时间序列分析复习要点重点
第四章时间序列分析

1.20 0.9833 a1 a2 a2 a0 a1 a0
(2)ai ai1 ai a0 a0 ai1
1.18 a2 a1 a2 1.20 a0 a0 a1
年份 产值(万元) 环比发展速度
% 定基发展速度
%
1996
1997
100(a0) 120(a1)
——
120
(a1/a0)
100
试求该仓库该月的平均库存量
x xf a af
f
f
a 38 5 42 4 39 15 37 6 411 5 4 15 6 1
1206 38.90(台) 31
计算公式 : a af f
x 库存量 a
38 42 39 37 41 合计
f 间隔 f
5 4 15 6 1 31
六 125 100
12(5 )
第四章 时间序列分析
相对数、平均数时间数列序时平均数的计算方法:
1、列出原型公式:c a
3、计算:c a
b
b
2、分别求出a 与b
[例]某车间今年4月份生产工人出勤情况如下,试求该车间4
月份平均工人出勤率。
时间 1—8 9—11 12—20
应出勤数 实际出勤
45
43
第四章时间序列分析
统计实例
对于企业,有关经营管理的各种问题都需要作出预测,然后才能 根据预测结果对生产活动进行决策。而预测的一个重要方法就是对 未来情况进行推测,其原因是企业的生产或经营状况常常随着时间 推移而发生变化。
例如:材料和备用件的库存、产品的销售、工人的工资与产品 的价格水平、生产过程的质量控制,乃至整个企业的变化等,都会 因时间的变化而呈现出动态变化的过程。因此有必要也完全有可能 对现象发展变化的历史资料进行分析,找出现象的发展趋势和变动 规律并据以预测未来。
应用时间序列分析重点

1、时间序列:按时间顺序排列的一组随机变量。
2、平稳性:序列所有的统计性质都不随着时间的推移而变化时,叫严平稳;当一个时间序列满足均值为常数,且自协方差函数只与时间长度有关时,叫弱平稳。
3、随机过程:是一连串随机事件动态关系的定量描述。
4、白噪声序列:也叫纯随机序列,各项之间没有任何相关关系,且存在方差齐性,服从正态分布,最简单的平稳序列。
5、随机游走:是非平稳的,未来的发展趋势无法预测。
6、单整与协整:单整是指时间序列显著平稳,不存在单位根,则称序列为零阶单整序列;协整是指几个时间序列本身是非平稳的,但具有长期均衡关系,以它们建立的回归模型的残差序列是平稳的,称这几个时间序列存在协整关系。
二、方法、重要模型与公式 1、AR 模型的平稳性检验:a 、特征根判别或特征系数判别:所有的特征根的绝对值都小于1,或者所有的特征系数大于1。
如t t t x x ε+=-18.0特征方程:λ—0.8=0⇒λ=0.8<1⇒平稳;b 、平稳域判别:AR(2)的平稳域:t t t tx x x εφφ++=--2211特征方程:0212=--φλφλ,则它的平稳条件:21121,λλφλλ=+=2φ-,且11<λ,12<λ ,可以导出212λλφ=<1,21φφ+=2121λλλλ++-=)1)(1(121λλ---<1,21φφ-=2121λλλλ---=)1)(1(121λλ++-<1,即为平稳域。
3、MA模型的可逆性:22516154--+-=t t t t x εεε⇒,125162<=θ125454251612<=+-=+θθ,1253654251612<-=--=-θθ ⇒可逆4、ARMA 模型(1) AR 模型:model:t p t p t t t x x x x εφφφφ++++=---....22110性质:均值pφφφμ---= (110),中心化后为0方差:AR(p):)(B x tt Φ=ε=∑=-pi t i iBk 11ελ=∑∑=∞=p i j tjiiB k 10)(ελ=∑∑∞==-00j pi jt j i ik ελ=∑∞=-0j jt jG ε;Green 函数:∑==pj jii j k G 0λ⇒∑=-='==jk k j k j j G G G 10.....2,1,,1φ, 0k ='>='≤φφφ时,;时,p k p k k k ; AR(p)的自协方差函数:p k p k k r r r --++=φφ....11AR(1)的方差:2121)(φσε-=tx Var ,AR(1)的自协方差函数:0111r r r k k k φφ==-,21201φσε-=r AR(1)的自相关系数:kk 1φρ= AR(2)的方差:22121220)1)(1)(1(1εσφφφφφφ-+--+-=r AR(2)的自协方差函数:22121220)1)(1)(1(1εσφφφφφφ-+--+-=r ,20111φφ-=r r ,2211--+=k k k r r r φφ,k≥2 ; AR(2)的自相关系数:10=ρ,2111φφρ-=,2,2211≥+=--k k k k ρφρφρ(2)MA 模型:model:q t q t t t t x ------+=εθεθεθεμ....2211性质:常数均值μ=t Ex ,常数方差2221)...1()(εσθθq t x Var +++=MA(1)的自相关系数:10=ρ,21111θθρ+-=,2,0≥=k k ρMA(2)的自相关系数:10=ρ,222121111θθθθθρ+++-=,2221221θθθρ++-=,3,0≥=k k ρ(3)ARMA模型model:qt q t t t p t p t t x x x --------++++=εθεθεθεφφφ.......2211110性质:均值pt Ex φφφ---= (110),自协方差函数:∑∞=+=02)(i ki i G G k r εσ自相关系数:∑∑∞=∞=+==02)0()(i jj kj jk GGG r k r ρ;(4)AR (p )序列预测:)(ˆ...)1(ˆ)(ˆ1p l x l x l xx t p t t lt -++-==+φφ 预测方差:Green 函数:021120110,,1G G G G G G φφφ+===22121)...1()]([εσ-+++=L t G G l e Var ;(5) MA (p )序列预测:;,)(ˆ1q l l xqi i l t i t ≤-=∑=-+εθμ ;,)(ˆq l l xt >=μ预测方差:;,)...1()]([22121q l l e Var l t ≤+++=-εσθθ ;,)...1()]([2221q l l e Var q t >+++=εσθθ5、非平稳时间序列的确定分析:移动平均法:nx x x x nt t t t--+++=...~1 ;简单指数平滑:)10(,)1(...)1(~1<<-++-+=--ααααααn t n t t t x x x x ;Wold 分解定理:对于任何一个离散平稳过程{t x },都可以分解为两个相关的额平稳序列之和,其中一个为确定性的{t V },另一个是随机性的{t ε}。
时间序列的知识点

时间序列是指一系列按照时间顺序排列的数据点,这些数据点可以是任何类型的变量,如温度、股票价格、销售量等。
时间序列分析是一种统计方法,用于揭示时间数据中的趋势、季节性和周期性等特征,以及预测未来的趋势和变化。
时间序列分析的步骤可以分为以下几个方面:1.数据收集:首先,需要收集时间序列数据,这些数据可以来自于各种渠道,如传感器、数据库、网站等。
确保数据的完整性和准确性非常重要。
2.数据清洗:在进行时间序列分析之前,需要对数据进行清洗和预处理。
这包括处理缺失值、异常值和噪声等。
同时,还可以进行平滑处理,如移动平均、指数平滑等。
3.数据可视化:通过绘制时间序列图,可以更直观地了解数据的趋势和季节性。
常用的可视化工具包括Matplotlib和Seaborn等。
通过观察图形,可以初步判断是否存在趋势、季节性和周期性等特征。
4.数据分解:时间序列数据通常包含趋势、季节性和随机性三个组成部分。
为了更好地分析这些组成部分,可以使用分解方法,如加法模型和乘法模型。
分解后,可以更准确地对各个部分进行分析和预测。
5.时间序列模型:选择合适的时间序列模型对数据进行建模和预测。
常用的时间序列模型包括ARIMA模型、指数平滑模型和季节性自回归移动平均模型等。
根据数据的特点,选择最适合的模型。
6.模型评估:使用一些评估指标,如均方根误差(RMSE)和平均绝对百分比误差(MAPE),对模型进行评估。
通过评估指标,可以判断模型的拟合程度和预测准确性。
7.模型预测:根据已建立的模型,可以对未来的时间序列数据进行预测。
预测结果可以用于制定决策和规划。
时间序列分析在各个领域都有广泛的应用,如经济学、金融学、气象学、运输规划等。
通过对时间序列数据的分析和预测,可以帮助人们更好地理解数据的变化规律,做出科学的决策。
总结起来,时间序列分析是一种揭示和预测时间数据特征的统计方法。
通过数据收集、清洗、可视化、分解、建模和预测等步骤,可以深入了解时间序列数据的趋势、季节性和周期性等特征,为决策和规划提供科学依据。
金融时间序列分析复习资料全

