高低音调节电路

合集下载

用LM1036制作的音调电路

用LM1036制作的音调电路

LM1036是一个电压控制的双声道,音调(高/低音)、音量、左右音量平衡调节IC。

它带有一个等响度开关,用以补偿在小音量时的人耳特性曲线。

因为它是用电压控制调节,可以用单片机控制电路去调节音调、音量、平衡、等响度等,可以完全不用讨厌的双联(或单联)电位器,就算用也不会对音质有影响,以下就是它的一些特性:
支持电压:9V~16V
·音量控制范围达75dB
·音调控制范围达±15dB
·声道隔离度≥75dB
·低失真:在输入0.3Vrms时,失真为0.06%
·高信噪比:在输入0.3Vrms时,信噪比高达80dB
·外围电路简单
以下为电路原理图:。

音调电路

音调电路

音调控制电路音调控制电路音调控制电路的作用主要是为了满足听音者自己的听音爱好,通过对声音某部分频率信号进行提升或者衰减,使整个的声场更加符合听音者对听觉的要求。

一般音响系统中通常设有低音调节和高音调节两个旋钮,用来对音频信号中的低频成分和高频成分进行提升或衰减。

比较高档的音响设备中多采用多频段频率均衡方式,以达到更细致地校正频响的效果。

高低音调节的音调电路,根据其在整机电路中的位置,可分为衰减式、负反馈式以及衰减负反馈混合式音调控制电路三种。

这种电路一般使用高音、低音两个调节电位器;但在少数普及型机中,也有用一个电位器兼作高低音音调控制电路的。

图4所示为负反馈式高低音调节的音调控制电路。

该电路调试方便、信噪比高,目前大多数的普及型功放都采用这种电路。

图中C1、C2的容量大于C3,对于低音信号C1与C2可视为开路,而对于高音信号C3可视为短路。

低音调节时,当W1滑臂到左端时,C1被短路,C2对低音信号容抗很大,可视为开路;低音信号经过R1、R3直接送入运放,输入量最大;而低音输出则经过R2、W1、R3负反馈送入运放,负反馈量最小,因而低音提升最大;当W1滑臂到右端时,则刚好与上述情形相反,因而低音衰减最大。

不论W1的滑臂怎样滑动,因为C1、C2对高音信号可视为是短路的,所以此时对高音信号无任何影响。

高音调节时,当W2滑臂到左端时,因C3对高音信号可视为短路,高音信号经过R4、C3直接送入运放,输入量最大;而高音输出则经过R5、W2、C3负反馈送入运放,负反馈量最小,因而高音提升最大;当W2滑臂到右端时,则刚好相反,因而高音衰减最大。

