伺服系统故障诊断
数控机床进给伺服系统类故障诊断与处理(3篇)

数控机床进给伺服系统类故障诊断与处理数控机床进给伺服系统是数控机床中非常关键的一个组成部分,它直接影响机床加工的精度和效率。
然而,在使用过程中,由于各种原因,进给伺服系统可能会出现故障。
本文将介绍数控机床进给伺服系统的常见故障及其诊断与处理方法。
一、数控机床进给伺服系统常见故障1. 运动不平稳:机床在加工工件时,出现运动不平稳的情况,可能是由于进给伺服系统的故障引起的。
这种情况表现为运动过程中有明显的抖动或者不稳定的现象。
2. 运动失效:机床无法正常运动,不响应操作指令。
这种情况可能是由于进给伺服系统的电源故障、控制器故障或者连接线路故障引起的。
3. 位置误差过大:机床在加工过程中,位置误差超过了允许范围,导致加工工件的尺寸不准确。
这种情况可能是由于进给伺服系统的位置反馈元件(如编码器)故障引起的。
4. 加工速度过慢:机床在加工时,进给速度远低于预设值,导致加工效率低下。
这种情况可能是由于进给伺服系统的电机故障或者速度控制回路故障引起的。
二、故障诊断与处理方法1. 运动不平稳的诊断与处理:首先,检查机床的润滑系统,确保润滑油是否充足,并且清洁。
其次,检查机床的传动系统,确保螺杆和导轨的润滑良好。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
2. 运动失效的诊断与处理:首先,检查进给伺服系统的电源供应情况,确保电源正常。
其次,检查进给伺服系统的连接线路,包括电源线、编码器连接线等,确保线路没有松动或者断裂。
如果问题还未解决,可以通过检查进给伺服系统的控制器和电机驱动器是否正常工作等方式进一步诊断。
3. 位置误差过大的诊断与处理:首先,检查进给伺服系统的位置反馈元件,如编码器是否损坏或者松动。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
4. 加工速度过慢的诊断与处理:首先,检查进给伺服系统的电机是否正常工作,包括电机是否有异常声音或者发热等。
数控机床伺服系统常见故障诊断及排除

R fi n i ea c ein a dMa fn n e Ig I n
改装与维修
可控硅 , 故障排除。
②伺服系统增益设置不 当; ③位 置检测装置有污染或 损坏 ; ④进给传动链 累计误差过大; ⑤主轴箱垂直运动 时平衡装置不稳。例 : 大连机床厂生产的加工 中心 , 配 用 F N C一 M系统。机床启动后 ,R 显示 3 AU 7 CT 8号报 警 。故障诊断 :8号报警 的含义是 z轴误差 超 出范 3
维普资讯
改装与维修 Rn i n eiaM C fgda e i n n
数控机 床伺 服系统常见故障诊断及 排除
林洪君
( 山东 华源莱 动 内燃机 有 限公 司 , 山东 莱 阳 250 ) 620
Dig o i fCo a n ss o mmo r r fS r o S s e a d T O be h O ig n Er s o e v y t m n r u Is O t o n
LN Hogu I n jn ( hn o gH a unL io gE g eC . Ld , a a g2 5 0 C S a dn u y a a n ni o , t. L i n 6 2 0, HN) d n y
数控机床进给伺服系统 由进给驱动装置、 位置检
