实验三四叠加原理的验证戴维宁定理的验证

合集下载

工作报告叠加原理和戴维南定理实验报告

工作报告叠加原理和戴维南定理实验报告

工作报告-叠加原理和戴维南定理实验报告工作报告-叠加原理和戴维南定理实验报告一、实验目的1.学习和掌握叠加原理和戴维南定理的基本概念和原理。

2.通过实验,深入理解叠加原理和戴维南定理的实际应用。

3.提高实验技能和动手能力,掌握基本的电路分析和设计方法。

二、实验原理1.叠加原理:在线性电路中,多个电源共同作用时,各电源单独作用产生的电压(或电流)之和等于它们共同作用时产生的电压(或电流)。

2.戴维南定理:任何一个有源二端网络,都可以等效为一个电源电动势E和内阻R串联的形式。

其中,电动势E等于开路电压,内阻R等于网络中所有电源为零时,从两端看向网络的等效电阻。

三、实验步骤1.准备实验器材:电源、电阻器、电压表、电流表、电键、导线等。

2.搭建实验电路:根据叠加原理和戴维南定理的原理,搭建相应的电路。

3.进行实验测量:首先,分别测量各电源单独作用时的电压(或电流);然后,同时作用时测量总的电压(或电流)。

4.分析实验数据:根据测量数据,验证叠加原理的正确性,并根据戴维南定理计算等效电动势和内阻。

5.讨论实验结果:对实验结果进行分析和讨论,评估误差和实验条件的影响。

四、实验结果及分析1.数据记录:2.结果分析:通过实验测量,我们发现总电压(15V)等于三个电源电压之和(10V + 5V + 8V = 23V),总电流(4.5A)也等于三个电源电流之和(2A + 1A +1.5A = 4.5A),验证了叠加原理的正确性。

同时,根据戴维南定理,等效电动势E等于开路电压(15V),等效内阻R等于网络中所有电源为零时,从两端看向网络的等效电阻。

在这个实验中,由于只有一个电阻器,所以等效内阻R等于该电阻器的阻值。

五、结论总结通过本次实验,我们验证了叠加原理和戴维南定理的正确性,并掌握了它们的实际应用。

实验结果表明,在线性电路中,多个电源共同作用时,各电源单独作用产生的电压(或电流)之和等于它们共同作用时产生的电压(或电流),这为分析和设计电路提供了重要的理论依据。

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告实验报告:叠加定理和戴维南定理
引言:
在本次实验中, 我们将介绍和应用叠加定理和戴维南定理两个电路原理的实验过程、结果和分析。

材料和方法:
我们使用了电流计,电压计和万用表等电学实验工具,以及运用不同的电路仿真软件如Multisim、Simetrix等,并采取多种电路组合,对系统进行测试。

结果和分析:
通过本次实验,我们可以看出叠加定理是一种简单但有效的方法,在测量复杂电路时能够快速轻松地计算出每个单独的电流和电压。

另一方面,戴维南定理可以使我们更有效地使用材料和设备,以及识别更重要的电路部分。

结论:
总的来说,本次实验是成功的。

通过应用叠加定理和戴维南定理,我们得出了精确的电路参数,测试结果符合预期,证明了这两个电路原理在电路设计中的重要性和实用性。

未来展望:
本次实验对我们进一步深入研究电路设计和电路优化提供了很好的基础。

我们还可以在此基础上,尝试更复杂的电路设计和实验,进一步加强我们的实践能力。

电路分析实验课件:叠加与戴维宁定理验证

电路分析实验课件:叠加与戴维宁定理验证
自动化与电子工程学院
二、实验原理
叠加定理
+
US–
IS
R1 I1
+
+ U–2
R2
U
=
S–
R1
I1
+
U
–2
R2+
R1
I1 IS
+
U
2–
R2
(a)原电路
(b)US单独作用 (c)IS 单独作用
I1
I1
I1
U 2
U
2
U
2
验证定理就是等式成立
二、实验原理
戴维南定理
一个含源二端网络(内部含独立电源),其对外作用可以用一 个电压源串联电阻的等效电源代替,其等效电源电压等于此二端网 络的开路电压,其等效内阻是二端网络内部各独立电源置零后所对 应的无源二端网络的输入电阻。
二、实验原理
戴维南定理
有源 二端 网络
i a
+
u
-
bHale Waihona Puke (a)原电路Ri+
U OC
-
ia
+
u
-
b
(b)戴维南等效电路
二、实验原理
戴维南定理
有源
+
二端
U OC
网络
-
无源 二端 Ri 网络
(a)戴维南等效电源电压 (b)戴维南等效电阻
二、实验原理
戴维南定理
i
线性
有源