不论W2的滑臂怎样滑动,因为C3对中低音信号可视为是开路的,所以此时对中低音信号无任何影响。

普及型功放一般都使用这种音调处理电路。

使用时必须注意的是,为避免前级电路对音调调节的影响,接入的前级电路的输出阻抗必需尽可能地小,应与本级电路输入阻抗互相匹配。

图5所示为衰减式高低音调节的音调控制电路。

运放低音音调电路原理

运放低音音调电路原理

运放低音音调电路原理
运放低音音调电路的原理主要包括运放的放大作用、滤波器的使用以及低音音调的调节。

首先,运放作为核心元件,在这里起到放大信号的作用。

运放具有很高的增益和较低的输入电阻,使得它能更好地处理音频信号。

在低音音调电路中,运放接收两个输入信号,并将它们之间的差值放大,从而实现带通滤波器的功能。

这种带通滤波器可以通过放大特定频率范围内的信号来实现高中低音调节。

其次,滤波器在低音音调电路中也起着关键作用。

滤波器可以允许或阻止特定频率范围的信号通过,从而改变音频信号的频率分布。

在低音音调电路中,通常使用高通滤波器来放大高频部分的音频信号,增强高音。

同时,低通滤波器可以用来放大低频部分的音频信号,增强低音。

最后,低音音调的调节是通过改变运放的增益或滤波器的参数来实现的。

具体来说,可以通过改变可变电阻或电容的值来调整运放的增益或滤波器的频率响应,从而实现低音音调的调节。

总之,运放低音音调电路的原理主要基于运放的放大作用、滤波器的使用以及低音音调的调节。

通过这些原理的实现,可以实现对音频信号的低音调节,以满足不同听音需求和音乐风格的播放要求。

用AD827OPA2604NE5532制作的负反馈高中低音调电路

用AD827OPA2604NE5532制作的负反馈高中低音调电路

用AD827/OPA2604/NE5532制作的负反馈高中低音调电路音调控制电路的作用是用于适时调整音色,使之符合各种不同的听音要求,用来补偿音源的录音缺陷或音箱的频响等,由于其结构和使用方法比较简单,负作用少,因而对一般条件的用户来说,使用音调控制器简单可靠,它的用途在音响系统中占有重要的地位,在一些网友的观点是音响系统特别是音频功率放大电路中以简洁为上的原则为上,减少信号通道中多余功能电路,以达到原汁原味的听音效果,笔者也赞成这种说法,问题是如果你已拥有够发烧级的高档音箱单元,它的高低频响应达到一个理想的较为平坦曲线,这种说法是对的,而多数人拥用的箱体单元是普通的低价市面货,加上音调电路来改善它的高低频延伸,在听音效果上还是相当的一个投资少见效快的一个途径。

音响电路的种类有RC衰减式和反馈式两面种,还有本站价绍的AA类音调电路(实际上也是RC衰减式,只不过前级用AA类放大),两种电路各有优缺点,RC电路由于为无源元件,电路工作稳定,相位特性好,但是信噪比差,对前后级放大电路输入输出阻抗的要求较高,易受外界磁场的干挠,还有一个是对高低音的控制范围较小。

负反馈式音调电路有一定的增益,信噪比高,非线性失真较小,电路的动态范围大,但是由于电路处于深度负反馈状态,如果布线设计不合理的易产生自激,综合以上的两种电路的优缺点,本站决定选用反馈式音调电路来配合本站的SSE01/SSE02,理由是它的缺点可以在精心合理的布线中加以克服,同时在运放的输出端和反相输入端加入防自激的相位补偿电容,在运放的电源供电脚4, 8脚最近的位置加入电源退耦电容,这样也为使用转换速率较高对电路设计和布线要求较高的发烧运AD82 7/OPA2604做音调控制创造条件,不选用RC电路另外一原因是本站的曾搞出的AA音调板并定做出成品,在实际上和SSE01/SSE02板配合时信噪比不理想且易受电源变压器的磁场干挠,故放弃它重新设计为下面介绍的SSE06 HIFI音调板,在实际配合本站的SSE01/SSE02板时通过更换不同的运放,均达到相当满意听音效果。

高低音调节电路

高低音调节电路

高低音调节电路标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的不足。

这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。

高保真扩音机大都装有音调控制器。

然而,从保证信号传送质量来考虑,音调控制倒不是必须的。

一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。

所谓提升或衰减高、低音,都是相对于中音而言的。

先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。

因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。

音调控制电路大致可分为两大类:衰减式和负反馈式。

衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。

所以噪声和失真大一些。

负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。

1.衰减式音调控制电路。

典型电路如图:衰减式音调控制典型电路高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。

W1旋到A点时高音提升,旋到B点时高音衰减。

W2旋到C点时低音提升,旋到D点时低音衰减。

组成音调电路的元件值必须满足下列关系:(1)R1≥R2;(2) W1和W2的阻值远大于R1、R2;(3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。

C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。

LM1036N音调控制电路

LM1036N音调控制电路

LM1036N音调控制电路
LM1036N音调控制电路
这是一个应用在立体声音响设备的音调控制电路,使用一个LM1 036N集成电路,具有低音控制、音量控制、响度补偿、平衡控制、高音控制功能。