一、单项选择题(每题2分,共20分) P61关于严平稳与(宽)平稳的关系;弱平稳的定义:对于随机时间序列y t ,如果其期望值、方差以及自协方差均不随时间t 的变化而变化,则称y t 为弱平稳随机变量,即y t 必须满足以下条件: 对于所有时间t ,有 (i )E (yt )=μ为不变的常数;(ii ) Var (yt )=σ²为不变的常数;(iii ) γj =E[y t -μ][y t-j -μ],j=0,±1,,2,… (j 为相隔的阶数)(μ=0,cov (y t ,y t-j )=0,Var (yt )=σ²时为白噪音过程,常用的平稳过程。
) 从以上定义可以看到,凡是弱平稳变量,都会有一个恒定不变的均值和方差,并且自协方差只与y t 和y t-j 之间的之后期数j 有关,而与时间t 没有任何关系。
严平稳过程的定义:如果对于任何j 1,,j 2,...,j k ,随机变量的集合(y t ,y t+j1,,y t+j2,…,y t+jk )只依赖于不同期之间的间隔距离(j 1,j 2,…,j k ),而不依赖于时间t ,那么这样的集合称为严格平稳过程或简称为严平稳过程,对应的随机变量称为严平稳随机变量。
P46 t X 的k 阶差分是;△kX t =△k-1X t -△k-1X t-1,△ 表示差分符号。
滞后算子;P54对于AR : L p y t =y t-p ,对于MA :L pεt =εt-pAR (p )模型即自回归部分的特征根—平稳性;确定好差分方程的阶数,则其特征方程为:λp-α1λp-1-α2λp-2-…-αp =0,若所有的特征根的│λ│<1则平稳补充:逆特征方程为:1-α1z1-α2z²-…-αp zp=0,若所有的逆特征根│z│>1,则平稳。
注意:特征根和逆特征方程的根互为倒数。
如:p57作业3: y t =1.2y t-1-0.2y t-2+εt ,为二阶差分,其特征方程为:λ2-1.2λ+0.2=0,解得λ1=1,λ2=0.2,由于λ1=1,所以不平稳。
时间分析知识点总结

时间分析知识点总结一、时间序列的概念时间序列是指按照时间顺序排列的一组随机变量观测值,通常用来描述某一现象、变量或者经济指标在不同时间点上的取值。
时间序列数据通常具有以下特点:趋势性、季节性、周期性和随机性。
1. 趋势性:时间序列数据在长期内呈现出的总体变化方向,可以是增长趋势,也可以是下降趋势。
2. 季节性:时间序列数据在短期内呈现出的重复性变动模式,通常是由季节因素导致的,比如节假日、气候等因素。
3. 周期性:时间序列数据在中长期内呈现出的周期性波动,可以是周期性的震荡或者波动。
4. 随机性:时间序列数据中除了上述几种规律性变动之外的不规则波动。
时间序列数据是时间分析的研究对象,对其进行分析可以揭示其内在的规律和趋势,为决策和预测提供依据。
二、时间序列分析方法时间序列分析主要包括描述性分析、平稳性分析、自相关性分析和预测分析等方法。
1. 描述性分析描述性分析是对时间序列数据进行可视化分析,主要包括绘制时间序列图、直方图和散点图等,以便观察其随时间的变化规律和分布特征。
2. 平稳性分析平稳性是时间序列数据分析中非常重要的概念,指的是时间序列数据在不同时间点上的统计特性不发生显著的变化。
常用方法包括观察时间序列图来判断其平稳性,以及进行单位根检验等。
3. 自相关性分析自相关性是指时间序列数据中各个时刻的观测值之间的相关关系。
自相关性分析主要包括自相关图的绘制和计算自相关系数等方法,以判断时间序列数据中是否存在自相关性,以及自相关性的程度。
4. 预测分析预测分析是时间序列分析的核心内容,目的是根据过去的数据来预测未来的变动趋势。
常用的预测方法包括移动平均法、指数平滑法、自回归移动平均模型(ARMA)和季节性自回归整合移动平均模型(SARIMA)等。
三、趋势分析趋势分析是时间序列分析中的重要内容,用来研究时间序列数据中长期趋势的变化。
常用的趋势分析方法包括线性趋势分析、指数平滑法和多项式拟合法等。
1. 线性趋势分析线性趋势分析是通过拟合直线来描述时间序列数据的变化趋势,通常采用最小二乘法来估计趋势线的斜率和截距。
时间序列分析知识点总结(1)

一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
经济学研究中时间序列分析的技术要点总结

经济学研究中时间序列分析的技术要点总结时间序列分析是经济学研究中的重要工具之一,它能够帮助我们理解经济现象的演变规律和趋势,并对未来的走势进行预测。
本文将对时间序列分析的技术要点进行总结和归纳,帮助读者更好地理解并应用这一分析方法。
1. 数据的平稳性测试与处理平稳性是进行时间序列分析的前提条件之一,它指的是在时间维度上的均值和方差不发生明显变化。
