SPSS数据的主成分分析报告
spss学习系列30.主成份分析

S P S S学习系列30.主成份分析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN30. 主成份分析一、基本原理主成份分析,是数学上对数据降维的一种方法,是将多个变量转化为少数综合变量(集中了原始变量的大部分信息)的一种多元统计方法。
其主要目的是将变量减少,并使其改变为少数几个相互独立的线性组合形成的新变量(主成份,其方差最大),使得原始资料在这些成份上显示最大的个别差异来。
在所有的线性组合中所选取的F1应该是方差最大的,称为第一主成分。
如果第一主成分不足以代表原来所有指标的信息,再考虑选取第二个线性组合F2, 称为第二主成分。
为了有效地反映原有信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0. 依此类推可以构造出第三、第四、…、第p个主成分。
主成份分析,可以用来综合变量之间的关系,也可用来减少回归分析或聚类分析中的变量数目。
设有n个样品(多元观测值),每个样品观测p项指标(变量):X1,…,X p,得到原始数据资料阵:其中,X i = (x1i,x2i,…,x ni)T,i = 1, …, p.用数据矩阵X的p个列向量(即p个指标向量)X1,…,X p作线性组合,得到综合指标向量:简写成:F i = a1i X1 + a2i X2+…+a pi X p i = 1, …, p限制系数a i = (a1i,a2i,…,a pi)T为单位向量,即且由下列原则决定:(1)F i与F j互不相关,即COV(F i, F j)= a i T∑a i=0,其中∑为X 的协方差矩阵;(2)F1是X1,X2,…,X p的所有满足上述要求的线性组合中方差最大的,即F2是与F1不相关的X1,…,X p所有线性组合中方差最大的,…,F p 是与F1,…,F p-1都不相关的X1,…,X p所有线性组合中方差最大的。
满足上述要求的综合指标向量F1,F2,…,F p就是主成分,这p个主成分从原始指标所提供的信息总量中所提取的信息量依次递减,每一个主成分所提取的信息量用方差来度量,主成分方差的贡献就等于原指标相关系数矩阵相应的特征值λi,每一个主成分的组合系数a i = (a1i,a2i,…,a pi)T就是特征值λi所对应的单位特征向量。
用SPSS进行主成分分析

用SPSS进行主成分分析首先,我们需要准备输入变量数据。
打开SPSS软件,在工作区中新建一个数据文件,并输入你所需分析的变量数据。
这些变量应该是数值型的,并且具有一定的相关性。
你可以在SPSS的数据视图中输入数据,也可以通过导入外部文件的方式将数据导入SPSS。
接下来,我们需要执行主成分分析。
在SPSS的菜单栏中,选择“分析(Analyze)”-“数据降维(Dimension Reduction)”-“因子(Factor)”,弹出因子分析对话框。
在因子分析对话框中,选择输入变量。
将你所需分析的变量从左边的变量列表中选中,并点击右箭头将其添加到右边的变量列表中。
可以按住Ctrl键,同时选择多个变量。
在选项卡中,选择主成分分析方法。
主成分分析有两种方法可选,即主轴法和最大方差法。
默认情况下,SPSS使用主轴法。
如果你不太了解这两种方法的区别,可以保持默认设置。
在提取方法选项卡中,选择提取的主成分数目。
SPSS会给出每个主成分的特征值大小,你可以根据特征值的大小选择提取的主成分数目。
通常情况下,我们选择特征值大于1的主成分,因为特征值小于1的主成分往往解释的方差较少。
在旋转选项卡中,选择是否进行因子旋转。
