八年级数学下册_第一章

合集下载

北师大版八年级下册数学 第一章 三角形的证明 等腰三角形(第4课时)

北师大版八年级下册数学 第一章 三角形的证明  等腰三角形(第4课时)
同理可得△AEF≌△CFD, ∴EF=FD,∴EF=ED=FD, ∴△DEF为等边三角形.
课堂小结
等腰三角形 的拓展
等边三角形 的判定
三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角等于60°的等腰三角形是等边三角形
特殊的直角三 角形的性质
在直角三角形中, 如果有一个锐角等于30°,那 么它所对的直角边等于斜边的一半
探究新知
方法总结 选用等边三角形判定方法的技巧 (1)如果已知三边关系,则选用等边三角形定义来判定. (2)若已知三角关系,则选用三角相等的三角形是等边三 角形来判定. (3)若已知是等腰三角形,则选用有一个角是60°的等腰 三角形是等边三角形来判定.
巩固练习
变式训练
在△ABC中,∠A=60°,要使△ABC是等边三角形, 则需添加的一个条件是 AB=AC或∠B=∠C .
证明:∵△ABC为等边三角形, ∴∠BAC=∠ABC=60°,AB=AC=BC, ∴∠EAF=∠EBD=120°, ∵BE=CD,∴BE+AB=BC+CD,即AE=BD,
课堂检测
BE = AF, 在△AEF和△BDE中, ∠EBD =∠EAF, ∴△AEF≌△BDE(SASB),D∴=EFA=EE,D,
证明:∵AD∥BC,∠A=120°,∴∠A+∠ABC=180°. 即∠ABC=180°-∠A=180°-120°=60°, ∴∠ABD=∠DBC=30°. ∴△BDC是直角三角形(∠又BD∵C∠=9C0=°60).°, 又∵CD=4 cm,∴BC=2CD=2×4=8(cm).
课堂检测
拓广探索题
如图:△ABC是等边三角形,点D,E,F分别在BC,AB,CA边延 长线上,且BE=AF=CD. 求证:△DEF是等边三角形.

苏科版八下数学第一章

苏科版八下数学第一章

苏科版八下数学第一章第一章:图形的认识一、图形的概念图形在我们生活中无处不在,从日常生活中的各种物体到数学课本中的各种图形,都能见到图形的存在。

图形是由一条或多条线段组成的形状,根据线段的不同排列方式,可以分成不同的种类,如直线、封闭图形等。

二、图形的分类1. 直线:直线是由无限多个点构成的,延伸方向上不会结束的线段。

直线有无数种不同的形态,如水平直线、垂直直线等。

2. 封闭图形:封闭图形是由若干个线段组成的,形成一个封闭的区域,如三角形、矩形、圆等。

3. 多边形:多边形是指由若干个边和角组成的图形,最常见的多边形有三角形、四边形、五边形等。

4. 圆形:圆形是一个封闭的形状,由一个圆心和一条半径构成,圆形有无限多个点,且所有点到圆心距离相等。

5. 弧形:弧形是圆周上的一部分,由圆心、半径和夹角决定,弧形可以分为圆弧、扇形等。

三、图形的性质1. 直线的性质:直线有方向性,可以上下左右斜向任意延伸,直线上的所有点到另一点的距离相等。

2. 封闭图形的性质:封闭图形的周长是各边的长度之和,面积是图形内部的面积,封闭图形底部和高的关系可以用来计算面积。

3. 多边形的性质:多边形的周长是各边的长度之和,多边形的面积可以通过划分成小三角形、矩形等简单图形,然后计算各个简单图形的面积最后求和得到。

4. 圆形的性质:圆的周长是圆周长,面积是圆的内部面积,圆弧、扇形的问题可以通过角度和半径关系来计算。

综上所述,图形是数学中重要的概念之一,通过对图形的认识和性质的了解,可以更好地应用数学知识解决实际问题。

在学习数学的过程中,要注重对图形的认知和理解,提高解决问题的能力和思维水平。

北师大版八年级下册数学《第一章复习》教学设计

北师大版八年级下册数学《第一章复习》教学设计

北师大版八年级下册数学《第一章复习》教学设计一. 教材分析北师大版八年级下册数学《第一章复习》主要是对八年级上册的知识进行复习,包括实数、不等式、函数、几何等知识点。