为了确保数据的平稳性,需要进行平稳性测试,常用的方法包括ADF检验、单位根检验等。
如果数据不平稳,需要通过差分、对数化、季节性调整等方法进行处理,使其变成平稳序列。
2. 自相关与偏自相关分析自相关(Autocorrelation)分析是确定序列中自身相互依赖关系的方法,用于寻找数据之间的线性关系。
自相关函数(ACF)和偏自相关函数(PACF)是常用的自相关分析工具,可以通过绘制相关函数图形来判断序列的相关性。
ACF表示当前观测值与前几个滞后观测值之间的相关性,而PACF则表示当前观测值与之前滞后值之间的相关性,PACF可以帮助我们确定时间序列模型的阶数。
3. 白噪声检验白噪声是指随机序列,其中各个观测值之间没有任何相关性。
在时间序列分析中,我们通常认为残差序列应该是白噪声。
为了验证残差序列的白噪声特性,可以进行白噪声检验,常用的方法有Ljung-Box检验和ARCH检验。
如果残差序列不是白噪声,说明模型存在缺陷,需要进一步进行修正。
4. ARMA模型选择ARMA模型(AutoRegressive Moving Average Model)是指自回归移动平均模型,它是根据时间序列的自相关性和偏自相关性构建的。
在选择ARMA模型时,需要分析序列的ACF和PACF图,根据截尾性和拖尾性来确定AR和MA的阶数。
通常采用信息准则,如AIC (Akaike Information Criterion)和BIC(Bayesian Information Criterion)来评估模型的拟合优度和复杂度,选择最优的模型。
统计学期末复习重点 统计学第7章 时间序列分析

【例7-4】 福建省部分年份年末全社会从业人数资 料如下,计算福建省10年内的全社会平均从业人 数
年份 人数/万 人 1997 2000 2002 2005 2007
i 1
1612.41
1660.19
1711.32
1868.49
2015.33
2.由相对指标或平均指标时间序列计算序时平均数 相对数和平均数通常是由两个绝对数对比形成的, 计算序时平均数时,应先分别求出构成相对数或 平均数的分子和分母,然后再进行对比即得相对指标 或平均指标序列的序时平均数
逐期增长量
a1 a0 , a2 a1 ,, an an 1
累积增长量
a1 a0 , a2 a0 ,, an a0
二者的关系:
⒈ a1 a0 a2 a1 an an1 an a0 ⒉ ai a0 ai 1 a0 ai ai 1 i 1,2,, n
由于采用的基期不同,发展速度又可分为定 基发展速度和环比发展速度。 环比发展速度也称逐期发展速度,是报告期 水平与前一时期水平之比,说明报告期水 平相对于前一期的发展程度 定基发展速度则是报告期水平与某一固定时 期水平之比,说明报告期水平相对于固定 时期水平的发展程度,表明现象在较长时 期内总的发展速度,也称为总速度 年距发展速度说明报告期水平与上年同期水 平对比达到的相对程度
时间序列概述
时间序列的编制原则
(1) 指标数值涵盖的时间长短一致
(2) 指标内涵、外延要一致 (3) 计算方法和计算单位、价格一致
现行价格:指产品在各个时间,地点、环节实现的价格。
可比价格:是为专门消除货币量中价格变动因素而设计的价格。
第二节 时间序列水平指标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.导 论1. 计量经济学和时间序列分析的区别与联系2. 时间序列分析的概念:时间序列分析(T i m e s e r i e s a n a l y s i s ) 是一种根据动态数据揭示系统动态结构和规律性的统计方法,是统计学的一个分支。
3. 时间序列分析的研究对象:时间序列数据 4. 时间序列分析的基本思想:样本推断根据系统的有限长度的运行记录(样本数据),建立能够比较精确地反映时间序列中所包含的动态依存关系的数学模型,并借以对系统的未来发展进行预报(时间序列预测)。
二.时间序列分析基础 1、随机过程(1)含义:在数学上,随机过程被定义为一组随机变量。
(2)特征:① 从顺序角度来看:随机过程是随机变量的集合;随机变量是随时间产生的,在任意时刻t ,总有随机变量X t 与之相对应;事物发展没有必然变化规律。
② 从数学角度看:不可用时间t 的函数确定的描述。
③ 从试验角度来看:不可重复。
(3)重要的随机过程 ①白噪声过程②随机游走过程:x t = x t -1 + u t 如果u t 为白噪声过程,则称x t 为随机游走过程。
(4)随机过程的平稳性随机过程的统计特征不随时间的推移而发生变化。