低电平 的跳变信号 , 工作 台便 以参数 N .3 o54设定的 速度慢慢 向参考点移动; 当减速挡块释放减速开关时, 减速开关触点重新 闭合 , 1. X 65由“ ” 0 变为“ ” P C l ,M 收到一个由低电平到高 电平的跳变信号之后 , 系统检 测编码器信号 , 当编码器发 出一个零位脉 冲 1 , 0后 工 作台再移动参数 N .0 设 定的一段距 离后 , o5 8 工作 台 停止 , 参考点确立 , 完成 轴 回参考 点操作。从故 障 现象 看 , 轴能进 行返 回参 考点 操作 且 运 动情 况 正常 , 说明 C C系统找参考点指令正常 , N 伺服和测量 系统也 无问题。由于 轴始终以一个速度运动 , 可以判定参 考点开关有 问题 。通过 P C梯形 图观察 IO指示 , L / X 65 1. 始终不变化 , 诊断参考点开关 失效 。通过更换
4伺服系统故障诊断与维修

数控机床的伺服系统是以直线运动或旋转运动作为控制 对象的自动控制系统,习惯上又称为驱动系统。它接受来自 数控装置的位移、速度指令,经变换、调节和放大后驱动执 行元件,转化为各进给轴及主轴的直线或旋转运动,是联系 数控装置(CNC)和机床的中间环节,是数控机床的重要组成 部分。
1
4.1.1伺服系统工作原理
M 19
主轴停止
M 03
M 04
M 05
复位
急停 定向指令信号
主轴准停的 PMC 程序
35
4 FANUC伺服有关参数的设置
1).伺服初始化的准备
首先确认以下基本数据,以便进行初始化工作。 • 数控系统的型号。 • 伺服电动机的型号、规格、电机代码。 • 电动机内装的脉冲编码器的型号、规格。 • 伺服系统是否使用外部位置检测器件,如使用,需要
27
适用与FANUC 0i Mate系统的βi伺服单元
(a)βis系列单轴型伺服单元 (b)βiSVSP一体型伺服单元(SVSP)
28
FANUCβi系列伺服单元端子及接口
βis系列单轴型伺服单元的连接
29
βiSVSP一体型伺服单元的连接
30
3 主轴准停功能
主轴准停又称为主轴定向,是指主轴周向的准 确定位功能。主轴准停功能的作用主要有:
• 光栅尺拆装时要用静力,不能用硬物敲击,以 免引起光学元件的损坏。
18
4.磁栅尺
磁栅又叫磁尺,是一种直线位移检测装置,它由磁性 标尺、拾磁磁头和检测电路组成。磁栅测量精度较高、安 装调整方便,对使用环境要求低,如对周围的电磁场的抗 干扰能力较强,在油污和粉尘较多的场合使用有较好的稳 定性,长度在2米以上性价比优势愈加明显 。
数控机床进给伺服系统类故障诊断与处理范文(4篇)

数控机床进给伺服系统类故障诊断与处理范文数控机床进给伺服系统是数控机床的重要组成部分,负责驱动工件或刀具在加工过程中进行准确的运动。
然而,由于工作环境恶劣以及长时间使用,进给伺服系统可能会出现各种故障。
本文将介绍数控机床进给伺服系统故障的诊断与处理方法。
一、断电故障:当进给伺服系统无法正常工作或反应迟缓时,首先需要检查是否存在断电故障。
可以检查电源和连接器是否正常。
如果确认没有断电故障,可以进一步诊断。
二、电缆故障:电缆故障是数控机床进给伺服系统常见的故障之一。
可以通过检查电缆连接器的接触情况、电缆是否断裂或接触不良来判断是否存在电缆故障。
如果发现电缆故障,应及时更换或修复受损的电缆。
三、伺服驱动器故障:伺服驱动器是控制进给伺服系统的主要部件,当进给伺服系统出现故障时,可以首先检查伺服驱动器是否正常工作。
可以通过检查伺服驱动器的电源供应情况、电流是否稳定以及反馈信号是否正常来判断是否存在伺服驱动器故障。
如果发现伺服驱动器故障,应及时更换或修复故障的部件。
四、编码器故障:编码器是进给伺服系统的重要传感器,用于检测工件或刀具的位置信息。
当进给伺服系统无法准确移动或位置偏差较大时,可以检查编码器是否损坏或接触不良。
如果发现编码器故障,应及时更换或修复故障的部件。
