c)|b2-4c≥0,b,c=1,2,…,6}.而(b,c)共有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36组.其中,可使事件A成立的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共19组.故事件A的概率为P(A)=.10. 解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.(2)记F为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.。

2018-2019学年度最新北师大版必修三习题:课下能力提升(三) Word版含答案

2018-2019学年度最新北师大版必修三习题:课下能力提升(三) Word版含答案

一、选择题1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么( )A.①是系统抽样,②是简单随机抽样B.①是简单随机抽样,②是简单随机抽样C.①是简单随机抽样,②是系统抽样D.①是系统抽样,②是系统抽样2.(四川高考)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101 B.808 C.1 212 D.2 0123.(湖南高考)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.134.下列抽样中不是系统抽样的是( )A.从标有1~15号的15个球中,任选3个作为样本.将15个球按从小号到大号排序,随机选i0号作为起始号码,以后选i0+5,i0+10(超过15则从1再数起)号入样B.工厂生产的产品,在用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽取一件产品进行检验C.进行某一市场调查时,规定在商场门口随机抽取一个人进行询问调查,直到调查到事先规定的调查人数为止D.在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的听众留下来座谈5.某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人.为了了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样方法中,依次为简单随机抽样、系统抽样、分层抽样顺序的是( )方法1:将140人从1~140编号,然后制作出编号1~140的形状、大小相同的号签,并将号签放入同一箱子里均匀搅拌,然后从中依次抽取20个号签,编号与号签相同的20个人被选出;方法2:将140人分成20组,每组7人,并将每组7人按1~7编号,在第一组采用抽签法抽出k 号(1≤k ≤7),其余各组k 号也被抽出,20个人被选出;方法3:按20∶140=1∶7的比例,从教师中抽出13人,从教辅行政人员中抽出4人,从总务后勤人员中抽出3人.从各类人员中抽取所需人员时,均采用随机数法,可抽到20人.A .方法2,方法1,方法3B .方法2,方法3,方法1C .方法1,方法2,方法3D .方法3,方法1,方法2二、填空题6.(浙江高考)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.7.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为________.8.一个总体中有100个个体,随机编号为0、1、2、…、99,依编号顺序平均分成10个小组,组号依次为1、2、3、…、10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.三、解答题9.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.答 案1. 解析:选A 对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体数量少,样本容量也小,故②为简单随机抽样.2. 解析:选B 依题意得知,甲社区驾驶员的人数占总人数的1212+21+25+43=12101,因此有96N =12101,解得N =808. 3. 解析:选D 由分层抽样可得,360=n 260,解得n =13. 4. 解析:选C 分析各选项中抽样的特点,与系统抽样的概念、特点进行比较.A 、D 显然是系统抽样.B 项中,传送带的速度是恒定的,实际上是将某一段时间内生产的产品分成一组,且可以认为这些产品已经排好,又总在某一位置抽取样品,这正好符合系统抽样的概念.选项C 因事先不知道总体的个数,而且抽样时不能保证每个个体等可能入样,因此它不是系统抽样.5. 解析:选C 结合简单随机抽样、系统抽样、分层抽样的定义判断.6. 解析:由分层抽样得,此样本中男生人数为560×280560+420=160. 答案:1607. 解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8. 答案:88. 解析:第k 组的号码为(k -1)10,(k -1)10+1,…,(k -1)·10+9,当m =6、k =7时,第k 组抽取的号码m +k 的个位数字为3,所以(7-1)×10+3=63.答案:639. 解:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.。

