计数原理专题复习(二)排列与组合练习题

合集下载

2025年高考数学一轮知识点复习-两个计数原理、排列与组合-专项训练【含答案】

2025年高考数学一轮知识点复习-两个计数原理、排列与组合-专项训练【含答案】

两个计数原理、排列与组合一、单项选择题1.若C2A22=42,则!3!K4!的值为()A.60B.70C.120D.1402.电脑调色板有红、绿、蓝三种基本颜色,每种颜色的色号均为0~255.在电脑上绘画可以分别从三种颜色的色号中各选一个配成一种颜色,那么在电脑上可配成的颜色种数为()A.2563B.27C.2553D.63.甲、乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种4.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为() A.120B.60C.40D.305.将5件相同的小礼物全部送给3个不同的球迷,让每个球迷都要得到礼物,则不同的分法种数是()A.2B.10C.5D.66.甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间恰有2人,则不同排法共有()A.20种B.16种C.12种D.8种7.学校运动会上,有A,B,C三位运动员分别参加3000m,1500m和跳高比赛,为了安全起见,班委为这三位运动员分别成立了后勤服务小组,甲和另外4名同学参加后勤服务工作(每名同学只能参加一个后勤服务小组).若甲在A的后勤服务小组,则这五名同学的分配方案种数为()A.44B.50C.42D.388.三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种9.如图,一圆形信号灯分成A,B,C,D四块灯带区域,现有3种不同的颜色供灯带使用,要求在每块灯带里选择1种颜色,且相邻的2块灯带选择不同的颜色,则不同的信号总数为()A.18B.24C.30D.4210.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240B.420C.729D.920二、多项选择题11.某中学为提升学生劳动意识和社会实践能力,利用周末进社区义务劳动,高三一共6个班,其中劳动模范只有1班有2人,本次义务劳动一共20个名额,劳动模范必须参加并不占名额,每个班都必须有人参加,则下列说法正确的是()A.若1班不再分配名额,则共有C204种分配方法B.若1班有除劳动模范之外的学生参加,则共有C195种分配方法C.若每个班至少3人参加,则共有90种分配方法D.若每个班至少3人参加,则共有126种分配方法12.现安排甲、乙、丙、丁、戊5名同学参加某志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,则以下说法错误的是()A.若每人都安排一项工作,则不同的方法数为54B.若每项工作至少有1人参加,则不同的方法数为A54C41C.每项工作至少有1人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是C32A33+C31C42A33D.如果司机工作不安排,其余三项工作至少安排1人,则这5名同学全部被安排的不同方法数为C53C21+C52C32A33三、填空题13.用0,2,3,4,5五个数组成无重复数字的四位数,则不同的四位数共有________个,其中偶数共有________个.14.把7个字符1,1,1,A,A,α,β排成一排,要求三个“1”两两不相邻,且两个“A”也不相邻,则这样的排法共有________种.15.用0~9十个数字排成三位数,允许数字重复,把个位、十位、百位的数字之和等于9的三位数称为“长久数”,则“长久数”一共有________个.16.中国古代哲学用五行“金、木、水、火、土”来解释世间万物的形成和联系,如图,现用3种不同的颜色给五“行”涂色,要求相邻的两“行”不能同色,则不同的涂色方法有________种.参考答案1.D[∵C2A222=42,解得n=7或n=-6(舍去),!3×2×1×3×2×1=140.]3!K4!=7!3!×3!=7×6×5×4×3×2×12.A[分3步取色,第一、第二、第三次都有256种取法,根据分步乘法计数原理得,共可配成256×256×256=2563(种)颜色.故选A.]3.C[甲、乙二人先选1种相同的课外读物,有C61=6(种)情况,再从剩下的5种课外读物中各自选1本不同的读物,有C51C41=20(种)情况,由分步乘法计数原理可得共有6×20=120(种)选法.故选C.]4.B[先从5人中选1人连续两天参加服务,共有C51=5(种)选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选1人参加星期天服务,共有C41·C31=12(种)选法,根据分步乘法计数原理可得共有5×12=60(种)选法.故选B.] 5.D[法一:由“挡板法”可知,共有C42=6(种).