五、电机故障:电机是驱动进给伺服系统运动的关键部件,当进给伺服系统无法正常工作或运动异常时,可以检查电机是否正常工作。
可以通过检查电机的电源供应情况、电流是否稳定以及转动是否平稳来判断是否存在电机故障。
如果发现电机故障,应及时更换或修复故障的部件。
六、控制器故障:控制器是进给伺服系统的核心部件,当进给伺服系统无法正常工作或运动异常时,可以检查控制器是否正常工作。
可以通过检查控制器的电源供应情况、信号是否稳定以及参数设置是否正确来判断是否存在控制器故障。
如果发现控制器故障,应及时更换或修复故障的部件。
以上是数控机床进给伺服系统常见故障的诊断与处理方法。
数控机床伺服系统常见故障的诊断及其处理

数控机床伺服系统常见故障的诊断及其处理数控机床伺服系统是机床的重要组成部分,其故障会严重影响机床的生产效率和质量。
本文将对数控机床伺服系统常见故障进行分析,提供相应的诊断和处理方法,帮助机床维修工程师进行有效的故障排查。
一、伺服电机输出不稳定或不工作的故障1. 伺服电机电气连接故障。
在伺服电机输出不稳定或不工作的情况下,首先要检查电气连接是否良好,包括伺服电机与伺服主轴电机之间的电气连接是否正常、伺服驱动器电气与伺服电机之间的连接是否正确、接地是否合格等,排除电气连接问题。
2. 伺服电机本身故障。
伺服电机的故障如轴承磨损、线圈断路、电机转子故障等都会导致输出不稳定或不工作的情况,需要进行检测和维修。
常见的检测方法如用万用表测量电机的电阻,检查电机转动是否灵活、轴承是否正常等。
3. 伺服驱动器故障。
伺服驱动器的故障如防护电路故障、电源故障、接口板连接不良等都会导致伺服电机输出不稳定或不工作,需要检查相应的部件进行排查。
常见的检测方法如检查驱动器是否有报警信号、电源是否正常、接口板是否正确插接等。
二、伺服系统位置偏移或误差过大的故障1. 导轨故障。
导轨质量差、磨损严重或进刀太大等都会导致伺服系统位置偏移或误差过大,需要检查导轨表面是否有磨损痕迹以及导向面是否平整。
2. 动态中的机械振动、系统震动或机床本身质量不好。
这些因素在机床运行中都会产生影响,导致伺服系统位置偏移或误差过大,需要进行检查和调整。
调整方法可采用优化机床支撑结构、调整伺服参数等。
3. 伺服系统参数设置错误。
如伺服系统的比例系数、积分系数和微分系数未能正确设置,将导致位置偏移或误差过大。
此时需要检查和调整伺服系统的参数设置。
三、伺服系统温度过高或过低的故障伺服系统的温度过高或过低都会导致数控机床性能下降,进而影响机床的精度和稳定性。
常见的故障原因包括:1. 冷却系统故障。
如冷却水温度过高或过低、冷却系统中水泵或水管路堵塞、扇叶损坏等都会导致伺服系统温度异常。
SIEMSIMODRIVE 611 伺服驱动系统故障诊断说明(2)

SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明(160-505) 2012-02-04 13:21:56楼主160 基准轨迹未能实现原因:在开始寻基准点后,坐标轴在P0170运动过程中未能发现基准轨迹。
排除:—检查“基准轨迹”信号—检查P0170—如果坐标轴没有基准轨迹,则设置P0173至1确认:故障存储器重新置位。
反应:停止、STOP Ⅴ161 基准轨迹太短原因:当坐标轴向基准轨迹运动而且没有达到轨迹的停滞点时,错误被提示,i.e.基准轨迹太短。
排除:—设置P0163(寻基准点的速度)至较低值—增加P0104(最大制动值)—使用更长的基准轨迹确认:故障存储器重新置位。
反应:停止、STOP Ⅴ162 无零基准脉冲原因:当脱开基准轨迹后,坐标轴在P0171(基准轨迹与零脉冲之间的最大距离)运动过程中未能发现零脉冲。