因子旋转是为了使每个主成分具有更强的解释力,并且使得主成分之间更容易解释。
SPSS提供了多种旋转方法,包括方差最大旋转(Varimax)、等方差旋转(Equimax)等。
你可以根据具体需求选择合适的旋转方法。
在结果选项卡中,选择输出结果的格式。
SPSS提供了多种结果输出格式,包括表格和图形。
你可以选择你所需的格式并点击确定。
执行完以上步骤后,SPSS会生成主成分分析的结果。
结果包括每个主成分的特征值、解释的方差比例、因子载荷矩阵等。
你可以根据自己的需求来解释这些结果。
最后,我们需要对主成分进行解释和旋转。
根据主成分的因子载荷矩阵,我们可以判断每个主成分与原始变量之间的关系。
载荷值(Factor Loading)表示每个变量对于主成分的贡献程度,绝对值越大,贡献程度越大。
主成分分析、因子分析实验报告--SPSS

主成分分析、因子分析实验报告--SPSS主成分分析、因子分析实验报告SPSS一、实验目的主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是多元统计分析中常用的两种方法,旨在简化数据结构、提取主要信息和解释变量之间的关系。
本次实验的目的是通过使用 SPSS 软件对给定的数据集进行主成分分析和因子分析,深入理解这两种方法的原理和应用,并比较它们的结果和差异。
二、实验原理(一)主成分分析主成分分析是一种通过线性变换将多个相关变量转换为一组较少的不相关综合变量(即主成分)的方法。
这些主成分是原始变量的线性组合,且按照方差递减的顺序排列。
主成分分析的主要目标是在保留尽可能多的数据信息的前提下,减少变量的数量,从而简化数据分析和解释。
(二)因子分析因子分析则是一种探索潜在结构的方法,它假设观测变量是由少数几个不可观测的公共因子和特殊因子线性组合而成。
公共因子解释了变量之间的相关性,而特殊因子则代表了每个变量特有的部分。
因子分析的目的是找出这些公共因子,并估计它们对观测变量的影响程度。
三、实验数据本次实验使用了一份包含多个变量的数据集,这些变量涵盖了不同的领域和特征。
数据集中的变量包括具体变量 1、具体变量 2、具体变量 3等,共X个观测样本。
四、实验步骤(一)主成分分析1、打开 SPSS 软件,导入数据集。
2、选择“分析”>“降维”>“主成分分析”。
3、将需要分析的变量选入“变量”框。
4、在“抽取”选项中,选择主成分的提取方法,如基于特征值大于1 或指定提取的主成分个数。
5、点击“确定”,运行主成分分析。
(二)因子分析1、同样在 SPSS 中,选择“分析”>“降维”>“因子分析”。
2、选入变量。
3、在“描述”选项中,选择相关统计量,如 KMO 检验和巴特利特球形检验。
4、在“抽取”选项中,选择因子提取方法,如主成分法或主轴因子法。
SPSS数据的主成分分析

zf
18
协方差矩阵求解中主成分的性质
❖ 1、主成分的协方差阵为对角矩阵;
❖ 2、 i V(F a i),1 r23 p
❖ 3、 1 2 3 p V ( X 1 ) V a ( X 2 ) r V a ( X 3 ) r a V ( X r p ) a t ( x r )r
zf
31
主成分分析步骤及框图
➢ 主成分分析步骤:
• 1.根据研究问题选取初始分析变量; • 2.根据初始变量特性判断由协方差阵求主成分还是由相关阵求
主成分; • 3.求协差阵或相关阵的特征根与相应标准特征向量; • 4.判断是否存在明显的多重共线性,若存在,则回到第一步; • 5.得到主成分的表达式并确定主成分个数,选取主成分; • 6.结合主成分对研究问题进行分析并深入研究.
