有理数的绝对值及加减法(详细题型)
1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)(解析版)

1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)类型一、绝对值的有关概念1.(23-24·吉林延边·阶段练习)在下列数中,绝对值最大的数是()A.0B.1-C.2-D.1【答案】C【分析】本题考查的是绝对值与有理数的大小比较,熟练掌握上述知识点是解题的关键.先计算出各选项的绝对值,再进行大小比较即可.=-=-==,【详解】解:∵|0|0,|1|1,|2|2,|1|1而210>>,∴->-=>,|2||1||1|0故选:C.-,那么a=.2.(23-24七年级上·甘肃定西·阶段练习)如果a的相反数是0.74【答案】0.74【分析】本题主要考查了绝对值和相反数的知识,根据“只有符号不相同的两个数互为相反数;互为相反数3.(23-24七年级上·全国·课后作业)化简下列各数:(1)34--;(2)()0.5-+-⎡⎤⎣⎦;(3)6217⎡⎤⎛⎫-++ ⎪⎢⎥⎝⎭⎣⎦;(4)()2-+.4.(2024·辽宁抚顺·三模)下列各数在数轴上表示的点距离原点最远的是()A .2-B .1-C .3D .05.(23-24七年级上·四川宜宾·期中)若有理数m 在数轴上的位置如图所示,则化简3m m ++结果是.6.(23-24七年级上·四川成都·阶段练习)已知|2||1|6a a ++-=,则=a ;7.(23-24七年级下·河南南阳·期末)已知3535x x -=-,则x 的取值范围是.8.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是()A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数9.(23-24·黑龙江哈尔滨·期中)已知a 为有理数,则24a -+的最小值为.10.(24-25七年级上·全国·随堂练习)比较大小:76-65--.11.(24-25七年级上·全国·假期作业)比较下列各对数的大小:①1-与0.01-;②2--与0;③0.3-与13-;12.(23-24七年级上·湖南怀化·期末)已知下列各数,按要求完成各题:4.5+,142--,0, 2.5-,6,5-,()3+-.(1)负数集合:{......};(2)用“<”把它们连接起来是;(3)画出数轴,并把已知各数表示在数轴上.大于负数,两个负数比较大小绝对值越大其值越小进行求解即可;13.(23-24七年级上·海南省直辖县级单位·期末)如果21(2)0a b ++-=,则a b +的值为()A .1B .3C .1-D .3-14.(23-24·黑龙江哈尔滨·开学考试)已知|3||5|0x y -++=,求||x y +的值.15.(21-22七年级上·陕西·期中)已知(a +2)2+|b ﹣3|=0,c 是最大的负整数,求a 3+a 2bc ﹣12a 的值.二、填空题16.(23-24七年级上·四川南充·阶段练习)若12x <<,求代数式2121x x xx x x---+=.17.(23-24·上海杨浦·期末)12345x x x x x -+-+-+-+-的最小值为.18.(2024七年级下·北京·专题练习)已知112x -<<,化简|||2|3x x ---=.三、解答题19.(24-25七年级上·全国·随堂练习)在数轴上,a ,b ,c 对应的数如图所示,b c =.(1)确定符号:a ______0,b ______0,c _____0,b c +_____0,a c -______0;(2)化简:a c b +-;(3)化简:a a c --.20.(23-24·北京海淀·期中)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.【答案】(1)>,<,>(2)322a c --21.(23-24七年级下·河南周口·阶段练习)求解含绝对值的一元一次方程的方法我们没有学习过,但我们可以采用分类讨论的思想先把绝对值去除,使得方程成为一元一次方程,这样我们就能轻松求解了.比如,求解方程:32x -=.解:当30x -≥时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =,所以原方程的解是5x =或1x =.请你依据上面的方法,求解方程:3270x --=,得到的解为.22.(23-24七年级下·甘肃天水·期中)阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示在数轴上数1x ,2x 对应点之间的距离.例1:解方程6x =.解:∵06x x =-=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±.例2:解不等式12x ->.解:如图,首先在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程53x -=的解为______;(2)解不等式2219x ++<;(3)若123x x -++=,则x 的取值范围是_______;故答案为:8x =或2x =.(2)2219x ++<(3)123x x -++=,表示到1的点与到2-的点距离和为3,故答案为:21x -£<.23.(24-25七年级上·全国·假期作业)数学实验室:点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离||AB a b =-.利用数形结合思想回答下列问题:(1)数轴上表示x 和3-的两点之间的距离表示为.(2)若34x +=,则x =.(3)32x x --+最大值为,最小值为.24.(23-24七年级上·四川南充·阶段练习)我们知道,a 可以理解为0a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A ,B ,分别用数a ,b 表示,那么A ,B 两点之间的距离为AB a b =-,反过来,式子a b -的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是_________.(2)数轴上点A 用数a 表示,则①若35a -=,那么a 的值是_________.②36a a -++有最小值,最小值是_________;③求123202*********a a a a a a ++++++++++++ 的最小值.25.(23-24·黑龙江哈尔滨·期中)出租车司机李师傅某日上午一直在某市区一条东西方向的公路上营运,共连续运载八批乘客,若按规定向东为正,李师傅营运八批乘客里程数记录如下(单位:千米):8+,6-,3+,4-,8+,4-,5+,3-.(1)将最后一批乘客送到目的地后,李师傅位于第一批乘客出发地多少千米?(2)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元,不超过5千米则收取起步价,求李师傅在这期间一共收入多少元?26.(23-24·黑龙江哈尔滨·阶段练习)刚刚闭幕的第33届“哈洽会”,于2024年5月16日至21日在哈尔滨市举办,中外宾客齐聚冰城.为确保全市道路交通安全有序,哈尔滨市公安交通管理局在开幕式当日对会展中心周边区域,以及部分道路进行交通管制和诱导分流.萧萧作为哈市青年当日也贡献了自己的一份力量.如图是某一条东西方向直线上的公交线路的部分路段,西起A 站,东至L 站,途中共设12个上下车站点,“哈洽会”开幕式当日,萧萧参加该线路上的志愿者服务活动,从C站出发,最后在某站结束服务活动,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):5,3,4,5,8,2,1,3,4,1+-+-+-+--+.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次萧萧志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶,若萧萧开始志愿服务活动时该汽车油量占油箱总量的1170,每行驶1千米耗油0.2升,活动结束时油量恰好能保证汽车安全行驶,则该汽车油箱能存储油多少升?一、单选题1.(22-23七年级上·云南保山·期末)有理数a ,b ,c 在数轴上的位置如图所示,在下列结论中:①0a b ->;②0ab <;③a b a b +=--;④()0b a c ->,正确的个数有()A .4个B .3个C .2个D .1个2.(23-24七年级上·浙江台州·期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0ab >B .4b a ->C .2a b a b +=D .()()230a b +-<3.(23-24七年级上·山东德州·期末)有理数a 、b 、c 在数轴上的位置如图所示,则b a b c a c --+--的化简结果为()A .2c-B .2a C .2b D .22b c+4.(18-19七年级上·北京海淀·期末)如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A .a b +B .a b -C .abD .a b -5.(23-24七年级上·江西抚州·期末)适合|5||3|8a a ++-=的整数a 的值有()A .5个B .7个C .8个D .9个二、填空题6.(23-24七年级上·浙江绍兴·阶段练习)已知a 、b 为整数,202320a b +--=,且b a <,则a 的最小值为.7.(23-24七年级上·湖北省直辖县级单位·阶段练习)若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;8.(23-24七年级上·河南南阳·阶段练习)已知x a b ,,为互不相等的三个有理数,且a b >,若式子||||x a x b -+-的最小值为2,则2023a b +-的值为.三、解答题9.