二端

网络
(a)原电路
i
Ri +
实验:叠加定理与戴维南 定理验证
一、实验目的
1. 熟悉直流电工仪器与仪表的使用方法。 2. 验证叠加定理和戴维南定理,提高定理的理解和应用能力。 3. 加深对电流和电压参考方向的理解。

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告一、实验目的1、深入理解叠加定理和戴维南定理的基本概念和原理。

2、通过实验操作,掌握运用叠加定理和戴维南定理分析电路的方法。

3、培养实验操作技能和数据处理能力,提高对电路理论的实际应用能力。

二、实验原理1、叠加定理叠加定理指出:在线性电路中,多个电源共同作用时,在任一支路中产生的电流(或电压)等于各个电源单独作用时在该支路产生的电流(或电压)的代数和。

在使用叠加定理时,需要分别考虑每个电源单独作用的情况。

当一个电源单独作用时,其他电源应视为零值,即电压源短路,电流源开路。

然后将各个电源单独作用时在该支路产生的电流(或电压)进行代数相加,得到最终的结果。

2、戴维南定理戴维南定理表明:任何一个线性有源二端网络,对外电路来说,可以用一个电压源和一个电阻的串联组合来等效替代。

其中,电压源的电压等于有源二端网络的开路电压,电阻等于有源二端网络内所有独立电源置零后所得到的无源二端网络的等效电阻。

三、实验设备1、直流稳压电源(多组输出)2、直流电流表3、直流电压表4、电阻箱5、实验电路板6、连接导线若干四、实验内容与步骤1、叠加定理实验(1)按照图 1 所示连接电路,其中 E1 = 10V,E2 = 5V,R1 =10Ω,R2 =20Ω,R3 =30Ω。

(2)测量 E1 单独作用时,各支路的电流和电压。

将 E2 短路,接通 E1,记录电流表和电压表的读数。

(3)测量 E2 单独作用时,各支路的电流和电压。

将 E1 短路,接通 E2,记录电流表和电压表的读数。

(4)测量 E1 和 E2 共同作用时,各支路的电流和电压。

同时接通E1 和 E2,记录电流表和电压表的读数。

(5)将测量结果填入表 1,验证叠加定理。

表 1 叠加定理实验数据|电源作用情况| I1(mA)| I2(mA)| I3(mA)| Uab (V)|||||||| E1 单独作用|____ |____ |____ |____ || E2 单独作用|____ |____ |____ |____ || E1、E2 共同作用|____ |____ |____ |____ ||叠加结果|____ |____ |____ |____ |2、戴维南定理实验(1)按照图 2 所示连接电路,其中有源二端网络由电阻 R1 =50Ω,R2 =100Ω,电压源 E = 20V 组成。

实验 叠加原理和戴维南定理的验证

实验  叠加原理和戴维南定理的验证

实验一、实验二叠加原理和戴维南定理的验证一、实验目的1.验证叠加原理和戴维南定理。

2.学习通用电学实验台的使用方法。

3.学习万用表、毫伏表、伏特表的使用方法。

二、实验仪器及元件1.通用电学实验台ZH—12型1台2.万用表MF—47型1快3.直流伏特表85C17(0—15V)1块4.直流毫伏表85C17(0—50mA)3块5.开关2个6.电阻若干三、实验电路图1—1 验证叠加原理电路图1—2 验证戴维南定理电路1 / 4图1—3 戴维南等效四、实验方法1.叠加原理的验证1.首先调整好直流稳压电源,用万用表直流电压档测出其输出值,使其两路电压输出分别为U1=10V,U2=12V。