对角线外的元素不为0
zf
17
意味着:原始变量之
间有相关关系
➢ 如何运用主成分分析将这些具有相关关系的变量转化 为没有相关关系的新变量主成分呢
➢ 新变量即主成分之间没有相关关系,其协方差阵为对角
矩阵:
1
0
0 p
主成分表达式的系数项即 是λ1、λ2···λp的特征向量
对角线上的元素λ1、 λ2···λp分别为第一、 二···第p个主成分方 差;同时也是原始变 量协方差阵的特征根
➢ 2、如何确定主成分个数
➢ 3、如何解释主成分所包含的经济意义
zf
15
如何求解主成分 - 1基于协方差矩阵求解主成分
❖ 假设有n个样本,每个样本有 p 个观测变量.运用主成分 分析构造以下 p 个主成分关于原始变量的线性组合模 型:
F1 a11x1 a12x2 a1p xp F2 a21x1 a22x2 a2 p xp
统计分析软件应用SPSS-主成分分析实验报告

统计分析软件应用SPSS-主成分分析实验报告本实验采用SPSS软件搭配PCA算法,运用主成分分析(Principal Component Analysis)对数据建模,从而对原始数据进行数据挖掘,挖掘出其内在关联性及约束条件。
1.实验介绍主成分分析分析的数据主要是离散(或连续)的变量矩阵,它是将一组变量转换成一组新的变量,称为主成分,这些新变量有不同程度的解释能力,可以代表输入变量的内在趋势。
2.实验方法以SPSS软件中的主成分分析为例,具体进行主成分分析如下:(1)通过点击“分析”菜单栏的“统计方法”按钮打开对话框;(2)在统计方法中选择“主成分分析”;(3)选择变量;(4)设置相关的参数,其中的设置包括是否对输入变量进行标准化或是与原来输入变量一样不标准化等;(5)然后点击“OK”运行。
3.实验结果运行之后,SPSS软件就会给出主成分分析的结果,其主要内容有:载荷矩阵、方差表、方差序列图、因子得分表。
4.载荷矩阵载荷矩阵主要是列出每个原始变量与主成分的相关性,矩阵中的值代表相关系数,是两个变量之间的变化关系,相关系数的大小代表其相关性。
5.方差表方差表包括每个主成分的方差以及其贡献率,贡献率表示每个成分在总方差中所占的比重,通过该表可以较好地分析出因子各自所占方差比重。
6.方差序列图方差序列图是指把所有主成分的方差按从高到低的顺序排列,从而构成的图形,它可以清晰地展示每个成分的贡献率。
7.因子得分表因子得分表主要是列出每个观测值在每个主成分上的因子得分,利用因子得分可以更精确地表征观测值的差异,从而更好地挖掘出内在的数据关联。
5.结论本实验使用SPSS软件中的主成分分析对数据进行建模,分析出数据内在的关联关系。
通过矩阵载荷分析、方差表、方差序列图以及因子得分表等计算出来的数值,可以观察出原始变量间的内在关联,从而发现其内在的趋势,从而实现数据挖掘。
主成分分析、因子分析实验报告--SPSS

对2009年我国88个房地产上市公司的因子分析分析结果:表1 KMO 和Bartlett 的检验取样足够度的Kaiser-Meyer-Olkin 度量。
.637 Bartlett 的球形度检验近似卡方398.287df 45Sig. .000 由表1可知,巴特利特球度检验统计量的观测值为398.287,相应的概率p值接近0,小于显著性水平 (取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。
同时,KMO值为0.637,根据Kaiser给出的KMO度量标准(0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合)可知原有变量不算特别适合进行因子分析。
表2 公因子方差初始提取市盈率 1.000 .706 净资产收益率 1.000 .609 总资产报酬率 1.000 .822 毛利率 1.000 .280 资产现金率 1.000 .731 应收应付比 1.000 .561 营业利润占比 1.000 .782 流通市值 1.000 .957 总市值 1.000 .928 成交量(手) 1.000 .858 提取方法:主成份分析。
表2为公因子方差,即因子分析的初始解,显示了所有变量的共同度数据。
第一列是因子分析初始解下的变量共同度,它表明,对原有10个变量如果采用主成分分析方法提取所有特征根(10个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。
事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。
可以看到,总资产报酬率、成交量、流通市值、总市值的绝大部分信息可被因子解释,这些变量的信息丢失较少。
但毛利率这一变量的信息丢失相当严重(近70%),净资产收益率、应收应付比率两个变量的信息丢失较为严重(近40%)。
因此本次因子提取的总体效果并不理想。
SPSS进行主成分分析报告

实验七、利用SPSS进行主成分分析【例子】以全国31个省市的8项经济指标为例,进行主成分分析。
第一步:录入或调入数据(图1)。
图1 原始数据(未经标准化)第二步:打开“因子分析”对话框。
沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。
图2 打开因子分析对话框的路径图3 因子分析选项框第三步:选项设置。
首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。