(23-24七年级上·江苏南京·阶段练习)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)15+,3-,13+,11-,10+,12-,4+,15-,16+,19-(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米?(2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由.10.(23-24七年级下·四川资阳·期末)(1)【阅读理解】“a ”的几何意义是:数a 在数轴上对应的点到原点的距离,所以“2a ≥”可理解为:数a 在数轴上对应的点到原点的距离不小于2,则:“2a <”可理解为:;我们定义:形如“x m ≤,≥x m ,x m <,x m >”(m 为非负数)的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.(2)【理解应用】根据绝对值的几何意义可以解一些绝对值不等式.例如:315x x -≤+我们将x 作为一个整体,整理得:315x x -≤+3x ≤再根据绝对值的几何意义:表示数x 在数轴上的对应点到原点的距离不大于3,可得:解集为33x -≤≤仿照上述方法,解下列绝对值不等式:①254x x -<-②1312313x x -+<-.11.(23-24六年级下·黑龙江绥化·期中)数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|3-=;数轴上表示数3和1-的两点距离为|3(1)|4--=;由此可知|63|+的意义可理解为数轴上表示数6和3-这两点的距离;|4|x +的意义可理解为数轴上表示数x 和4-这两点的距离;(1)如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A 的距离与P 到B 的距离之和最小?(2)如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C ,,三点的距离之和最小?(3)如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C D ,,,四点的距离之和最小?(4)①|3||4|x x ++-的最小值是_________,此时x 的范围是_________;②|6||3||2|x x x ++++-的最小值是_________,此时x 的值为_________;③|7||4||2||5|x x x x ++++-+-的最小值是_________,此时x 的范围是_________.(3)①根据(1)的结论即可得出答案;②根据(2)的结论即可得出答案;③根据(3)的结论即可得出答案.【详解】(1)解:当点P 在点A 左边时,2PA PB PA PA AB PA AB +=++=+,当点P 在A 、B 之间时,PA PB AB +=,当点P 点点B 的右边时,2PA PB AB PB PB AB PB +=++=+,∴当点P 在A 、B 之间时,才能使P 到A 的距离与P 到B 的距离之和最小;(2)解:当点P 在点A 左边时,2PA PB PC PA PA AC PB PA PB AC ++=+++=++,当点P 在A 、B 之间时,PA PB PC PB AC ++=+,当点P 在B 点时,PA PB PC AC ++=,当点P 在B C 、之间时,PA PB PC PB AC ++=+,当点P 在点C 的右边时,2PA PB PC PC PB AC ++=++,∴当点P 在B 点时,才能使P 到A B C ,,三点的距离之和最小(3)解:当点P 在点A 左边时,42PA PB PC PD PA AB CB AD +++=+++,当点P 在A 、B 之间时,2PA PB PC PD PB CB AD +++=++,当点P 在B C 、之间时,PA PB PC PD BC AD +++=+,当点P 在C D 、之间时,2PA PB PC PD BC AD PC +++=++,当点P 在点D 的右边时,24PA PB PC PD BC AD DC PD +++=+++,∴当点P 在B C 、之间时,才能使P 到A B C D ,,,四点的距离之和最小;(4)解:①由(1)可得:当34x -≤≤时,有最小值,最小值为()437--=,∴|3||4|x x ++-的最小值7,此时x 的范围是34x -≤≤;②由(2)可得:这是在求点x 到6-,3-,2三点的最小距离,∴当3x =-时,有最小值,最小值为|6||3||2||36||33||32|8x x x ++++-=-++-++--=;③由(3)可得:这是在求点x 到7-,4-,2,5四点的最小距离,∴当42x -≤≤时,由最小值,最小值为|7||4||2||5|742518x x x x x x x x ++++-+-=++++-+-=.12.(23-24七年级上·安徽安庆·期中)有数a b c 、、在数轴上的大致位置如图所示:(1)a c +__________0,b c -__________0,a b -__________0(用“>”、“<”、“=”);(2)化简||||||a c b c a b ++---.13.(23-24七年级上·江西上饶·期中)如图所示,数轴上从左到右的三个点A ,B ,C 所对应的数分别为a ,b ,c .其中点A 、点B 两点间的距离AB 的长是2021,点B 、点C 两点间的距离BC 的长是1000.(1)若以点C 为原点,直接写出点A ,B 所对应的数;(2)若原点O 在A ,B 两点之间,求a b b c ++-的值;(3)若O 是原点,且18OB =,求a b c +-的值.【答案】(1)点A 所对应的数a 为3021-,点B 所对应的数b 为1000-(2)3021(3)a b c +-的值为3003-或3039-【分析】本题考查了数轴与绝对值的意义,理解绝对值的意义是解答本题的关键.(1)根据题意先求解AC 的长,结合数轴的定义可求解点A ,B 所对应的数;(2)根据数轴上点的特征可得a<0,0b >,0c >,0b c -<,结合绝对值的性质化简可求解;,14.(22-23七年级上·北京·期中)已知a ,b 在数轴上的位置如图所示:(1)用“>”、“<”或“=”填空:____0a ,____0a b +,____0b a -;(2)化简:||||2||a b a a b +--+;(3)若21a b =-=,,x 为数轴上任意一点所对应的数,则代数式||||x a x b -+-的最小值是______;此时x 的取值范围是______.。
有理数-数轴-绝对值-加减法练习卷

2016.6有理数、数轴、绝对值、加减法练习卷一•选择题(共15小题)1 •六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20CC. 44C D • - 44C2 . 2的相反数是()A._ 1B.C.-2D.2223. 如图, 数轴上有A,B, G D四个点,其中到原点距离相等的两个点是( )A•■C2-2 -1 0 1 2A.点B与点DB.点A与点C C点A与点D D.点B与点C4. 如图,数轴上有M, N, P, Q四个点,其中点P所表示的数为a,则数 -3a所对应的点可能是()MNPQ—♦ --- ■■乙------ *—>A. MB. N CP D. Q5. a , b在数轴上的位置如图,化简∣a+b∣的结果是()A. - a - bB. a+bC. a - b D . b - a6. 如图,数轴上有四个点MP, N Q若点M, N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()-- «----- • ■ •>M P X QA. 点MB.点NC.点PD.点Q7. | - 2∣=x ,贝U X 的值为( JA. 2B. - 2 C ±. D. ■:&下列说法错误的是()A. 绝对值最小的数是OB. 最小的自然数是1C最大的负整数是-1D绝对值小于2的整数是:1, O, - 19. a、b是有理数,如果Ia - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A只有(1)正确 B.只有(2)正确C. (1) , (2)都正确D. (1), (2)都不正确10. 若|a|=8 , |b|=5 , a+b>0,那么a- b 的值是()A. 3 或13B. 13 或-13C. 3 或-3D.- 3 或1311. 若a≤,则∣a∣+a+2 等于()A. 2a+2 B . 2 C 2 - 2a D. 2a - 212. 下列式子中,正确的是()A. | - 5|= - 5B.- | - 5|=5C.-(- 5)=- 5D.-(- 5)=513. 下列说法正确的是()A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D —个数的绝对值一定比0大14. (2015秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a则a、b、- a、|b|的大小关系正确的是()••A. |b| > a>- a> bB. |b| > b > a>- aC. a > |b| > b>- aD. a>∣b∣>- a> b15. 对于实数a, b,如果a>0, b v 0且∣a∣V ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=—(Ial - |b| )D. a+b=-(∣b∣- ∣a∣)二•解答题(共15小题)16. 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入•下表是某周的生产情况(超产记为正、减产记为负):星期一二四五六日增减+5-2-4+ 13-10+ 16-9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17. 