「精品」高中数学课下能力提升十九北师大版必修3

「精品」高中数学课下能力提升十九北师大版必修3

课下能力提升19一、选择题1.在区间[0,3]上任取一点,则此点落在区间[2,3]上的概率是( ) A.13 B.12 C.23 D.342.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D .无法计算 3.有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,他应当选择的游戏盘为( )4.A 是圆上的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,则它的长度大于等于半径长度的概率为( )A.12B.23C.32D.145.在区间[0,1]内任取两个数,则这两个数的平方和也在[0,1]内的概率是( ) A.π4 B.π10 C.π20 D.π40二、填空题6.函数f (x )=x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f (x 0)≤0的概率是________. 7.圆上的任意两点间的距离大于圆的内接正三角形边长的概率是________.8.已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是________.三、解答题9.在△ABC 内任取一点P ,求△ABP 与△ABC 的面积之比大于23的概率.10.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待.求甲、乙两人能见面的概率.答 案1. 解析:选A 区间[2,3]长度为1,总区间[0,3]的长度为3,∴P =13.2. 解析:选B 由几何概型的公式知:S 阴影S 正方形=23,又:S 正方形=4,∴S 阴影=83. 3. 解析:选A A 游戏盘的中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为r2-πr2r2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,A 游戏盘的中奖概率最大.4. 解析:选B 如图,当取点落在B 、C 两点时,弦长等于半径;当取点落在劣弧上时,弦长小于半径;当取点落在优弧上时,弦长大于半径.所以弦长超过半径的概率P =360°-120°360°=23.5. 解析:选A 设在[0,1]内取出的数为a ,b ,若a 2+b 2也在[0,1]内,则有0≤a 2+b 2≤1.如图,试验的全部结果所构成的区域为边长为1的正方形,满足a 2+b 2在[0,1]内的点在14单位圆内(如阴影部分所示),故所求概率为14π1=π4.6. 解析:由f (x 0)≤0得x 0-2≤0,x 0≤2,又x 0∈[-5,5],∴x 0∈[-5,2].设使f (x 0)≤0为事件A ,则事件A 构成的区域长度是2-(-5)=7,全部结果构成的区域长度是5-(-5)=10,则P (A )=710.答案:7107. 解析:如图所示,从点A 出发的弦中,当弦的另一个端点落在劣弧B C 上的时候,满足已知条件,当弦的另一个端点在劣弧A B 或劣弧A C 上的时候不能满足已知条件.又因为△ABC 是正三角形,所以弦长大于正三角形边长的概率是13.答案:138. 解析:如图所示,边长为4的正方形ABCD ,分别以A 、B 、C 、D 为圆心,并以2为半径画圆截正方形ABCD 后剩余部分是阴影部分.则阴影部分的面积是42-4×14×π×22=16-4π,所以所求概率是16-4π16=1-π4.答案:1-π49. 解:设P 点、C 点到AB 的距离分别为d P 、d C , 则S △ABP =12AB ·d P ,S △ABC =12AB ·d C ,所以S △ABP S △ABC =d P d C ,要使d P d C >23, 只需使P 点落在某条与AB 平行的直线的上方,当然P 点应在△ABC 之内,而这条与AB 平行的直线EF 与AB 的距离要大于d C 的23.由几何概率公式,得P =S △CEF S △ABC =⎝ ⎛⎭⎪⎫3-232=19. 10. 解:用x 轴、y 轴分别表示甲、乙两人到达约定地点的时间.若甲早到,当y -x ≤30时,两人仍可见面;若乙早到,则两人不可能见面,因此,必须有x ≤y . 如图,事件A “两人可以见面”的可能结果是阴影部分的区域.故P (A )=12×602-12×302602=38.。