在本例中,全部8个变量都要用上,故全部调入(图4)。
因无特殊需要,故不必理会“Value ”栏。
下面逐项设置。
图4 将变量移到变量栏以后⒈设置Descriptives描述选项。
单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。
图5 描述选项框在Statistics 统计 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。
在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。
其它复选项一般不用,但在特殊情况下可以用到(本例不选)。
设置完成以后,单击Continue 按钮完成设置(图5)。
⒉ 设置Extraction 选项。
打开Extraction 对话框(图6)。
因子提取方法主要有7种,在Method 栏中可以看到,系统默认的提取方法是主成分(Principal Components ),因此对此栏不作变动,就是认可了主成分分析方法。
SPSS软件进行主成分分析报告地应用例子

SPSS软件进行主成分分析的应用例子2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下:第一,将EXCEL中的原始数据导入到SPSS软件中;【1】“分析”|“描述统计”|“描述”。
【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。
【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。
数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性,可以举个简单的例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为0,方差为1,当然也有其他标准化,比如0--1标准化等等,可根据自己的研究目的进行选择,这里介绍怎么进行数据的Z标准化。
所的结论:标准化后的所有指标数据。
注意:SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。
factor过程对数据进行因子分析(指标之间的相关性判定略)。
【1】“分析”|“降维”|“因子分析”选项卡,将要进行分析的变量选入“变量”列表;【2】设置“描述”,勾选“原始分析结果”和“KMO与Bartlett球形度检验”复选框;【3】设置“抽取”,勾选“碎石图”复选框;【4】设置“旋转”,勾选“最大方差法”复选框;【5】设置“得分”,勾选“保存为变量”和“因子得分系数”复选框;【6】查看分析结果。
【1】将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数标变量”文本框中输入“F1”,然后在数字表达式中输入“V1/SQR(λ1)”[注:λ1=1.897], 即可得到特征向量F1;【3】然后利用“转换”|“计算变量”, 打开“计算变量”对话框,在“目标变量”文本框中输入“F2”,然后在数字表达式中输入“V2/SQR(λ2)”[注:λ1=1.550], 即可得到特征向量F2;【4】最后得到特征向量矩阵(主成分表达式的系数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u11
F
u21
u p1
u12 u1p X1
u22 up2
u2 p u pp
X2
XP
AX
2019/9/10
9
zf
几何解释-坐标旋转变换
假设有n个样品,每个样品有两个观测变量xl和x2,在由
变量xl和x2 所确定的二维平面中,n个样本点所散布的情
况如椭圆状。如图所示:
x2
F1
F 2
•• •
• • •
••• •
••• • •• ••••• •• •
•
2019/9/10
• •• •
•• •
• ••
••
10
x1
平移、旋转坐标轴
zfBiblioteka 平移、旋转坐标轴x 2
F 1
F2
•
•••
•••
• •
•
•••••••••••••••••••••••
• •
x 1
•••
2019/9/10
4
zf
多个指标的问题:
1、指标与指标可能存在相关关系 信息重叠,分析偏误
2、指标太多,增加问题的复杂性和分析难度
如何避免?
2019/9/10
5
zf
主成分分析的基本思想
一项十分著名的工作是美国的统计学家斯通(stone)在 1947年关于国民经济的研究。他曾利用美国1929一1938 年各年的数据,得到了17个反映国民收入与支出的变量 要素,例如雇主补贴、消费资料和生产资料、纯公共支 出、净增库存、股息、利息外贸平衡等等。
F1 a11x1 a12 x2 a1p xp F 2 a21x1 a22 x2 a2 p xp
Fp ap1x1 ap2 x2 app xp
a11 a12 a1p X1
8
zf
数学模型-主成分表达式
主成分分析通常的做法:寻求原指标的线性组合Fi。
F1 u11X1 u12 X 2 u1p X p F2 u21X1 u22 X 2 u2 p X p
Fp u p1 X1 u p2 X 2 u pp X p
14
zf
了解了主成分分析的基本思想、数学和几何意 义后,问题的关键: 1、如何求解主成分?
2、如何确定主成分个数?