先阅读第(1)小题,仿照其解法再计算第(2)小题:解:原式=I :.:6 3 4 2=' :;: ■'」[¢-1) + (-5) +24+ (-3) ] + E (-⅛ + (--|) 4+(_吉)]O ,=∙l 1Z √s (1)计算:=15+ .-;(2)计算mf;18. 计算:31+ (- 102) + (+39) + (+102) + (- 31)19. 口算:(-13) + (+19)=(-4.7 ) + (- 5.3 )=(-2009) + (+2010)=(+125) + (- 128)=(+0.1 ) + (- 0.01 )=(-1.375 ) + (- 1.125 )=(-0.25 ) + (+ ')=4(-8 J + (- 4 :)=3 2u(-r + (-)=3 4 127(-1.125) + (+ )=g(-15.8 ) + (+3.6 )=(-5 ) +0=620. 已知凶=2003 , ∣y∣=2002 ,且x>0, y V 0,求x+y 的值.21. 计算题(1) 5.6+4.4+ (- 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3) ' + (- :) + - : ^ I : ' I4 3 6 4 3(6) (- 18-) + (+53 J + (- 53.6 ) + (+18 :) + ( - 100)5 5 522. 计算下列各式:(1)(- 1.25 ) + ( +5.25 )(2)(- 7) + (- 2)(3)— + Wl - 8(5)0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6):∣f •-「一」」23. 在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3+5+7」"1+3」',1+3+5^ ',21+3+5+7+9= ' ,按规律计算:(1)1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n- 1)25. 已知:∣m∣=3 , ∣n∣=2 ,且mκ n,求m+n的值.26. 计算题(1) 5.6+ (—0.9 ) +4.4+ (—8.1 ) + (- 0.1 )(2)- 0.5+ (- 3—) + (- 2.75 ) + ( +7—)42(3) 1 '+ (- 1 ')+ + (- 1)+ (- 3 ;)3535(4)+ (- :) +(-')+ (--)+ (- ^)2 3523(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6) (- 1 J + (-6 ) + (- 2.25 ) + '.4 3 327. 已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.28. 若|a|=5 , |b|=3 , (1)求a+b 的值;(2)若∣a+b∣=a+b ,求a- b 的值.29. 已知|a|=2 , |b|=3 , |c|=4 , a>b>c,求a- b - C 的值. 30.若a,b,c 是有理数,|a|=3 ,|b|=10 ,|c|=5 ,且a,b 异号,b,c 同号,求a- b- (- C)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一•选择题(共15小题)1.(2014?南岗区校级一模)六月份某登山队在山顶测得温度为零下32度, 此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20 C C. 44 C D . - 44 C【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12-(- 32)=12+32=44 C.故选C.2. (2016?德州)2的相反数是()A^- - B. C- 2 D. 22 2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是-2,故选:C.3. (2016?亭湖区一模)如图,数轴上有A, B, C, D四个点,其中到原点距离相等的两个点是()AB C D—*-------- ⅛-------- 1—•—I ---------- •->-2 -1 0 1 2A.点B与点DB.点A与点CC.点A与点DD.点B与点C 【分析】根据数轴上表示数a的点与表示数-a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为-2 ,点D表示的数为2, 根据数轴上表示数a的点与表示数-a的点到原点的距离相等,•••点A与点D到原点的距离相等,故选:C.4. (2016?海淀区二模)如图,数轴上有M N P, Q四个点,其中点P所表示的数为a ,则数-3a所对应的点可能是()MNPQOA. MB. N C P D. Q【分析】根据数轴可知-3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:•••点P所表示的数为a,点P在数轴的右边,•••- 3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,•••数-3a所对应的点可能是M故选:A.5. (2016?花都区一模)a, b在数轴上的位置如图,化简∣a+b∣的结果是()A.- a - bB. a+bC. a - b D . b - a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可. 【解答】解:由图形可知,a v 0,b v 0,所以a+b V0,所以∣a+b∣= - a - b.故选:A.6. (2016?石景山区二模)如图,数轴上有四个点M, P,N, Q,若点M N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()--- «---- •_∙→-- >M PΛ' QA.点MB.点NC.点PD.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:•••点M N表示的数互为相反数,•原点为线段MQ的中点,•点Q到原点的距离最大,•点Q表示的数的绝对值最大.故选D.7. (2016?鄂城区一模)I - 2∣=x ,则X的值为()A. 2B. - 2 C ⅛2 D. √j【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:••• | - 2|=2 ,.∙. x=2,故选:A.& (2016春?上海校级月考)下列说法错误的是()A. 绝对值最小的数是0B. 最小的自然数是1C最大的负整数是-1D.绝对值小于2的整数是:1, 0, - 1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B. 最小的自然数是0 ,所以此选项错误;C. 最大的负整数是1 ,所以此选项正确;D. 可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1 , 1, 0,所以绝对值小于2的整数是:-1 , 0, 1,所以此选项正确.故选B.9. (2015秋?苏州期末)a、b是有理数,如果|a - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C (1) , (2)都正确D. (1), (2)都不正确【分析】分两种情况讨论:(1)当a- b≥0时,由|a - b∣=a+b得a- b=a+b, 所以b=0, (2)当 a - b V 0 时,由|a - b∣=a+b 得-(a - b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a - b| ≥0,而a- b有两种可能性.(1)当a- b≥0 时,由|a - b∣=a+b 得a- b=a+b,所以b=0,因为a+b≥,所以a≥);(2)当a- b V 0 时,由|a - b∣=a+b 得-(a- b)=a+b,所以a=0,因为a- b v 0,所以b>0.根据上述分析,知(2)错误.故选A.10. (2 015秋?内江期末)若|a|=8 , ∣b∣=5 , a+b> 0,那么a - b的值是()A. 3 或13 B. 13 或-13 C. 3 或-3 D.- 3 或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∙∙∙∣a∣=8 , ∣b∣=5 ,.∙. a= ±, b=±5, 又T a+b> 0,∙'∙ a=8, b=±5.∙∙∙ a - b=3 或13 .故选A.11. (2015秋?青岛校级期末)若a≤),则∣a∣+a+2等于( )A. 2a+2B. 2C. 2- 2aD. 2a- 2【分析】由a≤)可知IaF - a,然后合并同类项即可.【解答】解:T a ≤),∙IaI= - a. 原式=- a+a+2=2. 故选:B.12. (2015秋?南京校级期末)下列式子中,正确的是( )A. I - 5I=- 5B.- I - 5I=5C.-(- 5) =- 5D.-(- 5)=5【分析】根据绝对值的意义对A、 B 进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、| - 5|=5 ,所以A选项错误;B- | - 5|= - 5,所以B选项错误;C-(- 5) =5,所以C选项错误;D-(- 5) =5,所以D选项正确.故选D.13. ( 2015 秋?高邮市期末)下列说法正确的是( )A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. —个数的绝对值一定比0大【分析】A根据整数的特征,可得最小的正整数是 1 ,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0 ,据此判断即可.D: —个非零数的绝对值比0大,0的绝对值等于0 ,据此判断即可.