本章的目的是使学生对已学的知识有一个全面、深入的理解,并为后续的学习打下坚实的基础。

教材通过大量的例题和练习题,帮助学生巩固知识点,提高解题能力。

二. 学情分析八年级的学生已经学习了实数、不等式、函数、几何等知识点,对数学有了一定的认识和理解。

但是,由于学习时间的推移,部分学生可能对一些知识点的理解和掌握有所遗忘。

因此,在复习过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。

三. 教学目标1.知识与技能:使学生对实数、不等式、函数、几何等知识点有一个全面、深入的理解,提高解题能力。

2.过程与方法:通过复习,培养学生独立思考、合作交流的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心。

四. 教学重难点1.实数的性质和运算2.不等式的解法和应用3.函数的性质和图像4.几何图形的性质和计算五. 教学方法采用讲练结合的教学方法,通过讲解、示范、练习、讨论等方式,引导学生主动参与学习,提高学生的学习兴趣和积极性。

六. 教学准备1.教材和教学参考书2.PPT和教学课件3.练习题和测试题4.板书和教学工具七. 教学过程1.导入(5分钟)通过提问的方式,了解学生对已学知识的掌握情况。

然后,教师简要介绍本章的复习内容,激发学生的学习兴趣。

2.呈现(15分钟)教师利用PPT和教学课件,呈现本章的主要知识点,包括实数的性质和运算、不等式的解法和应用、函数的性质和图像、几何图形的性质和计算。

在呈现过程中,教师引导学生积极参与,提出问题和观点。

3.操练(20分钟)教师给出一些练习题,让学生独立完成。

然后,教师选取部分学生的作业进行讲解和示范,引导学生掌握解题方法和技巧。

对于学生的错误,教师要及时指出并给予纠正。

4.巩固(10分钟)教师给出一些测试题,让学生在规定时间内完成。

八年级下册数学第一章

八年级下册数学第一章

八年级下册数学第一章------------------------------------------作者xxxx------------------------------------------日期xxxx八年级下册数学第一章《证明二》章节复习专题一、全等三角形知识整理1、全等三角形的判定公理①:三边的两个三角形全等;公理②:两边及其夹角的两个三角形全等;公理③:的两个三角形全等;推论:的两个三角形全等。

2、全等三角形的性质公理:全等三角形的对应边、对应角。

典例分析例1、(2010年吉林)如图1,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF,垂足为D,且AD平分∠FAC,请写出图中的两对全等三角形,并选择其中一对加以证明。

FCAEBD例2、已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.(两种方法)专题二、等腰三角形知识整理【精品文档】1、等腰三角形的性质:(1)定理:等腰三角形的两个底角,简称“”;(2)推论:等腰三角形的顶角平分线、、互相重合,简称“”;2、等腰三角形的判定:的三角形是等腰三角形,简称“”;3、等边三角形的性质:等边三角形的三个内角,且每个内角都等于。

4、等边三角形的判定:(1)有一个角为60°的是等边三角形;(2)三个角都的三角形是等边三角形。

典例分析例1、已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF△是等腰三角形.例2、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE 相交于F,若BF=AC,求∠ABC的度数例3、如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠BAC的平分线于点D,求证:MD=MA.例4、如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE 和EC的数量及位置关系,并证明你的猜想.【精品文档】【精品文档】图2 图1AB CDOOD CBA例5、如右图,已知△ABC 和△BDE 都是等边三角形,求证:AE =CD .例6、如图,以等腰直角三角形ABC 的斜边AB为边作等边△ABD ,连接DC ,以DC 为边作等边△DCE ,B 、E 在C 、D 的同侧,若AB=2,求BE 的长.例7、如图1、图2,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90º,(1)在图1中,AC 与BD 相等吗?请说明理由(4分)(2)若△COD 绕点O 顺时针旋转一定角度后,到达图2的位置,请问AC 与BD 还相等吗?为什么?(8分)例8、如图,在△ABC 中,AB=AC 、D 是AB 上一点,E 是AC 延长线上一点,且CE=BD ,连结DE 交BC 于F 。

湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

感悟新知
知1-练
解题秘方:利用直角三角形的性质与判定证明即可 .
证明: ∵∠ ACB=90°,∴∠ A+ ∠ B=90° . ∵∠ ACD= ∠ B,∴∠ A+ ∠ ACD=90° . ∴△ ACD 为直角三角形,且∠ CDA=90° . ∴ CD ⊥ AB.
感悟新知
拓展 满足下列条件的三角形也是直角三角形: (1)在三角形中,两个内 角之和等于第三个内角; (2)在三角形中,两个内角之差等于第三个内角.
知2-讲
感悟新知
特别提醒
知2-讲
◆直角三角形斜边上的中线把直角三角形分成两个
面积相等的等腰三角形.
◆应用这个性质时要注意“直角三角形” 这一前提,
切不可忽略这一前提而在其他任意三角形中生搬
硬套 .
感悟新知
知2-讲
2. 拓展:如果三角形一边上的中线等于这条边的一半,那么 这个三角形是直角三角形 . 数学语言: 如图 1.1-5,在△ ABC 中,
∵ CD=BD=AD=12 AB, ∴∠ ACB=90°,即△ ABC 是直角三角形 .
感悟新知
知2-练
例4 如图 1.1-6, BD, CE 是△ ABC 的两条高, M, N 分别是 BC, DE 的中点 . 求证: MN ⊥ DE.
感悟新知
知2-练
解题秘方:紧扣“N 为 DE 的中点”这一条件和 “MN ⊥ DE”这一结论,建立等腰三 角形“三线合一”模型, 结合直角三 角形斜边上中线的性质求解 .
在 Rt △ CDB 中,∵ M 为斜边 BC 的中点,

DM=
1 2
BC.

Rt

BEC
中,∵
M

北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定

北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定
A
B
C
画图方法视频(点击文字
播放)
画图思路
N
A
B
C
M
C′
(1)先画∠M C′ N=90°
画图思路
N
A
B
C
M
B′
C′
(2)在射线C′M上截取B′C′=BC
画图思路
N
A
A′
B
C
M B′
C′
(3)以点B′为圆心,AB为半径画弧,交射线C′N于A′
画图思路
N
A
A′
B
C
M B′
C′
(4)连接A′B′
思考:通过上面的探究,你能得出什么结论?
(2)当P运动到与C点重合时,AP=AC. 在Rt△ABC与Rt△QPA中, ∵PQ=AB,AP=AC, ∴Rt△QAP≌Rt△BCA(HL), ∴AP=AC=10cm, ∴当AP=5cm或10cm时,△ABC才能和△APQ全等.
【方法总结】判定三角形全等的关键是找对应边和对应角,由于本 题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏 解.
B
A
C
如图,Rt△ABC中,∠C =90°,直角边是_____、_____,A斜C边是
__B__C__.
AB
前面学过的四种判定三角形全等的方法,对直角三角形是否适用?
口答:
A
A′
1.两个直角三角形中,斜边和一个锐 角对应相等,这两个直角三角形全等 吗?为什么?
B
C B′
C′
2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三
BC=B′C′,
∴Rt△ABC ≌ Rt△ A′B′个直角三角形是否全等,不全等的画“×”,