法二:若按3,1,1分成3组给3个不同的球迷,有3种不同的方法;若按2,2,1分成3组给3个不同的球迷,也有3种不同的方法.故所有不同的分法种数为3+3=6(种).故选D.]6.B[因为乙和丙之间恰有2人,所以乙丙及中间2人占据首四位或尾四位.①当乙丙及中间2人占据首四位,此时还剩末位,故甲在乙丙中间,排乙丙有A22种方法,排甲有A21种方法,剩余两个位置两人全排列有A22种排法,所以有A22×A21×A22=8(种)方法;②当乙丙及中间2人占据尾四位,此时还剩首位,故甲在乙丙中间,排乙丙有A22种方法,排甲有A21种方法,剩余两个位置两人全排列有A22种排法,所以有A22×A21×A22=8(种)方法;由分类加法计数原理可知,一共有8+8=16(种)排法.故选B.]7.B[若A小组只有一人,则5人的分配方案有C42C22+C43A22=14(种);若A小组只有两人,则5人的分配方案有C41C32A22=24(种);若A小组恰有三人,则5人的分配方案有C42A22=12(种).所以共有50种.故选B.]8.B[分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先踢给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.]9.A[若3种不同的颜色灯带都使用,故有两块区域涂色相同,要么A,C,要么B,D相同,有2种方案,则不同的信号数为2A33=12;若只用2种不同的颜色灯带,则A,C颜色相同,B,D颜色相同,只有1种方案,则不同的信号数为C32A22=6;则不同的信号总数为12+6=18.故选A.]10.A[法一:若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).法二:分两类:①如果这个三位数含0,则0必在末位,共有这样的凸数C92个;②如果这个三位数不含0,则这样的凸数共有(C93A22+C92)个.综上所述,所有凸数共有2C92+C93A22=240(个).]11.BD[对于A,若1班不再分配名额,则20个名额分配到5个班级,每个班级至少1个,根据挡板法,有C194种分配方法,故A错误;对于B,若1班有除劳动模范之外的学生参加,则20个名额分配到6个班级,每个班级至少1个,根据挡板法,有C195种分配方法,故B正确;对于CD,若每个班至少3人参加,由于1班有2个劳动模范,故只需先满足每个班级有2个名额,还剩10个名额,再将10个名额分配到6个班级,每个班级至少1个名额,故只需在10个名额中的9个空上放置5个挡板即可,故有C95=126(种),故C错误,D正确.故选BD.] 12.ABD[对于A,安排5人参加4项工作,若每人都安排一项工作,每人有4种安排方法,则有45种安排方法,故A错误;对于B,根据题意,分2步进行分析:先将5人分为4组,再将分好的4组全排列,安排4项工作,有C52A44种安排方法,故B错误;对于C,根据题意,分2种情况讨论:①从丙、丁、戊中选出2人开车,②从丙、丁、戊中选出1人开车,则有C32A33+C种安排方法,C正确;对于D,分2步分析:需要先将5人分为3分组方法,将分好的3组安排翻译、导游、礼仪三项工作,有A33种情况,A33种安排方法,D错误.故选ABD.]13.9660[由题可知,满足条件的四位数共有4×4×3×2=96(个),其中偶数分为个位数是0和个位数不是0,若这个偶数的个位数是0,则有A43=4×3×2=24(个);若这个偶数的个位数不是0,则有C21C31A32=36(个).故满足条件的四位数中偶数的总个数为24+36=60.] 14.96[先排列A,A,α,β,若A,A不相邻,不同的排法有A22C32=6(种);若A,A相邻,有A33=6(种),共有不同的排法6+6=12(种).从所形成的5个空中选3个插入1,1,1,排法共有12C53=120(种).当A,A相邻时,从所形成的4个空中选3个插入1,1,1,共有6C43=24(种).故若三个“1”两两不相邻,且两个“A”也不相邻,则这样的排法共有120-24=96(种).]15.45[(1)若三位数字中有2个0,只有一种情况900.(2)若三位数字有一个0,则有108,180,207,270,306,360,405,450,504,540,603,630,702,720,801,810共16个.(3)若三位数中没有0,则等价于9个1排成一列,插入两隔板,分成三部分,共有C82=28个.故共有1+16+28=45个.]16.30[设3种不同的颜色为a,b,c,对于“火、土”两个位置有3×2=6(种)不同的涂色方法,不妨设“火、土”两个位置分别为a,b.(1)若“金”位涂色为a,则有:①若“水”位涂色为b,则“木”位涂色为c,共1种不同的涂色方法;②若“水”位涂色为c,则“木”位涂色为b,共1种不同的涂色方法;共2种涂色可能.(2)若“金”位涂色为c,则有:①若“水”位涂色为a,则“木”位涂色为b或c,共2种不同的涂色方法;②若“水”位涂色为b,则“木”位涂色为c,共1种不同的涂色方法;共3种涂色可能.综上所述,共6×(2+3)=30种不同的涂色方法.。