【解答】解:•••最小的正整数是1,•••选项A正确;•••负数的相反数一定比它本身大,O的相反数等于它本身,•选项B不正确;•••绝对值等于它本身的数是正数或O,•选项C不正确;•一个非零数的绝对值比O大,O的绝对值等于O,•选项D不正确.故选:A.14. (2O15秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a贝U a、b、- a、∣b∣的大小关系正确的是()? A∙ ∣b∣> a>- a> b B. ∣b∣> b > a >-a C. a > ∣b∣> b>- a D. a>∣b∣>- a> b【分析】观察数轴,则a是大于1的数,b是负数,且∣b∣> ∣a∣,再进一步分析判断.【解答】解:• a是大于1的数,b是负数,且∣b∣> ∣a∣,•∣b∣>a>- a>b.故选A.15. (2OO7?天水)对于实数a, b,如果a > O, b v O且∣a∣< ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=-(∣a∣- ∣b∣)D. a+b=-(∣b∣- ∣a∣)【分析】题中给出了a, b的范围,根据正数的绝对值是其本身,负数的绝对值是其相反数,O的绝对值是O”进行分析判断.【解答】解:由已知可知:a, b异号,且正数的绝对值<负数的绝对值.• a+b= -(∣b∣- ∣a∣).故选D.二.解答题(共15小题)16. (2O15秋?民勤县校级期末)某自行车厂计划一周生产自行车14OO辆,平均每天生产2OO辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车 (5 - 2 - 4+13 - 10+16 - 9) +200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16-(- 10) =26 辆;(4)这一周的工资总额是200×7>60+ (5- 2 - 4+13- 10+16- 9) ×( 60+15)=84675 辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13 辆,故该厂星期四生产自行车213辆;(2)根据题意 5 - 2- 4+13 - 10+16 - 9=9,200X7+9=1409 辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216- 190=26 辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×50+9×75=84675元,故该厂工人这一周的工资总额是84675元.17. (2015秋?简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:「.- .■: ■ -6342 4—解:原式=| '' '' ::'-■ '-' II1[¢-1) + (-5) +24+ (-3) ] + [ (-⅛ + (--∣) 4+ (-i)]'∙.∙l,J1Z√s=15+ ; Λj =13 ;;4【分析】 首先分析(1)的运算方法:将带分数分解为一个整数和一个分 数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】 解:原式=(-205) +400+ + (-204) + (- :) + (- 1 )+(-•)=-Y: •18. (2015秋?克拉玛依校级期中)计算: 31+ (- 102) + (+39) + (+102) + (- 31)【分析】先将互为相反数的两数相加,然后再进行计算即可. 【解答】 解:原式=[31+ (- 31) ]+[ (- 102) + ( +102) ]+39=0+0+39 =39.19. (2015秋?南江县校级月考)口算: (-13) + (+19)= (-4.7 ) + (- 5.3 )= (-2009) + (+2010)= (+125) + (- 128)= (+0.1 ) + (- 0.01 )= (-1.375 ) + (- 1.125 )= (-0.25 ) + (+ ;)=(-8 ■) + (- 4 J =3 2「"+(-_:) + (-')=(2)计算 I二仁'4 =(400 - 205- 204 - 1) + (—'-)4 3 Ξ3 4 12(-1.125) + (+ )=S(-15.8 ) + (+3.6 )=(-5 ) +0=6【分析】根据有理数的加法,即可解答.【解答】解:(-13) + (+19) =6;(-4.7 ) + (- 5.3 ) =- 10;(-2009) + (+2010) =1;(+125) + (- 128) =- 3;(+0.1 ) + (- 0.01 ) =0.09 ;(-1.375 ) + (- 1.125 ) =-2.5 ;(-0.25 ) + (+ J =;4 Ξ(-8?+ (- T =-12';⑴+ (- J + (- ') =0;3 4 127 1(-1.125) + (+ )=-;8 4(-15.8 ) + (+3.6 ) =- 12.2 ;(-5—) +0=- 5 .6 620. (2015 秋?德州校级月考)已知∣x∣=2003 , ∣y∣=2002 ,且x>0, y V 0, 求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案. 【解答】解:由∣x∣=2003 , ∣y∣=2002 ,且X > 0, y v 0,得x=2003, y= - 2002.x+y=2003 - 2002=1 .21. (2015秋?盐津县校级月考)计算题(1) 5.6+4.4+ ( - 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3)' + (- ') +'•4 3 64 3(5) (- 9十)+15 I ' - ■ ; ! - :... ! - J'-(6)(- 18 ) + (+53 ') + (- 53.6 ) + (+18 J + (- 100) 5 5 5【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4) (5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1) 5.6+4.4+ (- 8.1 )=10- 8.1=1.9 ;(2)(- 7) + (- 4) + (+9) + (- 5)=-7 —4+9— 5=-16+9=-7 ;(3)^+ (- :) + .-亠■--4 3 6 √3=(5^) +(- 5 - >=10- 6=4;=0- 1+ :(5) 0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6)斤「〔一 - . _: !. ■【分析】(1)根据有理数的加法法则计算,即可解答; (2) 根据有理数的加法法则计算,即可解答; (3) 根据有理数的加法法则计算,即可解答; (4) 利用加法的结合律和交换律,即可解答; (5) 禾U 用加法的结合律和交换律,即可解答. 【解答】解; (1) (- 1.25 ) + (+5.25 ) =5.25 - 1.25 =4; (2) (- 7) + (- 2) =-(7+2) =-7 ; (3)二;+ - - : - 83 2=-3 二+7— - 86 6(5) (- 9 ) +15 I12 4(-3⅛÷(-22.5)÷(-ι⅛ =(-9— - 15一) +[ (15三-3 )- 22.5] 121244=-25+[12.5 - 22.5] =-25- 10 =-35;(6) (- 18 ) + (+53 J + (- 53.6 ) + (+18 ) + (- 100) 5 5 5=(-18 +18 ) + ( +53 '- 53.6 ) + (- 100)5 5 5=0+0- 100 =-100.22. (2015秋?克什克腾旗校级月考)计算下列各式: (1) (- 1.25 ) + ( +5.25 ) (2) (- 7) + (- 2)(3)-Ty - 8=11 '; 6(5) 0.36+ (- 7.4 ) +0.5+0.24+(- 0.6 ) =1.1+ ( - 8)=-6.9 ;(6) .: ! : . . - . _: !.:=8.7 - 3.7=5.23. (2014秋?巩留县校级期中)在右面空格内填上的适当的不相同的整数, 【分析】由于竖线上的所有 3个数之和为0,所以第一排第二个数(即-1 右边的数)等于0+2=2的相反数,是-2;由于横线上的所有 3个数之和 为0,所以第一排第三个数等于- 1 - 2=- 3的相反数,是3;同样,第三 排第一个数等于2+1=3的相反数,是-3;同理,求出第二行的两个数.24. (2014秋?文登市校级期中)观察算式: d O (1+3) ×2 dn c (1+5) ×3 TCUr (IT) X4 1+3= , 1+3+5=, 1+3+5+7= , 2 2 2 (1+9) X 5 1+3+5+7+9= ,…, 按规律计算:(1) 1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n - 1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式 ___ 「:2【解答】 解:(1)由题意得:1+3+5+∙∙+99=「 ’ ' =2500;2 (2) 1+3+5+7+∙∙+ (2n - 1) = '〔' =nl使得横、竖、对角线上的所有【解答】-1-2 3 40 -4 -32 1225. (2014秋?滕州市校级月考)已知:∣m∣=3 , ∣n∣=2 ,且πκ n,求m+n 的值.【分析】利用绝对值求出m n的值,再代入求值.【解答】解:∙∙∙∣m∣=3 , ∣n∣=2 ,∕∙ m=±3, n=⅛2■/ m< n,∕∙ m=- 3, n =翌,.∙. m+n=— 3±2= - 1 或—5.26. (2014秋?