2.按照实验电路图1—1接线,经过老师检查无误后,方可开始实验。

3.先将开关S1闭合,S2断开,并用短路线将cd短接,即只有电源U1单独作用,分别测量I1、I2、I3、U,并将数据填入表1—1中,测完将短路线拆除。

4.再将开关S1断开,S2闭合,并用短路线将ab短接,此时只有电源U2单独作用,分别测量I1、I2、I3、U,并将数据填入表1—1中,测完将短路线拆除。

5.然后将开关S1、S2同时闭合,测量U1、U2共同作用时的I1、I2、I3、U,并将数据填入表1—1中。

2.戴维南定理验证1.按照实验电路图1—2接线,经老师检查无误后,方可开始。

2.将开关S1、S2断开,即负载R L开路时,测此时的开路电压U0,记录伏特表读数并填入表1—2中。

然后将S1闭合,测量R L短路时的短路电流I S,记录毫安表读数并填入表1—2中,根据公式R0=U0/I S计算戴维南等效电阻R0。

3.再将S1断开,并用短路线将AB短接,用万用表欧姆档测无源二端网络EF两端的等效电阻R0,填入表1—2中并和上面的计算结果比较。

4.然后闭合S2,改变R L的阻值,并将不同R L下的I、U填入表1—3中。

5.按照实验电路图1—3接线,并按照表1—4分别改变R L的阻值,并将不同R L下的I、U填入表1—4中,然后和表1—3中的数据进行比较,验证电路图1—2、图1—3是否等效。

叠加原理与戴维南原理的验证要点

叠加原理与戴维南原理的验证要点

在输出端接入可变电阻箱(连接A、C、连接B、G)。以上面 求得的R0为中心,分别向两侧逐步改变电阻箱阻值,测量通过 RL的电流IL和电压UL,记入表2。计算各种负载下的功率。 用毫米方格纸作RL-P图。
100 150 200 250 300 350 400 450 500 600 700 800 900 100电阻获得最大功率的条件 是负载电阻RL=电源内阻RO,这是 认为负载电阻与电源内阻是相匹配 的,称为最大功率匹配,而这时负 载上获得的最大功率为:
PMAX
2 E R 2 0 L E0 2 ( RL R0 ) 4R0
实验设备
序号
1 2 3 4
实验二
叠加原理与戴维南原理 的验证
实验目的


验证叠加原理,加深对线性电路的认识。 验证戴维南定理,测量有源二端网络等效参数。 验证最大功率传递原理。
叠加原理
在有几个独立源共同作用下的线性电路中, 通过每一支路的电流或者电压,可以看成是由 每一个独立源单独作用时在该支路上所产生的 电流或电压的代数和。
表2
利用所作的RL- P图,验证当RL=RO时为 最大传递功率。
RL(Ω ) P(mW)
100 6.72
150 8.47
200 9.8
250 10.4
300 10.54
350 10.83
400 11.13
450 11
500 10.58
600 10.32
700 10.14
800 9.73
900 9.02
戴维南定理
任何一个有源二端线性网络,对于外电路 来说,可以用一个电动势为Es的理想电压源 与内阻Ro串联的电源来等效代替。其中,等 效电源的电动势Es等于该网络的开路电压Uoc, 内阻Ro等于相应无源二端网络两端的等效电 阻。

实验4:叠加定理和戴维宁定理

实验4:叠加定理和戴维宁定理

实验四 叠加定理和戴维宁定理叠加定理和戴维宁定理是分析电阻性电路的重要定理。

一、实验目的1. 通过实验证明叠加定理和戴维宁定理。

2. 学会用几种方法测量电源内阻和端电压。

3. 通过实验证明负载上获得最大功率的条件。

二、实验仪器直流稳压电源、数字万用表、导线、430/1000/630/680/830欧的电阻、可变电阻箱等。

三、实验原理1.叠加定理:在由两个或两个以上的独立电源作用的线性电路中,任何一条支路中的电流(或电压),都可以看成是由电路中的各个电源(电压源和电流源)分别作用时,在此支路中所产生的电流(或电压)的代数和。

2.戴维宁定理:对于任意一个线性有源二端网络,可用一个电压源及其内阻RS 的串联组合来代替。

电压源的电压为该网络N 的开路电压u OC ;内阻R S 等于该网络N 中所有理想电源为零时,从网络两端看进去的电阻。

3.最大功率传输定理:在电子电路中,接在电源输出端或接在有源二端网络两端的负载RL ,获得的功率为当RL=R0时四、实验内容步骤1.叠加定理的验证根据图a 联接好电路,分别测定E 1单独作用时,E 2单独作用时和E 1、E 2共同作用时电路中的电流I 1,I 2,I 3。

同时,判定电流实际方向与参考方向。

测量数据填入表4-1中。

2. 戴维宁定理的验证根据图b 联接好电路,测定该电路即原始网络的伏安特性I R L =f (U R L )。

依次改变可变电阻箱RL 分别为1K Ω、1.2K Ω、1.6K Ω、2.24K Ω、3K Ω、4K Ω、5K Ω,然后依次测量出对应RL 上的电流和电压大小,填入表4-2中。