数学八年级下册北师大版第1章 2. 第2课时 斜边、直角边定理

数学八年级下册北师大版第1章  2.  第2课时 斜边、直角边定理

7
7
解:有 3 对,分别是△ABE≌△ACD,△ADO≌△AEO, △DOB≌△EOC;
∵CD⊥AB 于点 D,BE⊥AC 于点 E, ∴∠AEB=∠ADC=90°,
∠ADC=∠AEB 在△ADC 和△AEB 中∠BAC=∠CAB,
AB=AC ∴△ABE≌△ACD(AAS).
8
8
如图,AD 是△ABC 的角平分线,DE⊥AB,垂足为 E, DF⊥AC,垂足为 F,你能找出一对全等的三角形吗?为什么它们 是全等的?
A.HL C.ASA
B.SAS D.AAS
11
11
1.如图,若要用“HL”证明 Rt△ABC≌Rt△ABD,则还需补
充条件( B )
A.∠BAC=∠BAD B.AC=AD 或 BC=BD C.AC=AD 且 BC=BD D.以上都不正确
12
12
2.如图,AD=BC,∠C=∠D=90°,下列结论中不成立的
4
4
【对点练习 1】 下列说法正确的是( C )
A.两边及其中一边的对角分别相等的两个三角形全等 B.三角形的外角等于它的两个内角的和 C.斜边和一条直角边相等的两个直角三角形全等 D.两条直线被第三条直线所截,内错角相等
5
5
学点二 直角三角形全等的综合判定 如图,AB=AC,BE⊥AC 于 E,CF⊥AB 于 F,BE、
是( C )
A.∠DAE=∠CBE B.CE=DE C.△DAE 与△CBE 不一定全等 D.∠1=∠2
13
13
3.下面关于直角三角形全等的判定,不正确的是( C )
A.有一锐角和一边对应相等的两个直角三角形全等 B.有两边对应相等的两个直角三角形全等 C.有两角对应相等,且有一条公共边的两个直角三角形全等 D.有两角和一边对应相等的两个直角三角形全等

湘教版八年级数学下册第一章《 直角三角形的性质和判定(Ι)》公开课课件

湘教版八年级数学下册第一章《 直角三角形的性质和判定(Ι)》公开课课件
图1-8
解 轮船在航行过程中, 如果与A岛的距离始终大于20海里, 则轮船就不会触暗礁.
在图1-8中,过A点作AD⊥OB,垂足为D.
在Rt△AOD中,
AO=30 3海里,∠AOD=30°.
于是AD =
1 2
A
O

= 1230 3
≈ 25.98( 海里 ) .
60°
>20(海里)
所以轮船不会触礁.
30 3
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/302021/7/302021/7/302021/7/307/30/2021
• 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月30日星期五2021/7/302021/7/302021/7/30
图1-5
证明:因 所为 以C ∠D 1= ∠1 2AA ,B = (等B D 边= 对A 等D ,角)
∠2=∠B .
根据三角形内角和性质,有
∠A+∠B+∠ACB =180°,
即得∠A+∠B+∠1+∠2=180°,
2(∠A+∠B)=180°.
图1-5
所以
∠A+∠B =90°.
根据直角三角形判定定理,所以△ABC是直角三角形.
练习
1.在Rt△ABC中,斜边上的中线CD=2.5cm ,则斜边 AB的长是多少?
解 AB=2CD=2×2.5=5(cm).
2.如图,AB∥CD,∠BAC和∠ACD的平分线相交于H 点,E为AC的中点,EH=2. 那么△AHC是直角三角 形吗?为什么?若是,求出AC的长.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ △ADB≌△ADC
∴ ∠B=∠C
B
D
C
1 .等腰三角形的两个底角相等.
等边对等角:
A
∵AB=AC
∴∠ B=∠C
B
C
2.等腰三角形顶角的平分线,底边上的中
线,底边上的高互相重合.
A
(等腰三角形的三线合一)
3.等腰三角形是轴对称图形, 对称轴就是顶角的平分线 (底边上的中线,底边上的 B D C 高)所在的直线。
1.在△ABC中,AB = AC,∠A = 50°,
则∠B = 65° .
A
2.在△ABC中,AB = AC,∠B= 50°,
则∠A= 80° .
3.等腰三角形一个角为70°,它的另
外两个角为_7_0_°__,4_0_°__或_5_5_°__,55°
B
C
4.等腰三角形一个角为120°,它 的另外两个角为_3_0_°__,3_0°
法,得出与定义,公理、已证定理或已知条件 相矛盾的结果; 3.结论:由矛盾的结果判定假设不正确,从而 肯定命题的结论正确.
反证法是一种重要的数学证明方法.在解决某 些问题时常常会有出人意料的作用.
“原名” 知多少
公理:公认的真命题称为公理(axiom). 证明:除了公理外,其它真命题的正确性都通过推理的方法证实.推 理的过程称为证明. 定理:经过证明的真命题称为定理(theorem). 推论:由一个公理或定理直接推出的定理,叫做这个公理或定理的 推论(corollary).推论可以当作定理使用.
∴a2+b2=c2
大正方形的面积可以表示为 c2 ;
也可以表示为 4•ab/2+(b- a)2
c a
∵ c2= 4•ab/2 +(b-a)2 c2 =2ab+b2-2ab+a2 c2 =a2+b2
c a
c b
∴a2+b2=c2
等(AAS).
❖ 综上所述,直角三角形全等的判定条件可归纳为:
一边及一个锐角对应相等的两个直角三角形全等;
两边对应相等的两个直角三角形全等;
切记!!!
命题:两边及其中一边的对角对应
相等的两个三角形不一定全等.
即(SSA)是一个假冒产品!!!
随堂测试
1、判断 (1)、两个全等形一定能够重合( ) (2)、两个图形全等,所有对应元素都相等( ) (3)、三个角对应相等的两个三角形全等( ) (4)、两个三角形全等,对应顶点所在的角一定是
直角三角形全等的判定方法
❖ 直角三角形全等的判定方法:
定理:斜边和一条直角边对应相等的两个直角三角形全
等(斜边,直角边或HL).
公理:三边对应相等的两个三角形全等(SSS).
公理:两边及其夹角对应相等的两个三角形全等(SAS).
公理:两角及其夹边对应相等的两个三角形全等(ASA).
推论:两角及其中一角的对边对应相等的两个三角形全
2、在△ABC中,已知:AB=AC
①、AB=2,BC=3,则△ABC的周长为 7