排除:—检查带以零标记为基准的编码器—设置P0171至较高值确认:故障存储器重新置位。
反应:停止、STOP Ⅴ163 无编码运行和运行模式不匹配原因:无编码运行被参数化(P1006)并且“定位”或“位置基准值”运行模式设置。
排除:设置运行模式“速度/转矩设置”(P0700=1)确认:接通电源反应:停止、STOP Ⅴ165 绝对定位块不合理原因:带绝对定位数据的往复运动块在坐标轴连接运动时未被允许。
排除:修正往复运动块确认:故障存储器重新置位。
反应:停止、STOP Ⅳ166 连接不成功原因:在实际运行状态中,连接未能建立。
排除:—设置角度编码器界面(P0890,P0891)—检查连接结构(P0410)确认:故障存储器重新置位。
反应:停止、STOP Ⅵ167 启动连接信号原因:“启动连接”输入信号有效,输入信号对于启动连接是必要的。
排除:重置“启动连接”输入信号,确认故障,再设置输入信号并用开关接通连接。
确认:故障存储器重新置位。
反应:停止、STOP Ⅱ168 过流,缓冲存储原因:带有排队功能的连接发生,最大16个位置被保存在P0425∶16。
数控机床主轴伺服系统常见故障诊断与维护

SCIENCE &TECHNOLOGY VISION科技视界2011年8月第23期科技视界Science &Technology Vision1伺服系统简介1.1伺服系统的概念数控机床伺服系统是指以机床移动部件的位置和速度作为控制量的自动控制系统,又称随动系统。
在数控机床中,伺服系统是连接数控系统和数控机床本体的中间环节,是数控机床的“四肢”。
因为伺服系统的性能决定了数控机床的性能,所以要求伺服系统具有高精度、快速度和良好的稳定性。
1.2伺服系统的工作原理伺服系统是一种反馈控制系统,它以指令脉冲为输入给定值与输出被调量进行比较,利用比较后产生的偏差值对系统进行自动调节,以消除偏差,使被调量跟踪给定值。
所以伺服系统的运动来源于偏差信号,必须具有负反馈回路,并且始终处于过渡过程状态。
在运动过程中实现了力的放大。
伺服系统必须有一个不断输入能量的能源,外加负载可视为系统的扰动输入。
2直流主轴伺服系统从原理上说,直流主轴驱动系统与通常的直流调速系统无本质的区别,但因为数控机床高速、高效、高精度的要求,决定了直流主轴驱动系统具有以下特点:2.1调速范围宽。
2.2直流主轴电动机通常采用全封闭的结构形式,可以在有尘埃和切削液飞溅的工业环境中使用。
2.3主轴电控机通常采用特殊的热管冷却系统,能将转子产生的热量迅速向外界发散。
2.4直流主轴驱动器主回路一般采用晶闸管三相全波整流,以实现四象限的运行。
2.5主轴控制性能好。
2.6纯电气主轴定向准停控制功能。
3交流主轴伺服系统主轴驱动交流伺服化是数控机床主轴驱动控制的发展趋势,交流主轴伺服系统的特点如下:3.1振动和噪声小3.2采用了再生制动控制功能3.3交流数字式伺服系统控制精度高3.4交流数字式伺服系统用参数设定(不是改变电位器阻值)调整电路状态4主轴伺服系统的常见故障形式4.1当主轴伺服系统发生故障时,通常有三种表现形式4.1.1是在操作面板上用指示灯或CRT 显示报警信息;4.1.2是在主轴驱动装置上用指示灯或数码管显示故障状态;4.1.3是主轴工作不正常,但无任何报警信息。
伺服系统常见故障与排除

11. 不 能 准 备 好 系 统 , 报 警 显 示 伺 服 VRDY OFF 〔0,16/18/0i为401〕
系统开机自检后,如果没有急停和报警,那么发 出*MCON信号给所有轴伺服单元,伺服单元承受到 该信号后,接通主接触器,电源单元吸合,LED由 两杠〔――〕变为00,将准备好〔电源单元准备 好〕信号,送给伺服单元,伺服单元再接通继电 器,继电器吸合后,将*DRDY信号送回系统,如果 系统在规定时间内没有承受到*DRDY信号,那么发 出此报警,同时断开各轴的*MCON信号,因此,上 述所有通路都是可能的故障点。