低音、高音、音量、平衡四个控制端采用直流电平控制,这适合通过远程控制或者数字电路控制。

功能特色
宽电源电压范围,9V至16V
大音量控制范围,75分贝典型
音调控制,15分贝典型
信道分离,75分贝典型
低失真,0.06%典型的在0.3 Vrms的输入电平
高的信噪比,80分贝典型的在0.3 Vrms输入电平
很少的外部元件
注:电源电压VCC 9V至16V,输出电容器10uF/25V的电解电容。

高中低音音调及音量控制电路

高中低音音调及音量控制电路

NE5532N组成的高中低音音调及音量控制电路[日期:2008-08-13 ] [来源:东哥单片机学习网 作者:佚名] [字体:大中小] (投递新闻)功放系统中无论是低档还是高档机,除了音量控制外都有音调控制电路,在一些低档机厂家为节省成本,其音调部分仅采用阻容式,当音调调节时往往使得高低音相互干扰,而且缺乏力度和清晰感,听起来非常浑浊杂乱,听久了令人烦燥不安,这些机子弃之又觉浪费,但用之又不满意,如果有动手能力的话,很有必要花几十元对其动动手术(摩机)–––––制作一款高品质的音调板来替换原机音调部分。

下面就向广大发烧友介绍几款品质极佳的音调电路供爱好者选择。

其中以LM4610N、LM1036N最佳,LM4610N是在LM1036N的基础上增加了3D音场效果处理功能的新一代发烧精品,笔者建议首选LM4610N。

图1是由2块NE5532N组成的高中低音音调及音量控制电路(图中仅画一声道,另一声道完全一样),原理为:信号经IC1(作缓冲放大及隔离作用,避免负载与信号源之间的影响)进入由电阻电容组成的三个频率均衡网络,即高音、中音、低音的频率,当调节RP1–––RP3相应的低中高频就会相应地进入由IC2及其反馈电路组成的反相放大器电路,调节RP1–––RP3就是提升或衰减了高中低音,从而实现了音频调节作用。

需要说明一点是所采用的NE5532N必须是正宗品,如美国大S的、飞利浦的,这样才使行本电路的信噪比、动态范围、瞬态响应和控制效果均达到相当高水准。

(欲获更高的水准NE5532N可换为NE5535N、OP275、AD827JN等精品运放,当然价格就高一点了)。

图2是采用二阶RC有源二分频电路,该电路由2块NE5532N构成(图中仅画一声道,另一声道相同),图中IC1A与IC1B分别组成低通与高通滤波器,完成音频信号的分割,再分别送到高低音音量控制电位器再分别进入高低音功放电路去推动高音喇叭和低音喇叭。

(完整word版)高低音调节电路

(完整word版)高低音调节电路

所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。

这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。

高保真扩音机大都装有音调控制器。

然而,从保证信号传送质量来考虑,音调控制倒不是必须的。

一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。

所谓提升或衰减高、低音,都是相对于中音而言的。

先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。

因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。

音调控制电路大致可分为两大类:衰减式和负反馈式。

衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。

所以噪声和失真大一些。

负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。

1.衰减式音调控制电路。

典型电路如图:衰减式音调控制典型电路高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。

W1旋到A点时高音提升,旋到B点时高音衰减。

W2旋到C点时低音提升,旋到D点时低音衰减。

组成音调电路的元件值必须满足下列关系:(1)R1≥R2;(2)W1和W2的阻值远大于R1、R2;(3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。

C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。

只有满足上述条件,衰减式音调控制电路才有足够的调节范围,并且W1、W2分别只对高音、低音起调节作用,调节时中音的增益基本不变,其值约等于R2/R1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。