计数原理(排列组合)题型练习

计数原理(排列组合)题型练习

计数原理[基础训练A 组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有( )A .81B .64C .12D .142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( )A.20 B .16 C .10 D .65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( )A .男生2人,女生6人B .男生3人,女生5人C .男生5人,女生3人D .男生6人,女生2人.6.在82x ⎛- ⎝的展开式中的常数项是( ) A.7 B .7- C .28 D .28-7.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100-8.22nx ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( ) A .180 B .90 C .45 D .360二、填空题1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.2.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法.3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在10(x 的展开式中,6x 的系数是 .5.在220(1)x -展开式中,如果第4r 项和第2r +项的二项式系数相等,则r = ,4r T = .6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x .8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。

基本计数原理和排列组合(概念复习及专题训练含答案)

基本计数原理和排列组合(概念复习及专题训练含答案)

正确的指导 有效的训练 为高考的成功提供保障第一章 计数原理———基本计数原理和排列组合(概念篇)一、概念回顾:(一)两个原理.1. 加法原理每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) 2. 乘法原理任何一步的一种方法都不能完成此任务,必须且只须连续完成这n 步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同3. 可以有重复元素的排列.从个不同元素中,每次取出个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、m n 第二……第位上选取元素的方法都是个,所以从个不同元素中,每次取出个元素可重复排列n m m n 数例如:件物品放入个抽屉中,不限放法,共有多少种不同放法?(解:nm m m m m =.......n m 种)n m (二)排列组合1、排列(1)排列数的计算:从个不同元素中取出个元素排成一列,称为从个不同元素中取出个元素的一个排列.从n )(n m m ≤n m 个不同元素中取出个元素的一个排列数,用符号表示.n m m n A (2)排列数公式:注意: 规定!)!1(!n n n n -+=⋅1!0=注:含有可重元素的排列问题对含有相同元素求排列个数的方法是:设重集有个不同元素其中限重复数为,S k n a a a ,...,,21k n n n ...21、、且 , 则的排列个数等于.k n n n n ...21++=S !!...!!21k n n n n n =例如:已知数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数3!2!1)!21(=+=n . 1!3!3==n 2、组合(1)组合数的计算:从个不同的元素中任取个元素并成一组,叫做从个不同元素中取出个元素的一个组合. 从n )(n m m ≤n m 个不同元素中取出个元素的一个排列数,用符号表示。

高中数学排列组合必考知识点经典练习题(完整版)

高中数学排列组合必考知识点经典练习题(完整版)