②、若有两边长为2、4,则△ABC的周长为 10 ;
③、若有两边长为2、3,则△ABC的周长为

7或8
例1、如图,在△ABC中,AB = AC,点D在 AC上,且BD=BC=AD.
(1)图中共有哪些等腰三角形. (2)求△ABC各内角的度数。
∴ ∠BDA = ∠CDA = 90° 在Rt △BAD与Rt △CAD中
AB = AC
AD = AD
∴ Rt△ADB≌ Rt△ADC B
D
C
∴ ∠B=∠C
已知:在△ABC中,AB=AC,求证∠B=∠C
证明:作AD平分∠BAC
A
∴ ∠BAD = ∠CAD
在△ADB和△ADC中
AB = AC ∠BAD = ∠CAD AD = AD
A EC
达标测试
4、如图△ABD≌ △EBC, AB=3cm,BC=5cm,求DE的长
解: ∵△ABD≌ △EBC ∴AB=EB、BD=BC ∵BD=DE+EB ∴DE=BD-EB
=BC-AB =5-3=2cm
1、什么是全等形、全等三角形、全等三角形的 对应顶点、对应边、对应角?
2、表示三角形全等时应注意什么?
有对顶角的,对顶角是对应角.
在找全等三角形的对应元素时一般有什 么规律?
A
A
B
C E
P
B
D
F
C
D
一对最长的边是对应边,一对最短的边是对应边. 一对最大的角是对应角,一对最小的角是对应角.
规律总结
有公共边的,公共边是对应边. 有公共角的,公共角是对应角. 有对顶角的,对顶角是对应角. 一对最长的边是对应边, 一对最短的边是对应边. 一对最大的角是对应角, 一对最小的角是对应角.
A
练习:如图在△ABC中,AB=AC, 点D、E在BC上,且AD=AE, 求证:BD=CE
B
DF E
C
证明:作BC边上的高AF也是DE边上的高 ∵ AB=AC ∴ BF=CF (三线合一) ∵ AD=AE ∴ DF=EF(三线合一) ∴ BF-CF=CF-EF ∴ BD=CE
1、如图,△ABC是等腰直角三角形,(AB=AC, ∠BAC=90°),AD是底边BC上的高,
3、识别全等三角形的对应边、对应角的关键是正 确识别它们的对应顶点。
2.等腰三角形
生活中你能遇到的等腰三角 形?
什么是等腰三角形?
有两边相等的三角形叫等腰三角形.
等腰三角形中,相等的两边叫做腰,
A
另一边叫做底边。