长沙校级月考)计算题(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )(2)- 0.5+ (- 3 ') + (- 2.75 ) + (+7 )4 2(3) 1 :+ (- V :) +■+ (- 1) + (- 3 J3 5 3 512 4 1 1(4)+ (- ') + (- ) + (- ) + (-)2 3 5 2 3(5)(- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6)(- 1 ') + (-6—) + (- 2.25 ) + * '.4 3 3【分析】根据有理数的加法,逐一解答即可.【解答】解:(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )=5.6+4.4+ (- 0.9 - 8.1 - 0.1 )=10+ (- 9.1 )=0.9 .(2)- 0.5+ (- 3 ) + (- 2.75 ) + (+7 )4 2=(-0.5 ) + (+7 ) +[ (- 3 ) + (- 2.75 )]2 4=6+ (- 6)=0.(3) 1 '+ (- V :) +■+ (- 1) + (- 3 J3 5 3 5=(1 :+厶)+ (- 1 —1 - 3 ')3 3 5 5=3+ (- 6)=-3.(4)'+ (- :) + (- J + (- ^) + (- ^ )2 3 5 2 3=[+ ( — )]+[ (- :) + (- J +(-一)]2 23 5 3=0+ (- 1 )(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5=[(-0.8) +0.8]+[ (- 0.7 ) + (- 2.1 ) ]+ (1.2+3.5 ) =0+ (- 2.8 ) +4.7=1.9 .(6)(- 1 ;) + (-6 ) + (- 2.25 ) + '4 3 3=(-1 - 2.25 ) +[ (- 6 ) + ']4 3 3=-4+ (- 3)=-7.27. (2015 秋?自贡期末)已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.【分析】根据绝对值的性质求出a、b ,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∙∙∙∣a∣=5 , |b|=3 ,.∙. a= ±, b=±3,■/ |a - b|=b - a,.∙. a= - 5 时,b=3 或-3,.∙. a+b= - 5+3= - 2,或a+b= - 5+ (- 3) = - 8,所以,a+b的值是-2或-8.28.(2013 秋?滨湖区校级期末)若|a|=5 ,|b|=3 ,(1)求a+b 的值;(2)若∣a+b∣=a+b ,求 a - b 的值.【分析】(1)由∣a∣=5 , ∣b∣=3可得,a=±5, b= ±,可分为4种情况求解;(2)由|a+b|=a+b 可得,a=5,b=3 或a=5,b=- 3,代入计算即可. 【解答】解:(1)τ ∣a∣=5 , |b|=3 ,.∙∙ a= ±,b=±3,当a=5,b=3 时,a+b=8;当a=5, b=- 3 时, a+b=2;当a=- 5, b=3 时, a+b=- 2;当a=- 5, b=- 3 时, a+b=- 8.(2)由|a+b|=a+b 可得, a=5, b=3 或a=5, b=- 3.当a=5, b=3 时, a- b=2,当a=5, b=- 3 时, a- b=8.29. 已知∣a∣=2 , ∣b∣=3 , ∣c∣=4 , a>b>c,求a- b - C 的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、C的值,然后代入代数式进行计算即可得解.【解答】解:∙∙∙∣a∣=2 , ∣b∣=3 , ∣c∣=4 ,.∙. a=塑,b=±3 , C= ±,■/ a > b > C ,.∙∙ a=塑,b=- 3 , C= - 4 ,.∙. a - b - C=2 -(- 3)-(- 4)=2+3+4=9 ,或a- b- C=(- 2)-(- 3)-(- 4)=- 2+3+4=5综上所述,a+b - C的值为9或5.30. 若a , b , C 是有理数,∣a∣=3 , Ibl=Io , ∣c∣=5 ,且a , b 异号,b ,C 同号,求a- b-(- C)的值.【分析】根据题意,利用绝对值的代数意义求出 a , b , C的值,即可确定出原式的值.【解答】解:∙∙∙ a , b , C是有理数,|a|=3 , |b|=10 , |c|=5 ,且a , b异号, b , C同号,• ∙a=3, b= —10, C= —5; a= —3, b=10, c=5, 则原式=a- b+C=8 或- 8.。
有理数绝对值加减法混合计算题

有理数绝对值加减法混合计算题当涉及有理数绝对值的加减法混合计算题时,我们可以按照以下步骤进行分析和解答:
步骤1:理解绝对值的概念
首先,我们需要明确绝对值的含义。
对于一个有理数a,它的绝对值(记作|a|)表示该数到0的距离。
无论这个数是正数、负数还是零,它的绝对值总是非负的。
步骤2:根据运算符号确定正负性
在解决有理数绝对值的加减法混合计算题时,我们需要根据运算符号来确定各个数的正负性。
具体规则如下:
-加法:正数加正数得正数,负数加负数得负数,正数加负数或负数加正数时,需要比较绝对值的大小,结果取绝对值较大的符号。
-减法:正数减正数得正数,负数减负数得负数,正数减负数或负数减正数时,需要转化为加法运算,并将被减数取相反数。
步骤3:计算绝对值
在确定了各个数的正负性之后,我们可以计算绝对值并进行运算。
对于绝对值的计算,只需要忽略符号即可。
步骤4:根据步骤2的结果恢复正负性
在计算完绝对值之后,我们需要根据步骤2中确定的正负性来恢复结果的正负性。
下面通过一个具体的例子来说明这个过程:
问题:计算下列表达式的值:|-7|+(-3)-|5|
解答:
步骤1:理解绝对值的概念
绝对值表示数到0的距离。
对于|-7|,它的绝对值是7;对于|5|,它的绝对值是5。
步骤2:根据运算符号确定正负性
|-7|的绝对值为7,(-3)保持负号不变,|5|的绝对值为5。
步骤3:计算绝对值
|-7|+(-3)-|5|=7+(-3)-5
步骤4:根据步骤2的结果恢复正负性
7+(-3)-5=4-5=-1
因此,|-7|+(-3)-|5|的值为-1。
(完整版)关于绝对值的几种题型与解题技巧

关于绝对值的几种题型及解题技巧所谓绝对值就是只有单纯的数值而没有负号。
即0≥a 。
但是,绝对值里面的数值可以是正数也可以是负数。
怎么理解呢?绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。
所以,0≥a ,而a 则有两种可能:o a 和0 a 。
如:5=a ,则5=a 和5-=a 。
合并写成:5±=a 。
于是我们得到这样一个性质:a很多同学无法理解,为什么0 a 时,开出来的时候一定要添加一个“负号”呢?a -。
因为此时0 a ,也就是说a 是一个负数,负数乘以符号就是正号了。
如2)2(=--。
因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。
例如:0 b a -,则)(b a b a --=-。
绝对值的题解始终围绕绝对值的性质来展开的。
我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。
绝对值的性质:(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;a (a >0)a 0 a0 0=a a - 0 a(2) |a|= 0 (a=0) (代数意义)-a (a <0)(3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0;(4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ;(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)(6) |ab|=|a|·|b|;|b a |=||||b a (b ≠0);(7) |a|2=|a 2|=a 2;(8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|一:比较大小典型题型:【1】已知a 、b 为有理数,且0 a ,0 b ,b a ,则 ( )A :a b b a -- ;B :a b a b -- ;C :a b b a --;D :a a b b --这类题型的关键是画出数轴,然后将点按照题目的条件进行标记。
有理数绝对值加减法混合计算题

有理数绝对值加减法混合计算题
(原创实用版)
目录
1.有理数绝对值的概念和性质
2.有理数绝对值加减法的运算规则
3.有理数绝对值加减法混合计算的解题方法
4.示例题目及解答
正文
有理数绝对值是指一个有理数到 0 的距离,因此它总是非负的。
有理数绝对值的概念和性质是我们解决有理数绝对值加减法混合计算题的基础。
有理数绝对值的性质有以下几点:
1.|a| = a, 若 a >= 0
2.|a| = -a, 若 a < 0
3.|a| = |-a|
4.|a + b| = |a| + |b|
5.|a - b| = |a| + |b|
根据以上性质,我们可以得出有理数绝对值加减法的运算规则:
1.同号相加,取相同符号,并把绝对值相加。
2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
有了这些规则,我们就可以开始解决有理数绝对值加减法混合计算题了。
以下是一个示例题目:
求解 |2 - 3| + |-1 + 4|
首先,我们计算绝对值内部的运算:
|2 - 3| = |-1| = 1
|-1 + 4| = 3
然后,根据运算规则,我们将两个结果相加:
1 + 3 = 4
因此,最终答案为 4。
通过以上步骤,我们可以解决有理数绝对值加减法混合计算题。
需要注意的是,我们要灵活运用运算规则,根据题目的特点选择合适的解题方法。