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

排列和组合的基本计算练习题

排列和组合的基本计算练习题

排列和组合的基本计算练习题一、排列问题1. 从5个人中选取3个人排成一队,共有多少种排列方式?2. 一个由字母A、B、C、D、E组成的五位密码,每位密码不能重复,共有多少种排列方式?3. 一个班级有10个学生,要选取3名学生作为班级委员,共有多少种不同的委员组合?4. 一张音乐专辑中有10首歌曲,其中要选择5首歌曲放入一个播放列表,共有多少种不同的组合方式?5. 某公司有8个部门,要从8个部门中选取3个部门安排一次合作项目,共有多少种不同的组合方式?二、组合问题1. 一个有6个红球和4个蓝球的盒子,从中随机选取3个球,共有多少种不同的组合方式?2. 一家餐厅有7种汤和5种主菜,顾客可以选择一种汤和一种主菜组成一份套餐,共有多少种不同的组合方式?3. 一个班级有20个学生,要选取4个学生组成一个数学小组,共有多少种不同的小组组合?4. 一家服装店有8件上衣和6条裤子,如果一位顾客要买一件上衣和一条裤子,共有多少种不同的购买组合方式?5. 在一个农场,有9只鸡和5只鸭子,从中选取4只禽类作为宠物,共有多少种不同的组合方式?三、排列与组合的混合问题1. 一本书包含10个篇章,其中6个篇章是数学相关的,4个篇章是文学相关的。

要选择4个篇章开设一个讲座,共有多少种不同的组合方式,假设篇章顺序不重要?2. 一个班级有10个男生和12个女生,要从中选出一个男生和一个女生组成一对表演参赛,共有多少种不同的组合方式?3. 一家酒店有5间大床房和8间双人床房,要为一个团体安排3间房间,共有多少种不同的房间分配方式?4. 一条项链由6颗红宝石和4颗蓝宝石组成,要选择3颗宝石制作一条手链,共有多少种不同的组合方式?5. 一家餐厅有10种主菜和8种甜品,要选择一种主菜和一种甜品作为套餐,共有多少种不同的组合方式?。

2020届高考数学(理)二轮高分冲刺专题十:计数原理(2)排列与组合+Word版含答案

2020届高考数学(理)二轮高分冲刺专题十:计数原理(2)排列与组合+Word版含答案

计数原理(2)排列与组合1、公司安排五名大学生从事、、、A B C D四项工作,每项工作至少安排一人且每人只能安排一项工作,A工作仅安排一人,甲同学不能从事B工作,则不同的分配方案种数为()A.96B.120C.132D.2402、今有2个红球、2个黄球、3个白球,同色球不加以区分,将这7个球排成一列的不同方法有()A.210种B.162种C.720种D.840种3、有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B 不能停在第1道上,则5列火车不同的停靠方法数为( )A.56B.63C.72D.784、5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是( )A.40B.36C.32D.245、某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16B.18C.24D.326、《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。

设AA是正六棱1柱的一条侧棱,如图,若阳马以该六棱柱的顶点为顶点,以AA为底面矩形的一边,则这个阳马1的个数是( )A.4B.8C.12D.167、从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有()A.36种B.30种C.42种D.60种8、用数字0,1,2,3,4,5组成没有重复数字的四位数,其中比4000大的偶数共有( )个A.120B.96C.60D.729、由数字0,1,2,3,4,5可组成无重复数字的两位数的个数是( )A.30种B.25种C.36种D.20种10、将3本相同的语文书和2本相同的数学书分给四名同学,每人至少1本,不同的分配方法数有( )A.24B.28C.32D.3611、已知2110100x xC C+-=,则x=__________12、安排7位老师在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种.(用数字作答)13、《中国诗词大会》节目组决定把《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有__________种.(用数字作答)14、将4个颜色互不相同的球放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有种.15、从1到9的九个数字中取三个偶数四个奇数,试问:1.能组成多少个没有重复数字的七位数?2.上述七位数中三个偶数排在一起的有几个?3.在1中的七位数中,偶数排在一起、奇数也排在一起的有几个?4.在1中任意两偶数都不相邻的七位数有几个?答案以及解析1答案及解析: 答案:C 解析:2答案及解析: 答案:A 解析:3答案及解析: 答案:D解析:若没有限制,5列火车可以随便停,则有55A 种不同的停靠方法,若快车A 停在第3道上,则5列火车不间的停靠方法数为44A ;若货车B 停在第1道上,则5列火车不同的停靠方法数为44A ;若快车A 停在第3道上,且货车B 停在第1道上,则5列火车不同的停靠方法数为33A ,故符合要求的5列火车不同的停靠方法数为543543212048678A A A -+=-+=。