这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。

高保真扩音机大都装有音调控制器。

然而,从保证信号传送质量来考虑,音调控制倒不是必须的。

一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。

所谓提升或衰减高、低音,都是相对于中音而言的。

先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。

因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。

音调控制电路大致可分为两大类:衰减式和负反馈式。

衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。

所以噪声和失真大一些。

负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。

1.衰减式音调控制电路。

典型电路如图:
衰减式音调控制典型电路
高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。

W1旋到A点时高音提升,旋到B点时高音衰减。

W2旋到C点时低音提升,旋到D点时低音衰减。

组成音调电路的元件值必须满足下列关系:(1)R1≥R2;
(2)W1和W2的阻值远大于R1、R2;
(3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。

C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。

只有满足上述条件,衰减式音调控制电路才有足够的调节范围,并且W1、W2分别只对高音、低音起调节作用,调节时中音的增益基本不变,其值约等于R2/R1。

R1与R2的比值越大,高、低音的调节范围就越宽,但此时中音的衰减也越大。

改变R1或R2后,如要保持原来的控制特性,有关电容器的容量也要作相应改变,为了避免高、低音调节时互相牵制,有的衰减式音调电路还加进了隔离电阻。

作衰减式音调调节的电位器宜用指数型(Z型),此时,频响平直的位置大致在电位器的机械中点。

以下是一个实际的电路图,其中R1=6.8K、R2=3.3K、R3=5.6K、C1=2200P、C2=0.022、C3=0.01、C4=0.22、W1=W2=50K,R3是一个隔离电阻。

音调控制实际应用电睡
2.衰减--负反馈式音调控制电路
W1作高音控制,W2作低音控制。

W1旋到A点时高音提升,旋到B点时高音衰减。

W2旋到C点时低音提升,旋到D点时低音衰减。

为了使电路获得满意性能,下面条件必须具备:
<1> 信号源的内阻(即前一级的输出阻抗)不大。

<2> 用来实现音调控制的放大电路本身有足够高的开环增益。

<3> C1、C2的容量要适当,其容抗跟有关电阻相比,在低频时足够大,在中、高频时又足够小;而C3的选择却要使它的容抗在低、中频时足够大,在高频时足够小。

粗略地说,就是C1、C2能让中、高频信号顺利通过而不让低频信号通过;C 3则让高频信号顺利通过而不让中、低频信号通过。

<4> W1、W2的阻值均远大于R1、R2、R3、R4。

当R1=R2时,该音调电路的中音频电压增益约等于1。

作衰减--负反馈式音调调节的电位器宜用阻值变化曲线为直线型(X型)的电位器。

此时,频响平直的位置大约在电位器的机械中点。

音调控制电路如图2-37(a)所示.是用RC网络构成的高、低音音调控制电路.电路的控制特性如图2-37(b)所示.
图2-37(a)所示电路实际就是由双转折频率的RC网络组合而成的。