并绘制其伏安曲线。

然后,计算其对应功率。

含源网络等效U0,R0的测定方法:a.含源消源直测法;b.开压短流测量法:R R R U R I P OC 202⎪⎪⎭⎫ ⎝⎛+==COCR U P 42max =U0,Is,R0=U0/Is。

根据上述两种方法之一测出U0,R0,从而将图b的电路可以等效成图c。

实验三 叠加定理、戴文宁定理和诺顿定理

实验三   叠加定理、戴文宁定理和诺顿定理

实验三叠加定理、戴文宁定理和诺顿定理一、实验目的(1)进一步熟悉虚拟实验,可熟练使用Pspice;(2)验证叠加定理、戴文宁定理和诺顿定理;(3)理解电路等效的意义,了解一个电路的戴文宁形式和诺顿形式的相互转二、实验内容与实验方法1、叠加定理的验证叠加定理指出:当一个线性电路中有多个电源作用时,电路中任一个电压或电流参数都等于单个电源作用时该参数的代数和。

按下图用Pspice画出电路,在本电路中共有三个电源,分别是一个12伏的电压源V1,一个24伏的电压源V2,一个10mA的电流源I1。

图3-1实验步骤(1)设置V1=12V、V2=0、I1=0。

测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第二行。

(2)设置V2=24V、V1=0、I1=0。

测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第三行。

(3)设置I1=10mA、V2=0、V1=0。

测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第四行。

(4)设置V1=12V、V2=24V、I1=10mA。

测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第五行。

表一2、文宁定理和诺顿定理对于任意一个两端口电路,可以等效为一个电压源和一个电阻的串联,这就是戴文宁定理。

而诺顿定理又指出:对于任意一个两端口电路,可以等效为一个电流源和一个电阻的并联。

根据上述的定理,对于如图3-2的电路,可以等效为图3-3的戴文宁形式,或图3-4的诺顿形式。

图3-2图3-3 图3-4实验步骤(1)按图3-2用Pspice画出电路图,在a-b两端接一个电阻R3,调节R3为100,500,1K,2K,5K,10K,20K,50K。

分别记录下在每种阻值情况下R3上的电压和流过该电阻的电流(表二第二行)。

(2)用Pspice画出电路图3-3,在a-b两端接一个电阻R3,调节R3为100,500,1K,2K,5K,10K,20K,50K。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三叠加原理的验证一、实验目的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

序号名称型号与规格数量备注1 直流稳压电源0~30V可调二路2 万用表 13 直流数字电压表 14 直流数字毫安表 15 迭加原理实验电路板 1 HE-12四、实验内容实验线路如图6-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。

图6-1 基尔霍夫/叠加原理验证1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。

2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。

用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表6-1。

测量项目实验内容U1(V)U2(V)I1(mA)I2(mA)I3(mA)U A B(V)U C D(V)U A D(V)U D E(V)U F A(V)U1单独作用U2单独作用U1、U2共同作用122U2单独作用3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表6-1。

4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表6-1。

5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表6-1。

6. 将R5(330Ω)换成二极管1N4007(即将开关K3投向二极管IN4007侧),重复1~5的测量过程,数据记入表6-2。

7. 任意按下某个故障设置按键,重复实验内容4的测量和记录,再根据测量结果判断出故障的性质。

测量项目实验内容U1(V)U2(V)I1(mA)I2(mA)I3(mA)U A B(V)U C D(V)U A D(V)U D E(V)U F A(V)U1单独作用U2单独作用0 0 0 0 0 0 0 0 U1、U2共同作用0 02U2单独作用0 12..00 0 0 0 0 0 0 0 故障2测量项目实验内容U1(V)U2(V)I1(mA)I2(mA)I3(mA)U A B(V)U C D(V)U A D(V)U D E(V)U F A(V)U1、U2共同作用五、实验注意事项1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。

2. 注意仪表量程的及时更换。

六、预习思考题1. 在叠加原理实验中,要令U 1、U 2分别单独作用,应如何操作?可否直接将不作用的电源(U 1或U 2)短接置零?2. 实验电路中,若有一个电阻器改为二极管, 试问叠加原理的迭加性与齐次性还成立吗?为什么?3.当K 1(或K 2)拨向短路侧时,如何测U FA (或U AB )? 七、实验报告1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电路的叠加性与齐次性。