七年级(上)数学有理数加减法绝对值练习题(附答案)

七年级(上)数学有理数加减法绝对值练习题一、单选题1.计算74-+的结果是( )A .3B .-3C .11D .-112.比1小3的数是( )A.1-B.2-C.3-D.2 3.十堰冬季里某一天的气温为32-℃~℃,则这一天的温差是( )A.1℃B.1-℃C.5℃D.6-℃4.数轴上的点A 表示的数是2-,将点A 向左移动3个单位,终点表示的数是( )A.1B.2-C.5D.5-二、解答题5.老李上周五以收盘价每股8元买入某公司股票10000股,下表为本周内每日该股票的涨跌情况(单位:元):(2)本周内该股票的最高收盘价出现在星期几?是多少元?(3)已知老李买进股票时要付成交额1‰的手续费,卖出时还需要付成交额的1‰的印花税和1‰的手续费.如果老李在星期五收盘前将该股票全部卖出,则他的收益情况如何?6.若42a b ==,,且a b <,求a b -的值. 7.阅读下面的解题过程,并用解题过程中的解题方法解决问题.示例:计算:523112936342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解:原式:5231(1)(2)9(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 5231[(1)(2)9(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦534⎛⎫=+- ⎪⎝⎭74= 以上解题方法叫做拆项法.请你利用拆项法计算52153201920201403963264⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 8.计算题(1)()()43772743+-++-(2)()()()340328-++-+-(3)()()()72372217------(4)()()237636105-----9.基础计算(1)()()107-++;(2)()()4539-+-(3)()()37---(4)()3327--10.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“-”.他这天下午行车情况如下:(单位:千米)251,103256-+-+---+,,,,,,请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.而小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?11.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:6767+=+;6776-=-;7676-=-;6767--=+根据上面的规律,把(1)(2)(3)中的式子写成去掉绝对值符号的形式,并计算第(4)题. (1)721-=; (2)10.82-+=; (3)771718-=; (4)111111520162016221008-+--+ 12.下表给出了某班6名同学身高情况(单位:cm).(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?13.计算:18133⎛⎫-- ⎪⎝⎭三、填空题14.如图是某市连续5天的天气情况,最大的日温差是________℃.15.计算()24---的结果是______.16.数轴上表示1-的点,先向右移动6个单位长度,再向左移动9个单位长度,则此时这个点表示的数是________17.已知m 是4的相反数,n 比m 的相反数小2,则m n -等于_______. 18.若130x y -++=,则x y -=__________.19.计算:21--= ________.参考答案1.答案:B解析:2.答案:B解析:3.答案:C解析:4.答案:D解析:5.答案:(1)涨了0.1元;(2)星期二,8.25元;(3)他的收益为1756元.解析:6.答案:-2或-6.解析:7.答案:3712-解析:8.答案:(1)-50;(2)-3;(3)-30;(4)168;解析:9.答案:(1)-3;(2)-84;(3)4;(4)60.解析:10.答案:(1)小王在下午出车的出发地的南面,距下午出车的出发地8千米;(2)盈利,盈利了46.8元.解析:11.答案:(1)217-;(2)10.82-;(3)771718-;(4)15.解析:12.答案:(1)169,164,171,0,+5;(2)8cm;(3)168cm.解析:13.答案:2解析:14.答案:10 解析:15.答案:2 解析:16.答案:4-解析:17.答案:6-解析:18.答案:4 解析:19.答案:1 解析:。
有理数的加减法计算题50道简单

有理数的加减法计算题50道简单一、有理数的概念回顾有理数是整数和分数的统称,包括正整数、负整数、零和所有分数。
在数轴上,有理数包括所有有限的和无限循环小数。
二、有理数的加减法规则1. 同号两数相加,取相同的符号,绝对值相加。
2. 异号两数相加,取绝对值较大的数的符号,绝对值相减。
3. 两数相减,转化为加法计算,被减数不变,减数变为相反数,再按照加法规则计算。
三、加减法计算题示例1. 计算:(-6) + 92. 计算:(-3) - 73. 计算:5 + (-8)4. 计算:(-4) - (-9)5. 计算:(-2) + (-3)6. 计算:(-7) - (-5)7. 计算:8 + 38. 计算:(-5) + 79. 计算:(-9) - (-2)10. 计算:(-4) + 612. 计算:8 - 513. 计算:(-2) + 514. 计算:(-6) - 315. 计算:4 + (-6)16. 计算:(-7) + 417. 计算:(-3) - 818. 计算:9 + 219. 计算:(-4) + 220. 计算:(-9) - 421. 计算:6 - 522. 计算:(-7) + 223. 计算:(-3) - 524. 计算:7 + (-9)25. 计算:4 - (-3)26. 计算:(-6) + 827. 计算:(-2) - 928. 计算:5 - 229. 计算:(-8) + 330. 计算:(-5) - 431. 计算:9 + 532. 计算:(-3) + 633. 计算:7 - (-4)35. 计算:(-2) - 736. 计算:6 + (-9)37. 计算:8 - 338. 计算:(-4) + 339. 计算:(-9) - 240. 计算:5 - 641. 计算:(-7) + 442. 计算:(-3) - 543. 计算:8 + (-6)44. 计算:4 - (-2)45. 计算:(-5) + 846. 计算:(-2) - 747. 计算:6 + (-9)48. 计算:(-7) - 449. 计算:(-3) + 550. 计算:9 - (-5)四、个人观点和理解对于有理数的加减法计算,需要注意正数、负数之间的运算规则,尤其是在涉及括号和多步计算的情况下。
专题03_有理数的加减法(知识点串讲)(解析版)

专题03 有理数的加减法重点突破知识点一 有理数的加法(基础)有理数的加法法则:(先确定符号,再算绝对值) 1. 同号两数相加,取相同的符号,并把绝对值相加;2. 异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4. 一个数同0相加,仍得这个数。
有理数的加法运算律:1. 两个数相加,交换加数的位置,和不变。
即a b b a +=+;2. 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
即()()a b c a b c ++=++。
知识点二 有理数的减法(基础) 有理数的减法法则:减去一个数等于加上这个数的相反数。
即()a b a b -=+-。
【注意减法运算2个要素发生变化】:减号变成加号;减数变成它的相反数。
有理数减法步骤: 1.将减号变为加号。
2.将减数变为它的相反数。
3.按照加法法则进行计算。
考查题型考查题型一 有理数加法运算典例1.(2018·广东初一期中)计算-(-1)+|-1|,其结果为( ) A .-2 B .2 C .0 D .-1【答案】B 【解析】试题提示:由题可得:原式=1+1=2,故选B.a b的值()变式1-1.(2019·呼伦贝尔市期末)有理数a、b在数轴上的位置如图所示,则A.大于0B.小于0C.小于a D.大于b【答案】A【提示】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【名师点拨】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.变式1-2.(2019·庆阳市期中)若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【提示】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【名师点拨】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.变式1-3.(2019·扬州市期中)若|m|=3,|n|=5,且m-n>0,则m+n的值是()A.-2 B.-8或8 C.-8或-2 D.8或-2【答案】C【详解】∵|m|=3,|n|=5,∴m=±3,n=±5,∵m-n>0,∴m=±3,n=-5,∴m+n=±3-5,∴m+n=-2或m+n=-8.故选C .变式1-4.(2018·上饶市期末)若m 是有理数,则m m +的值是( ) A .正数 B .负数C .0或正数D .0或负数【答案】C【提示】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0. 故选C【名师点拨】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义. 考查题型二 有理数加法中的符号问题典例2.(2018·重庆市期末)将 6-(+3)+(-2) 改写成省略括号的和的形式是( ) A .6-3-2 B .