其中,Rwi用于高音控制,当其动臂上移时,高音输出增加,反之则减小;RW2用于低音控制,也是动臂上移时低音输出增加,反之减小。

当保持如图2-37(a)所示中给出的RC元件数据的比例关系时,电路的控制特性则基本是对称的,实际情况近似于图中的实折线。

调整各电位器时,控制特性则如虚线所示。

在控制特性曲线王,最大提升、衰减时各相应转折频率及对应的传输系数与以前所述曲线相同。

这里说的提升和衰减,仍然相对于中音频而言。

所谓提升,就是比中音频的衰减要小一些。

所谓衰减,就是比中音频的衰减还要大一些。

根据如图2-37(b)所示中给出的近似关系式,很容易求出如图2-37(a)所示中的各RC元件数据。

这时,应先给出下级电路的输人阻抗,即这个音调控制电路的负载阻抗RLa另外,还要给定电路的最大提升、衰减量,即相应频率时的相对传输系数。

例如,在最大低音提升频率f'3时的提升量Ad为最大高音提升量为
由于在大多数情况下都使控制特性保持对称,因此最大衰减量近似为上面两式的倒数。

这里应当说明,高音时的衰减实际上是很大的。

从如图2-37(a)所示的电路可知,当Rwi的动臂滑到C2上端时,高音频信号受到C2的很大衰减。

在图2-37(b)中没有标出转折频率.'2就是这个原因。

下面结合实际数例看一下电路元件的近似求解过程。

假设Ad=士20 dB(10倍),Ag一20 dB, R L一50 kn,取中音频率f2=1
kHz, f ,=2 kHz,几=6 kHz,九=500 Hz,几=80 Hz,为保证Ad,首先应取代人已知数据,可得取R2=5 kΩ,则由如图2-37(b)所示的近似公式得可知当时近似有
代人已知的数据,即可以求得另外,由A,和如图2-37(b)所示中给出的Ao 表达式,可有代人已知数据,可得根据已选定的R2,为便于计算,选择R 1二51 kΩo由如图2-37 (a)所示中的比例关系可得同样,由f,的近似式可得由元件比例关系得出
关于Rwl. Rw2的阻值,首先可以考虑R w20为满足要求,可以取但是,还应当考虑到几的要求,根据如图2-37(b)所示中f冬的表达式,应有
由此,根据已知的R1,R2很容易求出因为所得Rv}2的阻值也满足式中的要求,再考虑如图2-37(a)所示的要求,实际就可以选取
由于电路的控制特性基本对称,就不再核算最大衰减量了。

不过应当指出,上述算法虽然比较简单,但在简化过程中忽略了一些影响电路性能的次要因素,因此,误差要稍大些。

另外,由中音
频时的传输系数A。

的表达式可得也就是说,该音调控制电路对中音频率的衰减约为一20 dB。

为保证中音频增益,当使用这种音调控制电路时,应增加一级低放。

同时,音调控制电路前级的输出阻抗应当较低,一般用射极输出器即可满足要求。

下级放大器的输人阻抗则应当较高,以利于保证低音控制范围。

例1图2-38(a)是应用在结型场效应管放大器之间的RC衰减式高、低音调控制电路。

图2-38(b)、(c)R(d)分别为电路的控制特性、输出特性及失真特性。

图2-38(a)中,结型场效应管VT1接成源极输出器,因此具有较低的输出阻抗VT2为共源极放大器,同时还使用了源极负反馈,这样输人阻抗也很高。

但由于使用负反馈,故使高音控制范围有所减小。

由于vu的输入阻抗高,故为提高低音控制范围,Rw2用得较大,Rwi用得并没有这样大。

高音控制范围与R wi基本无关。

但增大R w2
对增加低音控制范围是有效的。

在Rwi, Rw2动臂之间加人的47 kn电阻主要是用于隔离。

因为一般当低音提升较大时,很容易对高音成分形成再调制而产生失真。

串人隔离电阻后,便能减小失真的发生。

另外,当信号源内阻较大时,串人隔离电阻对于增加高音控制范围也是有利的。

图2-38(b)给出了高、低音最大提升;最大衰减及平坦位置时电路的频响曲线。

图2-38(d)的失真特性表明,当电路工作在最大输出时,非线性失真是较大的。

这是RC衰减式音调控制电路的不足之处。

例2图2-39 (a)是一种比较典型的衰减式音调控制电路,图2-39(b)是实际控制特性。

从图2-39(a)中所示的电路元器件数据可以看出,为了扩大电路的控制范围,有关元器件的选择与以前所述的有所不同。

电路中,VTl按共射极放大器工作,所以输出阻抗较高,因此除了在电位器之间加人隔离电阻之外,R1的阻值也应选得较大。

由于适当调整了有关元件的比例关系,低音的提升量增加了不少,调整R4的阻值可以适当限制低音的提升量。

VT2, VT3为直接祸合的共射一共集电极电路,从噪声增益及输人阻抗等方面来看,这种放大电路是比较好的。

在此电路
中,音调控制网络对中音频衰减仍可方法。

因此,图3-39(a)所示电路对中音频的衰减比上述(见图2-38)电路略大一点。

如果在实际使用中仍想改变最大提升频率和转折频率,那么根据以上实例容易得出适当的RC衰减网络元件数值。

相关文档
最新文档