2. 各电阻器所消耗的功率能否用叠加原理计算得出? 试用上述实验数据,进行计算并作结论。

3. 通过实验步骤6及分析表格6-2的数据,你能得出什么样的结论?4. 心得体会及其他。

实验四 戴维宁定理的验证 ──有源二端网络等效参数的测定一、实验目的1. 验证戴维宁定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

二、原理说明1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。

戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is 等于这个有源二端网络的短路电流I SC ,其等效内阻R 0定义同戴维宁定理。

Uoc (Us )和R 0或者I SC (I S )和R 0称为有源二端网络的等效参数。

2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R 0在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc ,然后再将其输出端短路,用电流表测其短路电流Isc ,则等效内阻为 Uoc R 0= ── Isc如果二端网络的内阻很小,若将其输出端口短路 则易损坏其内部元件,因此不宜用此法。

(2) 伏安法测R 0用电压表、电流表测出有源二端网 图8-1络的外特性曲线,如图8-1所示。

根据 外特性曲线求出斜率tg φ,则内阻 U I ABI UOΔUΔIφscoc被测R 0△U U ocR 0=tg φ= ──=── 。

△I Isc也可以先测量开路电压Uoc ,再测量电流为额定值I N 时的输出图8-2U oc -U N端电压值U N ,则内阻为 R 0=──── 。

I N(3) 半电压法测R 0如图8-2所示,当负载电压为被测网络开 路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。

(4) 零示法测U OC 图8-3在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图8-3所示.。

零示法原理是用一低内阻的稳压电源与被测有源二端网络进行比 较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

序号 名 称型号与规格 数量 备注1 可调直流稳压电源 0~30V 12 可调直流恒流源 0~500mA 13 直流数字电压表 0~300V 14 直流数字毫安表 0~500mA1 5 万用表 1 自备 6 可调电阻箱 0~Ω 1 HE-19 7 电位器1K/2W 1 HE-11 8戴维宁定理实验电路板1HE-12 被测有源二端网络如图8-4(a),即HE-12挂箱中“戴维宁定理/诺顿定理”线路。

(a) (b)图 8-4被测有源网络R 稳压电源VUU S1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc 和R 0。

在8-4(a)中,接入稳压电源Us=12V 和恒流源Is=10mA ,不接入R L 。

利用开关K ,分别测定U O c 和Isc,并计算出R 0。

(测U Uoc(v) Isc(mA)R 0=Uoc/Isc(Ω)5202. 负载实验按图8-4(a)接入R L 。

改变R L 阻值,测量不同端电压下的电流值,记于下表,并据此画U (v ) 8 I (mA )163. 验证戴维宁定理:从电阻箱上取得按步骤“1”所得的等效电阻R 0之值, 然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc 之值)相串联,如图8-4(b)所示,U (v ) 8 I (mA )165. 有源二端网络等效电阻(又称入端电阻)的直接测量法。

见图8-4(a )。

将被测有源网络内的所有独立源置零(去掉电流源I s 和电压源U s ,并在原电压源所接的两点用一根短路导线相连),然后用伏安法或者直接用万用表的欧姆档去测定负载R L 开路时A 、B 两点间的电阻,此即为被测网络的等效内阻R 0, 或称网络的入端电阻R i 。

五、实验注意事项1. 测量时应注意电流表量程的更换。

2. 步骤“4”中,电压源置零时不可将稳压 图 8-5源短接。

3. 用万表直接测R 0时,网络内的独立源必须先置零,以免损坏万用表。

其次,欧姆档必须经调零后再进行测量。

4. 用零示法测量U oc 时,应先将稳压电源的输出调至接近于U oc ,再按图8-3测量。

5. 改接线路时,要关掉电源。

六、预习思考题1. 在求戴维宁等效电路时,作短路试验,测I sc 的条件是什么?在本实验中可否直接作负载短路实验?请实验前对线路8-4(a)预先作好计算,以便调整实验线路及测量时可准确地选取电表的量程。

2. 说明测有源二端网络开路电压及等效内阻的几种方法, 并比较其优缺点。

七、实验报告1. 根据步骤2和3,分别绘出曲线,验证戴维宁定理的正确性, 并分析产生误差的原因。

+-I SmA +-R V+-R 0L2. 根据步骤1、4、5各种方法测得的Uoc与R0与预习时电路计算的结果作比较,你能得出什么结论。

3. 归纳、总结实验结果。

4. 心得体会及其他。

相关文档
最新文档