严平稳:随机过程中随机变量的任意子集的联合分布函数与时间无关。
宽平稳:∞<=+2),(k k t t x x Cov σ∞<=2)(σt x Var∞<=μ)(t x E直观的看,平稳的数据可以看作是一条围绕其均值上下波动的曲线。
(5)随机过程与时间序列:随机过程的一次实现称为时间序列随机过程的实现: 由随机变量组成的一个有序序列称为随机过程,记为{},t Y t T ∈,简记为Y t 。
其中,每一个元素Y t 都是随机变量。
将每一个元素的样本点按序排列,称为随机过程的一个实现,即时间序列数据,亦即样本。
2、差分方程的展开式子差分方程:变量当期值定义为它的前期和一个当期的随机扰动因素的函数。
1t t t y y αε-=+一阶差分方程:的展开式010122120120123232301231210121000()t t t t t t tt t i t ii t t y y y y y y y y y y yy y y y y αεαεααεεααεεαεααεαεεαεααεαεεααεε-----==+=+=++=++=+=+++=+=++++=+∑如果是给定的,则因此若给定初始值,就可以由的序列来表示。
3、动态乘数和脉冲响应函数1, =,0, 1, 2t t t t j ty y y j αεε-+=+∂=∂对于而言动态乘数可以定义为动态乘数t j jty αε+∂=∂一阶差分方程的动态乘数:将不同时期跨度j 的动态乘数按j 从小到大的顺序摆放在一起,形成一个路径,就成为了脉冲响应函数。
4、滞后算子表达式的运用L 在这里不仅仅是一个符号,它代表了一种运算过程。
122t t -t -y =y y ααε++1t22t t t y =Ly L y ααε++1t2(1)2t L L y ααε--=1t2()(12L L L ααα=--1)2()2t t y L L y ααε=++1t滞后算子多项式()t L y αε=t滞后算子运算还符合标准的“结合律”与“交换律”等如下运算法则:5.时间序列分析的基本步骤三、EViews 软件的基本操作1、两个概念:对象和工作文件(1)EViews的核心是对象(Object)对象是指有一定关系的信息或算子捆绑在一起供使用的单元,用EViews工作就是使用不同的对象。
(2)对象都放置在对象集合中,其中工作文件(workfile)是最重要对象集合。
2、不同类型数据的导入方法(看p p t)3、E V i e w s软件的基本操作命令创建工作文件:create TJXY a 1952 2000或:workfile TJXY a 1952 2000生成变量序列:series xdata x yseries z = x + yseries fit = Eq1.@coef(1) + Eq1.@coef(2) * xgenr 变量名 = 表达式3.E V i e w s软件的基本操作命令常用的运算命令:D(X): X的一阶差分D(X,n): X的n阶差分LOG(X):自然对数DLOG(X):自然对数增量LOG(X)-LOG(X(-1))EXP(X) :指数函数ABS(X) :绝对值SQR(X) :平方根函数RND:生成0、1间的随机数NRND:生成标准正态分布随机数。
四、时间序列模型选取1.时间序列的相关检验:平稳性检验和随机性检验时间序列的平稳性检验1.A R M A模型的结构和统计特征yt = φ yt-1+ ut自回归过程的统计特征移动平均过程的统计特征2. A R M A 模型的识别3. A R M A 模型的参数估计4. A R M A 模型的诊断检验5. A R M A 模型的预测 5.A R M A 模型的建模步骤 1、数据处理 (1)数据导入a. 通过键盘输入数据;b. 通过Copy ,Paste 命令把Excel 或Lotus 数据复制为EViews 数据;c. 利用Import 功能键直接把其他数据文件变换为EViews 数据文件;d. 通过函数公式生成新的序列;e. 生成时间变量、虚拟变量和移动平均序列。
(2)数据检验(平稳性检验) a. 观察时序图b. 利用ADF 检验,判断序列的平稳性 2、模型识别对于平稳序列,观察其自相关、偏自相关函数图,初步判定模型形式。
ACF PACF 模型识别 拖尾截尾AR 模型11t t t y c εθε-=++截尾拖尾MA模型拖尾拖尾ARMA模型2、模型识别 ARMA(p, q),p=?,q=?反复试验 (p, q)组合法:试取一组(p, q)进行拟合估计(一般取(偏)自相关数明显非零的延时期数k做p或q),然后检验其残差是否为白噪声,若非白噪声仍有自相关性,则换一组(p, q)继续试验。