2019-2020学年高中数学北师大版必修三习题:课下能力提升(六) Word版含答案

2019-2020学年高中数学北师大版必修三习题:课下能力提升(六) Word版含答案

一、选择题1.下列说法不.正确的是( )A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是( )A.32,0.4 B.8,0.1 C.32,0.1 D.8,0.43.将一个容量为50的样本数据分组后,分组与频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.则估计小于30的数据大约占总体的( )A.94% B.6% C.92% D.12%4.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图所示).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生人数为( )A.46 B.48 C.50 D.605.设矩形的长为a,宽为b,其比满足b:a=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定二、填空题6.(广东高考)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)7.《中华人民共和国道路交通安全法》规定;车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车;血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车.据《法制晚报》报道,2011年2月15日至2月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为________.8.一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是________,________.三、解答题9.有一个容量为50的样本,数据的分组及各组的频数如下:[25,30),3;[30,35),8;[35,40),9;[40,45),11;[45,50),10;[50,55),5;[55,60],4.(1)列出样本的频率分布表;(2)画出频率分布直方图及频率分布折线图.10.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.答 案1. 解析:选A 频率分布直方图的每个小矩形的高=频率组距. 2. 解析:选A 由于样本数据落在[6,10)内的频率为0.08×4=0.32,则a =100×0.32=32;由于样本数据落在[2,6)内的频率为0.02×4=0.08,则样本数据落在[2,10)内的频率b =0.08+0.32=0.4.3. 解析:选C 由样本的频率分布估计总体的分布.小于30.5的样本频数为3+8+9+11+10+6=47,所以其频率为4750=94%.小于27.5的样本频数为3+8+9+11+10=41,所以其频率为4150=82%.因此小于30的样本频率应在82%~94%之间,满足条件的只有92%.4. 解析:选B 前3个小组的频率和为1-0.037 5×5-0.012 5×5=0.75.又因为前3个小组的频率之比为1∶2∶3,所以第2小组的频率为26×0.75=0.25.又知第2小组的频数为12,则120.25=48,即为所抽样本的人数. 5. 解析:选A x 甲=0.598+0.625+0.628+0.595+0.6395=0.617,x 乙=0.618+0.613+0.592+0.622+0.6205=0.613,∴x 甲与0.618更接近.6. 解析:设x 1≤x 2≤x 3≤x 4,根据已知条件得到x 1+x 2+x 3+x 4=8,且x 2+x 3=4,所以x 1+x 4=4,又因为14x 1-2+x 2-2+x 3-2+x 4-2]=1,所以(x 1-2)2+(x 2-2)2=2,又因为x 1,x 2,x 3,x 4是正整数,所以(x 1-2)2=(x 2-2)2=1,所以x 1=1,x 2=1,x 3=3,x 4=3.答案:1,1,3,37. 解析:(0.01×10+0.005×10)×28 800=4 320.答案:4 3208. 解析:由题意得原来数据的平均数是80+1.2=81.2,方差不变,仍是4.4. 答案:81.2 4.49. 解:(1)频率分布表如下:(2)频率分布直方图、频率分布折线图如下图所示:10. 解:(1)x甲=110(82+84+85+89+79+80+91+89+79+74)=83.2,x乙=110(90+76+86+81+84+87+86+82+85+83)=84.(2)s2甲=110[(82-83.2)2+(84-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,s2乙=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13.2,∴s甲=26.36≈5.13,s乙=13.2≈3.63.(3)由于x甲<x乙,则甲班比乙班平均水平低.由于s甲>s乙,则甲班没有乙班稳定.∴乙班的总体学习情况比甲班好.。

2018-2019学年度北师大版必修2课下能力提升:(三)Word版含解析

2018-2019学年度北师大版必修2课下能力提升:(三)Word版含解析

一、选择题1.下列说法中正确的个数是()①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行④线段的中点在直观图中仍然是线段的中点A.1B.2C.3 D.42.利用斜二测画法画边长为1 cm的正方形的直观图,正确的是如图所示中的()3.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是()A.16B.64 C.16或64D.都不对4.如图,直观图所表示(A′C′∥O′y′,B′C′∥O′x′)的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.直角三角形5.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于()A.24a2 B.433a2C.34a2D.22a2二、填空题5.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.8.如图所示是水平放置的△ABC在直角坐标系中的直观图,其中D是AC的中点,原△ACB中,∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.三、解答题9.画出一个正三棱台的直观图(尺寸:上、下底面边长分别为1 cm、2 cm,高为2 cm).10.用斜二测画法得到一水平放置的三角形为直角三角形ABC,AC=1,∠ABC=30°,如图所示,试求原图的面积.答案1. 解析:选B只有③④正确.2. 解析:选D正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.3. 解析:选C当其中在x′轴上的边长为4时,正方形面积为16;当其中在y′轴上的边长为4时,正方形面积为64.4. 解析:选D由A′C′∥O′y′,B′C′∥O′x′,∠A′C′B′=45°知对应的平面图形为直角三角形.5. 解析:选D由题意知,平行四边形的直观图为对应在直角坐标系下的图形为:∴平行四边形的面积为S′=2×12×a×22a=22a2.6. 解析:在直观图中,A′B′C′O′是有一个角为45°且长边为2,短边为1的平行四边形,∴B′到x′轴的距离为22.答案:2 27. 解析:由于直观图中,∠A′C′B′=45°,则在原图形中∠ACB=90°,AC=3,BC =4,则斜边AB=5,故斜边AB上的中线长为2.5.答案:2.58. 解析:先按照斜二测画法把直观图还原为真正的平面图形,然后根据平面图形的几何性质找与线段BD长度相等的线段,把△ABC还原后为直角三角形,则D为斜边AC的中点,∴AD=DC=BD.答案:29. 解:(1)画轴,以底面△ABC的垂心O为原点,OC所在直线为y轴,平行于AB的直线为x轴,建立平面直角坐标系,以上底面△A′B′C′的垂心O′与O的连线为z轴,建立空间坐标系.(2)画下底面,在xOy平面上画△ABC的直观图,在y轴上量取OC=33cm,OD=36cm.过D作AB∥x轴,且AB=2 cm,以D为中点,连接AC、BC,则△ABC为下底面三角形的直观图.(3)画上底面,在z轴上截取OO′=2 cm,过O′作x′轴∥x轴,y′轴∥y轴,在y′轴上量取O′C′=36cm,O′D′=312cm,过D′作A′B′∥x′轴,A′B′=1 cm,。