8)观察所有伺服单元的LED上是否有其他报警信号, 如果有,那么先排除这些报警
9)如果是双轴伺服单元,那么检查另一轴是否未接 或接触不好或伺服参数封上了〔0系统为8×09#0, 16/18/0i为,s1,s2设定如下: s1-TYPEA,s2-TYPEB
d.伺服放大器的内部过热检测电路故障,更换伺服放 大器或修理
③伺服放大器检测到主回路过热
a.关机一段时间后,再开机,如果没有报警产生, 那么可能机械负载太大,或伺服电机故障,检 修机械或更换伺服电机
b.如果还有报警,检查IPM模块的散热器上的热 保护开关是否断开,更换
c.更换伺服放大器
例如:某直流伺服电机过热报警,可能原因有: ①过负荷。可以通过测量电机电流是否超过额定值 来判断。②电机线圈绝缘不良。可用500V绝缘电阻 表检查电枢线圈与机壳之间的绝缘电阻。如果在 1MΩ以上,表示绝缘正常,否那么应清理换向器外 表的炭刷粉末等。③电机线圈内部短路。可卸下电 机,测电机空载电流,如果此电流与转速成正比变 化,那么可判断为电机线圈内部短路。应清扫换向 器外表,如外表上有油更易引起此故障。④电机磁 铁退磁。可通过快速旋转电机时,测定电机电枢电 压是否正常。如电压低且发热,那么说明电机已退 磁。应重新充磁。⑤制动器失灵。当电机带有制动 器时,如电机过热那么应检查制动器动作是否灵活。 ⑥CNC装置的有关印制线路板不良。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 主轴驱动系统故障诊断
第一节 主轴驱动系统故障诊断
2.主电路
数控机床直流主轴电动机由于功率较大,切要求正、反转 及停止迅速,驱动装置采用三相桥式反并联逻辑无环流可逆 变调速系统,在制动时,除了缩短制动时间,还能将主轴旋 转的机械能转变成电能送回电网。还利用逻辑电路,使一组 晶闸管工作时,另一组的触发脉冲被封锁,切断两组之间流 通的电流
位置环(外环):输入信号为CNC的指令和位置检测器反馈的位置 信号
速度环(中环):输入信号为位置环的输出和测速发电机经反馈网 络处理信号
电流环(内环):输入信号为速度环的输出信号和经电流互感器得到 的电流信号
第四章 伺服系统故障诊断
在三环系统中,位置环的输出是速度环的输入;速度环的输出是电 流环的输入;电流环的输出直接控制功率变换单元,这三个环的反馈信 号都是负反馈
分析诊断:急停(电阻能耗制动);正常停机(回馈制 动)。在任何时候不允许正、反两组同时工作,有火花说 明逆变电路有故障。
第一节 主轴驱动系统故障诊断
例:某加工中心主轴在运转时抖动,主轴箱噪声增大,影 响加工质量。经检查主轴箱和直流主轴电动机正常,把检 查转到主轴电机的控制系统。测得的速度指令信号正常, 而速度反馈信号出现不应有的脉冲信号,问题出在速度检 测元件上,经检查,测速发电机碳刷完好,但换向器因碳 粉堵塞,而造成一绕组断路,使测得的反馈信号出现规律 性的脉冲,导致速度调节系统调节不平稳,使驱动系统输 出的电流忽大忽小,从而造成电动机轴的抖动。用酒精清 洗换向器,彻底消除碳粉,即可排除故障
交流主轴电动机:有1PH5和1PH6两个系列(3~100kW)及配套的 6SC650、6SC611A系列的主轴驱动模块
第一节 主轴驱动系统故障诊断
二、主轴伺服系统的故障形式及诊断方法
主轴伺服系统发生故障时,有三种表现形式: 1、在CRT或操作面板上显示报警内容或报警信息 2、在主轴驱动装置上用报警灯或数码管显示故障 3、无任何故障报警信息
7、主轴电动机不转:CNC是否有速度信号输出;使