-6-3-2C .6-3+2D .6+3-2【答案】A【提示】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2. 故选A .【名师点拨】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.变式2-1.(2020·银川市期中)把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7, 故选:C.变式2-2.(2020·邯郸市期末)若两个非零的有理数a ,b 满足:|a|=-a ,|b|=b ,a +b <0,则在数轴上表示数a ,b 的点正确的是( ) A .B .C .D .【答案】D【提示】根据|a|=-a 得出a 是负数,根据|b|=b 得出b 是正数,根据a+b <0得出a 的绝对值比b 大,在数轴上表示出来即可.【详解】解:∵a 、b 是两个非零的有理数满足:|a|=-a ,|b|=b ,a+b <0, ∴a <0,b >0, ∵a+b <0, ∴|a|>|b|,∴在数轴上表示为:故选D.【名师点拨】本题考查数轴,绝对值,有理数的加法法则等知识点,解题关键是确定出a <0,b >0,|a|>|b|. 变式2-3.(2019·深圳市期中)如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->- D .b a b a >>->-【答案】A【提示】由于a <0,b >0,a+b <0,则|a|>b ,于是有-a>b ,-b>a ,易得a ,b ,-a ,-b 的大小关系. 【详解】∵a <0,b >0,a+b <0, ∴|a|>b , ∴-a>b ,-b>a ,∴a ,b ,-a ,-b 的大小关系为:-a>b>-b>a , 故选A .【名师点拨】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b 是解题的关键. 考查题型三 有理数加法在实际生活中的应用典例3(2018·厦门市期末)下列温度是由-3℃上升5℃的是( ) A .2℃ B .-2℃C .8℃D .-8℃【答案】A【提示】物体温度升高时,用初始温度加上上升的温度就是上升之后的温度,即是所求 【详解】(-3℃)+5℃= 2℃ 故本题答案应为:A【名师点拨】此题考查了温度的有关计算,是一道基础题.熟练掌握其基础知识是解题的关键变式3-1.(2019·石家庄市期中)在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m ,在向东行驶lm ,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( )A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4【答案】B【详解】由题意可得:(﹣3)+(+1)=﹣2.故选B.变式3-2.(2019·石家庄市期中)一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【提示】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【名师点拨】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法.±kg,现随机选取10袋面粉进行质量变式3-3.(2020·沈阳市期末)面粉厂规定某种面粉每袋的标准质量为500.2检测,结果如下表所示:则不符合要求的有()A.1袋B.2袋C.3袋D.4袋【答案】A【提示】提示表格数据,找到符合标准的质量区间即可解题.±kg,即质量在49.8kg——50.2kg之间的都符合要求,【详解】解:∵每袋的标准质量为500.2根据统计表可知第5袋49.7kg不符合要求,故选A.【名师点拨】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.考查题型四有理数加法运算律典例4.(2019·忠县期中)计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【提示】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【名师点拨】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.变式4-1.(2018·新蔡县期中)计算()+()+()+()等于()A.-1 B.1 C.0 D. 4【答案】A【提示】有理数的加减运算,适当运用加法交换律.【详解】解:故选:A.【名师点拨】本题考查有理数的加减运算,熟记有理数的加减运算法则,同时能够题目数字特点进行灵活计算.变式4-2.(2019淮南市期中)-1+2-3+4-5+6+…-2017+2018的值为()A.1 B.-1 C.2018 D.1009【答案】D【提示】从左边开始,相邻的两项分成一组,组共分成1009组,每组的和是1,据此即可求解.【详解】原式=(−1+2)+(−3+4)+(−5+6)+…(−2015+2016)+(−2017+2018),=1+1+1+…+1=1×1009,=1009.故选D.【名师点拨】属于规律型:数字的变化类,考查有理数的加减混合运算,掌握运算法则是解题的关键.变式4-3.(2019·南阳市期中)下列交换加数的位置的变形中,正确的是A.1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【详解】A. 1−4+5−4=1−4−4+5,故错误;B. 13111311=-34644436-+--+--,故错误; C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确. 故选D.考查题型五 有理数减法运算典例5.(2020·济南市期末)﹣3﹣(﹣2)的值是( ) A .﹣1 B .1C .5D .﹣5【答案】A【提示】利用有理数的减法的运算法则进行计算即可得出答案. 【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【名师点拨】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键. 变式5-1.(2019·郯城县期末)比﹣1小2的数是( ) A .3 B .1C .﹣2D .﹣3【答案】D【提示】根据题意可得算式,再计算即可. 【详解】-1-2=-3, 故选D .【名师点拨】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 变式5-2.(2019·重庆市期末)若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4 B .2C .-4D .4或2【答案】D根据绝对值的性质可得a =±3,b =±1,再根据a >b ,可得①a =3,b =1②a =3,b =﹣1,然后计算出a -b 即可. 【详解】∵|a |=3,|b |=1,∴a =±3,b =±1. ∵a >b ,∴有两种情况: ①a =3,b =1,则:a -b =2; ②a =3,b =﹣1,则a -b =4. 故选D .【名师点拨】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.变式5-3.(2018·自贡市期中)若x <0,则()x x --等于( )A .-xB .0C .2xD .-2x【答案】D【提示】根据有理数的加法法则和绝对值的代数意义进行提示解答即可. 【详解】()2x x x x x --=+=, ∵0x <, ∴20x <, ∴原式=22x x =-. 故选D.【名师点拨】“由已知条件0x <得到20x <,进而根据绝对值的代数意义得到:22x x =-”是解答本题的关键. 考查题型六 有理数减法在实际生活中的应用典例6.(2019临河区期末)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃ 【答案】A【解析】提示:用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 详解:2-(-8) =2+8 =10(℃). 故选:A .名师点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 变式6-1.(2019·长兴县月考)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四【答案】C【提示】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答. 【详解】星期一温差:10﹣3=7℃; 星期二温差:12﹣0=12℃; 星期三温差:11﹣(﹣2)=13℃;星期四温差:9﹣(﹣3)=12℃; 综上,周三的温差最大. 故选C .【名师点拨】本题考查了有理数的减法的应用,根据题意正确列出算式,准确计算有理数减法是解题的关键. 变式6-2.(2018·吕梁市期末)我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A .-5℃ B .5℃C .10℃D .15℃【答案】D【详解】解:5−(−10) =5+10=15℃. 故选D.变式6-3.(2020·寿阳县期末)甲、乙、丙三地海拔分别为20m ,15m -,10m -,那么最高的地方比最低的地方高( ) A .10m B .25mC .35mD .5m【答案】C【提示】根据正数与负数在实际生活中的应用、有理数的减法即可得.【详解】由正数与负数的意义得:最高的地方的海拔为20m ,最低的地方的海拔为15m - 则最高的地方比最低的地方高20(15)201535()m --=+= 故选:C .【名师点拨】本题考查了正数与负数在实际生活中的应用、有理数的减法,理解负数的意义是解题关键. 考查题型七 有理数加减混合运算典例7(2018·南阳市期中)计算:①﹣13+(﹣20)﹣(﹣33);②(+12)﹣(﹣13)+(﹣14)﹣(+16) 【答案】①0;②512. 