高考数学 计数原理、排列与组合 高考真题

高考数学 计数原理、排列与组合    高考真题

专题十 计数原理10.1 计数原理、排列与组合考点 计数原理、排列、组合1.(2020新高考Ⅰ,3,5分)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种 答案 C 解题思路:第一步:安排甲场馆的志愿者,则甲场馆的安排方法有C 61=6种,第二步:安排乙场馆的志愿者,则乙场馆的安排方法有C 52=10种,第三步:安排丙场馆的志愿者,则丙场馆的安排方法有C 33=1种.所以共有6×10×1=60种不同的安排方法.故选C (易错:注意分配到每个场馆的志愿者是不分顺序的,所以不用全排列).2.(2022新高考Ⅱ,5,5分,应用性)甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有( )A.12种B.24种C.36种D.48种 答案 B 丙和丁相邻共有A 22·A 44种站法,甲站在两端且丙和丁相邻共有C 21·A 22·A 33种站法,所以甲不站在两端且丙和丁相邻共有A 22·A 44−C 21·A 22·A 33=24种站法,故选B .3.(2021全国乙理,6,5分)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60种B.120种C.240种D.480种 答案 C 先将5人分为4组,其中一组有2人,另外三组各1人,共有C 52=10种分法,然后将4个项目全排列,共有A 44=24种排法,根据分步乘法计数原理得到不同的分配方案共有C 52·A 44=240种,故选C .易错警示 本题容易出现将5人分为4组,共有分法C 52·C 31·C 21=60种的错误结果.4.(2016四川理,4,5分)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24B.48C.60D.72答案 D 奇数的个数为C 31A 44=72.5.(2015四川理,6,5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个答案B数字0,1,2,3,4,5中仅有0,2,4三个偶数,比40 000大的偶数为以4开头与以5开头的数.其中以4开头的偶数又分以0结尾与以2结尾,有2A43=48个;同理,以5开头的有3A43=72个.于是共有48+72=120个,故选B.评析本题考查了分类与分步计数原理、排列数的知识.考查学生分析问题、解决问题的能力.6.(2014大纲全国理,5,5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有()A.60种B.70种C.75种D.150种答案C从6名男医生中选出2名有C62种选法,从5名女医生中选出1名有C51种选法,由分步乘法计数原理得不同的选法共有C62·C51=75种.故选C.7.(2014辽宁理,6,5分)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24答案D先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有A43=24种放法,故选D.8.(2014四川理,6,5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种答案B若最左端排甲,其他位置共有A55=120种排法;若最左端排乙,最右端共有4种排法,其余4个位置有A44=24种排法,所以共有120+4×24=216种排法.9.(2014重庆理,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168答案B先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有A33·A43=144种,再剔除小品类节目相邻的情况,共有A33·A22·A22=24种,于是符合题意的排法共有144-24=120种.10.(2013山东理,10,5分)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279答案B由分步乘法计数原理知:用0,1,…,9十个数字组成三位数(可有重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252,故选B.评析本题考查分步乘法计数原理,考查学生的推理运算能力.11.(2012课标理,2,5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种答案A2名教师各在1个小组,给其中1名教师选2名学生,有C42种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A22种方案,故不同的安排方案共有C42A22=12种,选A.评析本题考查了排列组合的实际应用,考查了先分组再分配的方法.12.(2012辽宁理,5,5分)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为()A.3×3!B.3×(3!)3C.(3!)4D.9!