【高中数学】2018-2019学年度最新北师大版必修三习题:课下能力提升(十) Word版含答案

【高中数学】2018-2019学年度最新北师大版必修三习题:课下能力提升(十) Word版含答案
C.顺序结构、选择结构D.以上都不是
3.如图所示的算法框图,பைடு நூலகம்入x=2,则输出的结果是()
A.1B.2C.3D.4
4.如图所示,算法框图运行的结果为s=()
A. B. C.1 D.2
5.如图所示的算法框图中,当输入a1=3时,输出的b=7,则a2的值是()
A.11 B.17 C.0.5 D.12
二、填空题
答案
1.解析:选D步骤甲和乙不能同时执行.
2.解析:选C任何算法框图中都有顺序结构,由于自变量在不同的范围内,有不同的对应法则,用选择结构.
3.解析:选B输入x=2;则x=2>1,∴y= =2,输出y=2.
4.解析:选B由框图可知s= + = + = +2= .
5.解析:选Ab= = =7,∴a2=11.
6.如图所示的算法功能是____________________________________________________.
7.已知函数y= 如图是计算函数值y的算法框图,则在空白的判断框中应填________.
8.阅读算法框图(如图所示),若a=50.6,b=0.65,c=log0.65,则输出的数是________.
(3)由(2),知f(x)=-x2+4x=-(x-2)2+4,
∴当输入的x值为2时,函数输出最大值4.
1.输入x;
2.如果x>0,那么y=-1;如果x=0,那么y=0;如果x<0,那么y=1;
3.输出函数值y.
算法框图如图所示:
10.解:(1)该算法框图是求二次函数y=-x2+mx的函数值.
(2)当输入的x值为0和4时,输出的值相等,即f(0)=f(4),可得m=4.∴f(x)=-x2+4x.∴f(3)=3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.设有一个回归方程y =2-1.5x ,当x 增加1个单位时( )
A .y 平均增加1.5个单位
B .y 平均减少1.5个单位
C .y 平均增加2个单位
D .y 平均减少2个单位
2.对有线性相关关系的两个变量建立的线性回归方程y =a +bx 中,回归系数b ( )
A .可以小于0
B .只能大于0
C .只能等于0
D .只能小于0
3.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程y =bx +a ,那么下面说法不.
正确的是( ) A .直线y =bx +a 必经过点(x ,y )
B .直线y =bx +a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点
C .直线y =bx +a 的斜率为
D .直线y =bx +a 与各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的接近程度
[y i -(bx i +a )]2是该坐标平面上所有直线与这些点的最接近的直线
4.(湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根
据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,
则下列结论中不正确的是( )
A .y 与x 具有正的线性相关关系
B .回归直线过样本点的中心(x ,y )
C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg
D .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg
5.(山东高考)某产品的广告费用x 与销售额y 的统计数据如下表:。

相关文档
最新文档