能信号是否接通、CTR观察I/O状态、分析 PLC梯形图以确定主轴的启动条件(润滑、 冷却);主轴驱动故障;主轴电机故障
第一节 主轴驱动系统故障诊断
三、主轴直流驱动的故障诊断
1.控制电路
控制回路采用电流反馈和速度反馈的双闭环调速系统,内 环是电流环,外环是速度环。
第一节 主轴驱动系统故障诊断
一般主轴要求:速度大范围连续可调、恒功率范围宽 伺服主轴要求:有进给控制和位置控制 主轴变速形式:电动机带齿轮换档(降速、增大传动比、增大
主轴转矩);电动机通过同步齿带或皮带驱动 主轴(恒功率、机械传动简单)
第一节 主轴驱动系统故障诊断
一、常用主轴驱动系统介绍
FANUC公司主轴驱动系统
第一节 主轴驱动系统故障诊断
第一节 主轴驱动系统故障诊断
例:某加工中心采用直流主轴电动机、逻辑无环可逆调速 系统。当用M03指起动时有“咔、咔”的冲击声,电动机 换向片上有轻微的火花,起动后无明显的异常现象;用 M05指令使主轴停止时,换向片上出现强烈的火花,同时 伴“叭、叭”的放电声,随即交流回路的保险丝熔断。火 花的强烈程度和电动机转速成正比。但若用急停方式停止 主轴,换向片上没有任何火花。
第一节 主轴驱动系统故障诊断
四、主轴交流驱动的故障诊断
(一)6SC650系列主轴交流驱动系统
第一节 主轴驱动系统故障诊断
磁性传感器主轴准停装置
1.磁性传感器 2.发磁体 3.主轴 4.支架 5.主轴箱
第一节 主轴驱动系统故障诊断
4、主轴转速与进给不匹配:当进行螺纹切削或用每转进
给指令切削时,会出现停止进给、主轴仍然运 转的故障。主轴有一个每转一个脉冲的反馈信 号,一般为主轴编码器有问题。可查CRT报 警、I/O编码器状态或用每分钟进给指令代替
第一节 主轴驱动系统故障诊断
主轴伺服系统常见故障有:
1、外界干扰:屏蔽和接地措施不良时,主轴转速或反
馈信号受电磁干扰,使主轴驱动出现随 机和无规律的波动。判别方法,使主轴 转速指令为零再看主轴状态
2、过载:切削用量过大,频繁正、反转等均可引起过载
报警。具体表现为电动机过热、主轴驱动装置 显示过电流报警等
第9章 伺服系统故障诊断
第一节 主轴驱动系统
主轴驱动系统、故障形式、故障诊断
第二节 进给伺服系统
进给驱动系统、伺服系统结构形置的维护、位置检测的故障诊断
第四章 伺服系统故障诊断
伺服:工作台(电机)的运动速度和距离完全按CNC的指令
行动,准确无误
控制办法:三环结构
主要采用交流主轴驱动系统,有S、 H 、P三个系列(1.5~37 1.5~22 3.7~37 kW)
主要特点:
1)采用微处理控制技术 2)主回路采用晶体管PWM逆变器 3)具有主轴定向控制、数字和模拟输入
第一节 主轴驱动系统故障诊断
SIEMENS公司主轴驱动系统
直流主轴电动机:有1GG5、1GF5、1GL5和1GH5四个系列及配套的 6RA24、6RA27系列驱动装置(晶闸管)
第一节 主轴驱动系统故障诊断
3、主轴定位抖动
主轴准停用于刀具交换、精镗退刀及齿轮换档等场合, 有三种实现形式: 1)机械准停控制(V形槽和定位液压缸)
2)磁性传感器的电气准停控制 (图) 3)编码器型的准停控制(准停角度可任意) 上述准停均要经减速的过程,如果减速或增益等参数设 置不当;限位开关失灵;磁性传感器间隙变化或失灵都会 引起定位抖动
5、转速偏离指令值:主轴实际转速超过所规定的范围时
要考虑,电机过载、CNC输出转速的模拟量没 有达到与转速指令对应值、测速装置有故障、 主轴驱动装置故障
第一节 主轴驱动系统故障诊断
6、主轴异常噪声及振动:电气驱动故障(如果是在
减速过程中发生或振动周期与转速无关); 主轴机械故障(如果发生在恒转速自由停车 时或振动周期与转速有关)