残差序列自相关函数法:首先用AR(1)拟合序列{yt},再考察其残差序列的样本自相关函数,若q1步截尾,则模型为ARMA(1,q1);否则,再用AR(2)拟合序列{yt},考察其残差序列的样本自相关函数,若q2步截尾,则模型为ARMA(2,q2);否则,再继续增大p,重复上述的做法,直至残差序列的样本自相关函数截尾为止。
3、模型的参数估计点击“Quick”——“Estimate Equation”在“Equation Specification”空白栏中键入:AR(p): Y C AR(p)MA(q): Y C MA(q)ARMA(p, q): Y C AR(p) MA(q)4、模型的适用性检验残差检验——白噪声?点击“View”—“Residual test”5、模型的应用——预测点击“Forecast”六、非平稳时间序列模型1.非平稳序列的类别如果时间序列不满足平稳性定义中的一条或几条,则是非平稳的时间序列。
(1)均值非平稳过程(2)方差和自协方差非平稳过程2.两种主要的非平稳趋势时间趋势依其内在属性,分为:确定性时间趋势和随机性时间趋势若一个时间序列的趋势完全可以预测而且保持不变,我们称为确定性趋势; 若这个时间序列的趋势不能预测,则称之为随机性趋势。
3. 确定性趋势模型的建立确定性趋势模型,是指模型中含有明确的时间t 变量,从而使得某一时序变量随着时间而明确地向上增长。
(1)先拟合出均值函数ut 的具体形式;(2)对残差序列yt={xt-ut}按平稳过程进行分析和建模。
4. 随机趋势模型的建立A R I M A 模型——适用于差分平稳序列的拟合 ① 判断序列的非平稳性; ② 识别差分阶数;③ 对差分序列建立ARMA 模型; ④ 对原序列建立ARIMA 模型。
七、向量自回归模型 1. V A R 模型的基本结构2. V A R 模型的特点V A R 模型不以严格的经济理论为依据。
V A R 模型对参数不施加零约束,不删除无显著性的参数。
()0t t tt y c u L ϕεε=++均值非平稳模型的一般式:表示均值为的平稳随机变量V A R 模型的解释变量中不含t 期变量,所有与联立方程组模型有关的问题均不存在。
V A R 模型需估计的参数较多。
待估参数个数=变量个数2*滞后期数 当样本容量较小时,多数参数估计的精度较差,故需大样本,一般n >50。
V A R 模型要求每个变量都满足平稳性要求。
注意: “V A R ”需大写,以区别金融风险管理中的V a R 。
3. V A R 模型的构建步骤 确定模型的变量确定模型的最大滞后阶数p 模型的参数估计 模型的适用性检验4. V A R 模型的适用性检验 : 检验V A R 系统的稳定性5. s V A R 模型的基本结构结构VAR 模型(Structural VAR ,SVAR),实际是VAR 模型的结构式,即在模型中包含变量间的当期关系。
n 个变量,p 阶结构向量自回归模型SVAR(p):tp t p t t t u y Γy Γy Γy C ++++=--- 221106. S V A R 模型的构建步骤 1、实施约束2、估计无约束VAR模型3、估计SVAR 模型 八、协整与误差修正模型1、长期均衡和协整的概念及其关系根据经济理论:如果经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。
t 也被称为非均衡误差(disequilibrium error ),它是变量X 与Y 的一个线性组合:如果X 与Y 间的长期均衡关系正确,该式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,即是具有0均值的I(0)序列。
对于非稳定的时间序列X 和Y ,如果它们之间的线性组合是平稳的——则称变量X 与Y 之间存在协整关系(cointegrated )。
如果序列{X1t , X2t , … , Xkt}都是d =(1 ,2 , … ,k),使得Zt=XT ~ I(d-b), 其中,b>0,XT=(X1t , X 2t , … ,Xkt)T ,则认为序列{X1t , X2t , … , Xkt}是(d ,b)阶协整,记为Xt~ CI(d ,b)cointegrated vector )。
注意:如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。
3个以上的变量,如果具有不同的t t t X Y 10ααμ--=单整阶数,有可能经过线性组合构成低阶单整变量。