3、如何解释主成分所包含的经济意义?
2019/9/10
15
zf
如何求解主成分??- (1)基于协方差矩阵求解主成分
假设有n个样本,每个样本有 p 个观测变量。运用主成 分分析构造以下 p 个主成分关于原始变量的线性组合 模型:
如果我们将xl 轴和x2轴先平移,再同时按逆时针方向旋 转角度,得到新坐标轴Fl和F2。Fl和F2是两个新变量。
Fl轴方向上的离散程度最大,即Fl的方差最大。说明变量Fl代表了原始 2数019据/9/的10 绝大部分信息,即使不考虑1z3f变量F2也无损大局。
旋转变换的目的:将原始数据的大部分信息集中到Fl轴上,对 数据中包含的信息起到了浓缩作用。
F1
F2
F3
i
i
t
F1
1
F2
0
1
F3
0
0
1
i 0.995 -0.041 0.057 l
Δi -0.056 0.948 -0.124 -0.102 l
t -0.369 -0.282 -0.836 -0.414 -0.112 1
2019/9/10
7
zf
主成分分析:将原来具有相关关系的多个指标简化为少数几个 新的综合指标的多元统计方法。
其优点:(1)可达到简化数据结构的目的。(2)新产生的综合变量 Fl,F2具有不相关的性质,从而避免了信息重叠所带来的虚假性。
主成分分析的几何意义:主成分分析的过程也就是坐标旋转的 过程,各主成分表达式就是新坐标系与原坐标系的转换关系, 新坐标系中各坐标轴的方向就是原始数据方差最大的方向。
2019/9/10
主成分分析 (Principal Components Analysis)
知识点
什么是主成分和主成分分析? 理解主成分分析的基本思想和几何意义? 理解并掌握基于协方差矩阵或相关系数矩阵求解主成分? 如何确定主成分个数? 如何解释主成分? 掌握运用SPSS软件求解主成分 对软件输出结果进行正确分析
2019/9/10
11
zf
平移、旋转坐标轴
x 2
F 1
F2 •••••••••
••••
••••••••••••
••••••
•••
•
x 1
2019/9/10
12
zf
由图可以看出这n个样本点无论是沿着xl 轴方向或x2轴 方向都具有较大的离散性,其离散的程度可以分别用观 测变量xl 的方差和x2 的方差定量地表示。显然,如果只 考虑xl和x2 中的任何一个,那么包含在原始数据中的经 济信息将会有较大的损失。
zf
主成分分析在综合评价中的应用:
蒋亮,罗汉《我国东西部城市经济实力比较的主成分 分析》,《经济数学》,2003年3期
田波平等《主成分分析在中国上市公司综合评价中的 作用》,《数学的实践与认识》,2004年4期
江冬明《主成份分析在证券市场个股评析中的应用》, 《数理统计与管理》,2001 年3期
在进行主成分分析后,竟以97.4%的精度,用三新变量就取代了 原17个变量。根据经济学知识,斯通给这三个新变量分别命名为 总收入F1、总收入变化率F2和经济发展或衰退的趋势F3。
2019/9/10
6
zf
更有意思的是,这三个变量其实都是可以直接测量的。 斯通将他得到的主成分与实际测量的总收入I、总收入变 化率I以及时间t因素做相关分析,得到下表:
2019/9/10
2
zf
主成分用于成因分析:
陈耀辉,景睿《沪深股市市场收益率成因的主成份分 析》,《南京航空航天大学学报》,2000年2期。
2019/9/10
3
zf
主成分回归分析:
王冬:《我国外汇储备增长因素主成分分析》,《北 京工商大学学报( 社会科学版)》, 2006年4期。
主成分用于判别分析等统计方法中……
主成分:由原始指标综合形成的几个新指标。依据主成分所含 信息量的大小成为第一主成分,第二主成分等等。
主成分与原始变量之间的关系: (1)主成分保留了原始变量绝大多数信息。 (2)主成分的个数大大少于原始变量的数目。 (3)各个主成分之间互不相关。 (4)每个主成分都是原始变量的线性组合。
2019/9/10