答案C第1步:3个家庭的全排列,方法数为3!;第2步:家庭内部3个人全排列,方法数为3!,共3个家庭,方法数为(3!)3,∴总数为(3!)×(3!)3=(3!)4,故选C.评析本题主要考查计数原理的基础知识,考查学生分析、解决问题的能力.13.(2012安徽理,10,5分)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3B.1或4C.2或3D.2或4答案D由题意及C62=15知只需少交换2次.记6位同学为A1、A2、A3、A4、A5、A6,不妨讨论①A1少交换2次,如A1未与A2、A3交换,则收到4份纪念品的同学仅为A2、A3 2人;②A1、A2各少交换1次,如A1与A3未交换,A2与A4未交换,则收到4份纪念品的同学有4人,为A1、A2、A3、A4.故选D.14.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案B分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.思路分析小明到老年公寓,需分两步进行,先从E到F,再从F到G,分别求各步的最短路径条数,再利用分步乘法计数原理即可得结果.15.(2016课标Ⅲ,12,5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案C当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…,a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C41=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C31=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任一个为0均可,有C21=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C31=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C21=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.思路分析根据题意可知a1=0,a8=1,进而对a2,a3,a4取不同值进行分类讨论(分类要做到不重不漏),从而利用分类加法计数原理求出不同的“规范01数列”的个数.16.(2018浙江,16,4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)答案 1 260解析本小题考查排列、组合及其运用,考查分类讨论思想.含有数字0的没有重复数字的四位数共有C52C31A31A33=540个,不含有数字0的没有重复数字的四位数共有C52C32A44=720个,故一共可以组成540+720=1 260个没有重复数字的四位数.易错警示数字排成数时,容易出错的地方:(1)数字是否可以重复;(2)数字0不能排首位.17.(2015广东理,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案 1 560解析∵同学之间两两彼此给对方仅写一条毕业留言,且全班共有40人,∴全班共写了40×39=1 560条毕业留言.18.(2013北京理,12,5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是.答案96解析5张参观券分成4份,1份2张,另外3份各1张,且2张参观券连号,则有4种分法,把这4份参观券分给4人,则不同的分法种数是4A44=96.19.(2013大纲全国理,14,5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)答案480解析先将除甲、乙两人以外的4人排成一行,有A44=24种排法,再将甲、乙插入有A52=20种,所以6人排成一行,甲、乙不相邻的排法共有24×20=480种.20.(2013浙江理,14,4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).答案480解析从左往右看,若C排在第1位,共有排法A55=120种;若C排在第2位,共有排法A42·A33=72种;若C排在第3位,则A、B可排C的左侧或右侧,共有排法A22·A33+A32·A33=48种;若C排在第4,5,6位时,其排法数与排在第3,2,1位相同,故共有排法2×(120+72+48)=480种.21.(2011北京理,12,5分)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有个.(用数字作答)答案14解析解法一:数字2只出现一次的四位数有C41=4个;数字2出现两次的四位数有C42C22=6个;数字2出现三次的四位数有C43=4个.故总共有4+6+4=14个.解法二:由数字2,3组成的四位数共有24=16个,其中没有数字2的四位数只有1个,没有数字3的四位数也只有1个,故符合条件的四位数共有16-2=14个.评析本题考查排列组合的基础知识,考查分类讨论思想,解题关键是准确分类,并注意相同元素的排列数等于不同元素的组合数.属于中等难度题.。