两腰的夹角叫做顶角。
顶 角

腰和底边的夹角叫做底角。 底角 底角
B
C
底边
已知:在△ABC中,AB=AC,求证∠B=∠C
反证法
在证明时,先假设命题的结论不成立,然后推 导出与定义,公理、已证定理或已知条件相矛 盾的结果,从而证明命题的结论一定成立.这 种证明方法称为反证法(reduction to
a用bs反ur证di法ty证) 明的一般步骤: 1.假设:先假设命题的结论不成立; 2.归谬:从这个假设出发,应用正确的推论方
解: (1) △ABC、△BDC、△ABD
x
(2)设∠A=x
x 2x
2x
例2、如图,在△ABC中,AB=AC,BD=CD, AD的延长线交BC于E.求证:AE⊥BC.
证明:在△ADB和△ADC中
AB AC
BD
CD
AD AD
∴ △ADB≌△ADC
∴ ∠BAD=∠CAD
又∵ AB=AC ∴ AE⊥BC
1.全等三角形
教学目标:
知识与技能: 1,了解全等形及全等三角形 的概念 2,理解全等三角形的性质
3,掌握寻找对应边与对应角 的方法,能运用全等三角形的 性质解决简单的问题。
回忆:举出现实生活中能够完全重合的 图形的例子? 同一张底片洗出的同大小照片是 能够完全重合的;
能够完全重合的两个图形叫做全等图形.
b)
1 2
(a 2
2ab
b2
)
1 2
a2
1 2
b2
ab
c
a
s2
1 2
ab
1 2
ab
1 2
c2
ab
1 2
c2
s1 s2
b
1 2
a2
1 2
b2
ab
ab
1 2
c2
a2 b2 c2
大正方形的面积可以表示为 (a+b)2 ; 也可以表示为 c2 +4•ab/2
c a
b
c a
b
c a
b
c a
b
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab
对应角,对应边所夹的角一定是对应角, 对应角所对的边也是对应边。 ( )
2、如图所示,△ABC≌△DCB,则观察图形一定有下
列关系成立:
⑴ AB = ___,AC = ____;
A
D
⑵∠A = ____,∠ABC = _____,
∠ACB =___.
B
C
3、如图△ ABD ≌ △CDB,若AB=4, AD=5,BD=6,则BC= ,CD= 。
求出∠B 、∠C 、∠BAD 、∠DAC的度数,图中有 哪些相等的线段?
A
A
B D
1题
CB
D
C
2题
2、如图在△ABC中,AB=AD=DC, ∠BAD=26°, 求∠B和∠C
答案:1、∠B=∠C=∠BAD=∠DAC=45° AB=AC BD=CD=AD
2、∠B=77° ∠C=38.5°
知识内容:
性质:
全等图形的特征 全等图形的形状和大小都相同
概念
A
D
B
CE
F
能够完全重合的两个三角形,叫 全等三角形.
记作:△ABC≌△DEF
读作 :△ABC全等于△DEF 。注:对应顶点要在对应的位置
互相重合的顶点叫对应顶点.
. 互相重合的边叫对应边
互相重合的角叫对应角.
全等三角形的性质: 全等三角形对应边相等,对应 角相等。
1)等腰三角形是轴对称图形, 2)等腰三角形的两底角相等(等边对等角) 3)等腰三角形的底边上的中线,底边上的高和顶角平分线、互 相重合(三线合一)
过程方法:
数学思想转 化
其他收获
实验操作——得到图形 实验探究——发现结论 推理论证——证明结论
转化 分类
如图,在高为2米,坡角为30°
的楼梯表面铺毯,地毯长度约为
相关文档
最新文档