排列与组合的计算综合练习题

排列与组合的计算综合练习题

排列与组合的计算综合练习题排列与组合是数学中常用的计算方法,用于解决不同对象的排列和组合问题。

通过这些计算方法,我们可以求出不同对象排列的方式以及从一组对象中选取特定数量的组合方式。

本文将为您提供一些排列与组合的综合练习题,以帮助您更好地理解和运用这些计算方法。

练习题1:桌上有7本不同的书,你需要选取其中3本放入书包中。

请问有多少种不同的选择方式?解答1:这是一个组合问题,我们需要从7本书中选取3本放入书包中。

根据组合的计算公式,可以得到选择方式的总数为C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = 7 * 6 * 5 / (3 * 2 * 1) = 35种。

练习题2:某班级有10个学生,其中3个学生参加了运动会,请问他们站成一排的方式有多少种?解答2:这是一个排列问题,我们需要计算3个学生排成一排的方式数。

根据排列的计算公式,可以得到他们排成一排的总数为P(3, 3) = 3! = 3 * 2 * 1 = 6种。

练习题3:小明准备选择自己的生日庆祝礼物,他在一家商场看中了8本图书和5款电子产品,但他最多只能选购3样商品。

请问他有多少种不同的购买方式?解答3:这是一个排列与组合相结合的问题,我们需要计算从8本图书和5款电子产品中选择3样商品的方式数。

首先,我们可以从8本图书中选取任意数量的商品,然后再从5款电子产品中选取剩余的数量。

根据排列与组合相乘的原则,可以得到购买方式的总数为C(8, 0) * C(5, 3) + C(8, 1) * C(5, 2) + C(8, 2) * C(5, 1) + C(8, 3) * C(5, 0) = 1 * 10 +8 * 10 + 28 * 5 + 56 * 1 = 10 + 80 + 140 + 56 = 286种。

练习题4:有6个人参加某项比赛,其中3个人获得了奖品,请问他们获得奖品的方式有多少种?解答4:这是一个组合问题,我们需要计算从6个人中选取3个获得奖品的方式数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计数原理专题复习(二)排列与组合
——实验中学
课后作业
一、选择题
1.若A2n=132,则n等于()
A.11 B.12
C.13 D.14
答案 B
解析因为A2n=132,
所以n(n-1)=132,n2-n-132=0,
所以n=12或n=-11(舍去).
2.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有()
A.A34种B.A33A13种
C.C24A33种D.C14C13A33种
答案 C
解析先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C24A33种.
3.某市正在建设最具幸福感城市,原计划修建7个河滩主题公园.为提升城市品位、升级公园功能,打算减少2个河滩主题公园,两端河滩主题公园不在调整计划之列,相邻的两个河滩主题公园不能同时被调整,则调整方案的种数为() A.4 B.8 C.6 D.12
答案 C
解析利用间接法,任选中间5个的2个,再减去相邻的4个,故有C25-4=6(种),故选C.
4.2017年的3月25日,中国国家队在2018俄罗斯世界杯亚洲区预选赛12强战小组赛中,在长沙以1比0力克韩国国家队,赛后有六名队员打算排成一排照相,其中队长主动要求排在排头或排尾,甲、乙两人必须相邻,则满足要求的排法有()
答案 C
解析 根据题意,分3步进行分析:
①队长主动要求排在排头或排尾,则队长有2种站法;
②甲、乙两人必须相邻,将2人看成一个整体,考虑2人的左右顺序,有A 2
2=2(种)
情况;
③将甲、乙整体与其余3人进行全排列,有A 44=24(种)情况.
则满足要求的排法有2×2×24=96(种). 故选C.
5.登山运动员10人,平均分为两组,其中熟悉道路的有4人,每组都需要2人,那么不同的分配方法种数是( ) A .30 B .60 C .120 D .240 答案 B
解析 先将4个熟悉道路的人平均分成两组,有C 24C 2
2
A 22种,再将余下的6人平均分
成两组,有C 36C 33A 22种,然后这四个组自由搭配还有A 2
2种,故最终分配方法有C 24C 36A 22

60(种).
6.在某次针对重启“六方会谈”的记者招待会上,主持人要从5名国内记者与4名国外记者中选出3名记者进行提问,要求3人中既有国内记者又有国外记者,且国内记者不能连续提问,不同的提问方式有( ) A .180种 B .220种 C .260种 D .320种 答案 C
解析 若3人中有2名中国记者和1名国外记者,则不同的提问方式的种数是C 25
C 14A 2
2=80,
若3人中有1名中国记者和2名国外记者,则不同的提问方式的种数是C 15C 24A 33=
180,
故所有不同的提问方式的种数是80+180=260,故选C.
7.某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法( )
答案 C
解析①P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大人,有A33=6(种)情况.
②P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大人,有A33×A22=12(种)情况.
③P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩共有C23×2=6(种)情况.
④P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C13=3(种)情况,则共有6+12+6+3=27(种)情况.
8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同发言顺序的排法种数为()
A.360 B.520 C.600 D.720
答案 C
解析根据题意,可分两种情况讨论:①甲、乙两人中只有一人参加,有C12·C35·A44=480(种)情况;②甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙两人的发言相邻的情况有C22·C25·A33·A22=120(种).故不同发言顺序的排法种数为480+240-120=600.
二、填空题
9.某大厦一层有A,B,C,D四部电梯,现有3人在一层乘坐电梯上楼,其中恰有2人乘坐同一部电梯,则不同的乘坐方式有________种.(用数字作答)
答案36
解析由题意得,不同的乘坐方式有C23C24A22=36种.
10.现安排甲、乙、丙、丁、戊5名同学参加某项服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是________.
答案126
解析按从事司机工作的人数进行分类:
①有1人从事司机工作:C13C24A33=108(种);
②有2人从事司机工作:C23·A33=18(种).
∴不同安排方案的种数是108+18=126.
11.连接正三棱柱的6个顶点,可以组成________个四面体.
答案12
解析从正三棱柱的6个顶点中任取4个,有C46种方法,其中4个点共面的有3种情况,故可以组成C46-3=12(个)四面体.
12.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.
答案8
解析首先排两个奇数1,3,有A22种排法,再在2,4中取一个数放在1,3之间,有C12种排法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.
13.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为________.
答案 1 560
解析先把6名技术人员分成4组,每组至少一人.若4个组的人数按3,1,1,1分
配,则不同的分配方案有C36C13C12C11
A33=20(种).
若4个组的人数为2,2,1,1,则不同的分配方案有C26C24
2!
×
C12
2!
=45(种).
故所有分组方法共有20+45=65(种).
再把4个组的人分给4个分厂,不同的方法有65A44=1 560(种).
三、解答题
14.有甲、乙、丙、丁、戊5名同学,求:
(1)5名同学站成一排,有多少种不同的方法?
(2)5名同学站成一排,要求甲、乙必须相邻,丙、丁不能相邻,有多少种不同的方法?
(3)将5名同学分配到三个班,每班至少1人,共有多少种不同的分配方法?
解(1)有A55=120(种)不同的方法.
(2)5名同学站成一排,要求甲、乙必须相邻,丙、丁不能相邻,故有A22A22A23=24(种)
不同的方法.
(3)按人数分配方式分类:
①3,1,1,有C35C12C11
A22A
3
3
=60(种)方法;
②2,2,1,有C25C23
A22A
3
3
=90(种)方法.
故共有60+90=150(种)分配方法.
15.4位同学参加辩论赛,比赛规则如下:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0分,则这4位同学有多少种不同的得分情况?解本题分两种情况讨论.
(1)如果4位同学中有2人选甲,2人选乙.若这4位同学的总分为0分,则必须是选甲的2人一人答对,另一人答错,选乙的2人一人答对,另一人答错.有C24A22A22=24(种)不同的情况.
(2)如果4位同学都选甲或者都选乙.若这4位同学的总分为0分,则必须是2人答对,另2人答错,有C12C24C22=12(种)不同的情况.
综上可知,一共有24+12=36(种)不同的情况.
16.(12分)用0,1,2,3,4这五个数字组成无重复数字的自然数.
(1)在组成的三位数中,求所有偶数的个数;
(2)在组成的三位数中,若十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;
(3)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.
解(1)将组成的三位数中所有偶数分为两类,
①若个位数为0,则共有A24=12(个);
②若个位数为2或4,则共有2×3×3=18(个).
故共有30个符合题意的三位数.
(2)将这些“凹数”分为三类:
①若十位上的数字为0,则共有A24=12(个);
②若十位上的数字为1,则共有A23=6(个);
③若十位上的数字为2,则共有A22=2(个).
故共有12+6+2=20(个)符合题意的“凹数”.
(3)将符合题意的五位数分为三类:
①若两个奇数数字在万位和百位上,则共有A22A33=12(个);
②若两个奇数数字在千位上和十位上,则共有A22A12A22=8(个);
③若两个奇数数字在百位和个位上,则共有A22A12A22=8(个).故共有12+8+8=28(个)符合题意的五位数.。

相关文档
最新文档