【解析】①﹣13+(﹣20)﹣(﹣33) =﹣33+33 =0;②(+12)﹣(﹣13)+(﹣14)﹣(+16) =12+13﹣14﹣16 =643212121212+-- =512.变式7-1.(2019·河池市期中)计算:(1) 6789-+- (2) 2(5)(8)5---+-- 【答案】(1)-2;(2)-10 【详解】解:(1)6789-+- =189-+- =79-2=-(2)2(5)(8)5---+--2585=-+--385=--55=-- 10=-【名师点拨】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键. 变式7-2.(2019·枣庄市期中)请根据如图所示的对话解答下列问题.求:(1)a ,b ,c 的值; (2)8-a +b -c 的值.【答案】(1)a =-3,b =±7,c=-1或-15; (2)33或5. 【详解】解:(1)∵a 的相反数是3,b 的绝对值是7, ∴a=-3,b=±7; ∵a=-3,b=±7,c 和b 的和是-8, ∴当b=7时,c= -15, 当b= -7时,c= -1,(2)当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33; 当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5. 故答案为(1)a=-3,b=±7;c=-1或-15;(2)33或5. 【名师点拨】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三人行教育陈老师教案——绝对值及有理数加减运算:请同学们认真答题,每一道题都经过精选3 绝对值(满分100分)知识要点:1.绝对值的概念:在数轴上表示数a 的点与原点的 叫做数a 的绝对值,记作 .2.绝对值的求法:由绝对值的意义可以知道:(1)一个正数的绝对值是 ;(2)零的绝对值是 ;(3)一个负数的绝对值是 .即()()()⎪⎩⎪⎨⎧<=>=0a 0a0a a 3.绝对值的非负性:数轴上表示数a 的点与原点的距离 零,所以,任意有理数a 的绝对值总是一个 ,即4.有理数大小的比较:一个有理数的绝对值越大,在数轴上表示这个数的点就离原点越 ,所以,两个负数比较大小,绝对值大的 ;正数都 零;负数都 ;正数 一切负数.5.绝对值等于()0>a a 的有理数有两个,它们 .(基础知识填空20分,每错一空扣2分)同步练习A 组(共40分) "一、填空题(每空1分)1.(1)=-2 ; (2)=+7 ;(3)=--323 ; (4)()=--6 . 2. 212- 的绝对值是 ,绝对值等于5的数是 和 . 3.绝对值最小的数是 ;绝对值小于的整数是 ;绝对值小于3的自然数有 ;绝对值大于3且小于6的负整数有 .4.如果a a =,那么a 是 ,如果a a -=,那么a 是 .5.若a ≤0,则=a ;若a ≥0,则=+1a .二、选择题(每题3分)6.下列说法中,正确的是()A. 绝对值相等的数相等 B.不相等两数的绝对值不等C. 任何数的绝对值都是非负数D. 绝对值大的数反而小7. 下列说法中,错误的是( )A. 绝对值小于2的数有无穷多个B. 绝对值小于2的整数有无穷多个C. 绝对值大于2的数有无穷多个 (D) 绝对值大于2的整数有无穷多个:8.有理数的绝对值一定是( )A. 正数 B. 整数 C. 正数或零 D. 非正数9.如果m 是一个有理数,那么下面结论正确的是( ) A. m -一定是负数 B. m 一定是正数C. m -一定是负数 D. m 不是负数10.如果甲数的绝对值大于乙数,那么( )A. 甲数大于乙数B. 甲数小于乙数C. 甲、乙两数符号相反D. 甲、乙两数的大小不能确定11.设1--=a ,1-=b ,c 是1的相反数,则c b a ,,的大小关系是( )A. c b a ==B. c b a <<C. c b a <=D. c b a >> 三、解答题(每题2分)12.比较下列各数的大小(要有解答过程):(1)85 ,2413-- (2)2117 ,76 ,65---13.(3分))若一个数a 的绝对值是3,且a 在数轴上的位置如图所示,试求a 的相反数.%B 组(40分)一、填空题(每题3分)14.5--的相反数是 ;4的相反数的绝对值是 ; 的相反数是它本身.15.若2-<a ,给出下面4个结论:①a a >;②a a ->;③a a <1;④a a>1.其中不正确的有 (填序号).16.若11-=-m m ,则m 1;若11->-m m ,则m 1;若4-=x ,则=x ;若21-=-x ,则=x . 17.最小的自然数与绝对值最小的整数的和是 .18.若a a -=,则数a 在数轴上对应的点的位置在 .二、解答题(5分)19.分别写出a 为何值时,下列各式成立(1)a a -=; (2)a a -=;(3)1=a a; (4)1-=aa 20.已知3c ,2b ,2===a ,且有理数c b a , ,在数轴上的位置如图所示,计算c b a ++?的值.(6分)21.已知5=x ,3=y ,且y x y x -=-,求y x +的值.(6分)C 组22.已知甲数的绝对值是乙数的绝对值的3倍,且在数轴上表示这两个数的点位于原点的两侧,两点之间的距离是8,求这两个数。
若在数轴上表示这两个数的点位于原点的同侧呢(8分)4.有理数的加法(一)(满分80)~知识要点:(基础知识填空8分,每错一空扣2分)1.有理数的加法法则:(1)同号两数相加,取 ,并 .(2)绝对值不相等的异号两数相加,取 ,并 .(3)互为相反数的两数相加, .(4)一个数同零相加, .2.有理数加法的运算步骤:先确定和的 ,再计算和的 .同步练习:A 组一、选择题(每题3分)1两个有理数的和为零,则这两个数一定是( )A. 都是零B. 至少一个是零C. 异号D. 互为相反数2.两个有理数的和比其中任何一个加数都小,那么这两个数( )a caA. 都是正数B. 都是负数C. 异号D. 其中一个为零《3.下列说法正确的是( )A. 两数之和为负,则两数均为负B. 两数之和为零,则两数互为相反数C. 两数之和为正,则两数均为正D. 两数之和一定大于每一个加数4.下列计算错误的是( )A.()835-=+- B.()()835-=-+- C.()253=+- D.()253-=-+5.有理数a 、b 在数轴上对应位置如图所示,则b a +的值为( ) A. 大于0 B. 小于0 C. 等于0 D. 大于a6.某地一天上午的温度是10℃,下午上升2℃,半夜下降15℃,则半夜的温度是( )A. -15℃B. 3℃C. -3℃D. 15℃B 组二、填空题(每题3分,第10题4分)7.若b a -=,则=+b a .;8.若0=+a a ,则a 的取值范围是 .9.若, 2b , 3==a 则=+b a .10.(1)某水文勘察队沿河勘察,向上游走的路程(千米),记为正数,向下游走的路程(千米)记为 数,在这个问题中,()()1030+++的实际意义是 ;()()2555-++的实际意义是 .(2)仿第(1)题举出一个实例使问题数量为()()55-++ .11.a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则()=+-+c b a .三、计算题12.(每题3分)计算下列各题:(1)()610++-; (2)()()7.29.0-+-; (3)()4.88.3-+;(4)()4.37-+; (5)()()31.09.2-+-; (6)()18.618.9+-.。
13. (每题3分)计算下列各题:(1)⎪⎭⎫ ⎝⎛-+5352; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3231; (3)5231+⎪⎭⎫ ⎝⎛-;(4)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-8365; (5)⎪⎭⎫ ⎝⎛-+32221; (6)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-31121;a(7)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-612311; (8)⎪⎭⎫ ⎝⎛-+1211413; (9)()81125.0+-.有理数的加法<二>(满分80分)知识要点:1.在有理数的运算中,加法的 律、 律仍然适用.*2.用字母表示加法的交换律、结合律:加法的交换律: ;加法的结合律: .3.较多的有理数相加,可以利用运算律把符号 的加数结合在一起,也可以把和为 的加数先加在一起,可使运算简便。
一般采用以下几种方法:(1)把正数和 分别相加;(2)把和为 的数先相加;(3)把同分母的分数先 ;(4)把整数和 分别先相加.(基础知识填空20分,每错一空扣2分)同步练习A 组一、计算题(利用加法运算律进行简便运算)(每题4分,共24分)1.()()25171513-++-+;2.()⎪⎭⎫ ⎝⎛-+++-21543225.35.0;3.()()()()71358++-++-+-;4.()()3742123213-++-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-;:5.()()4.11.106.39.1+-++-; 6.()⎪⎭⎫ ⎝⎛-++-+25213118916.211333.B 组二、填空题(每题3分,共15分)7.某校储蓄所办理了7笔业务:取出元,存进5元,取出8元,存进12元,存进25元,取出2元,取出元,这时储蓄所现款增加了 元.8.已知:两数5和-3,则这两个数的和是 ,这两个数的和的相反数是 ,这两个数的相反数的和是 ,这两个数的和的绝对值是 ;这两个数的绝对值的和是 .9.已知0>+b a ,且b a <<0,则b .10.已知032=-++b a ,则()b a +的相反数是 .11.若b a , 互为相反数,d c , 互为倒数,则()()=+⋅+++cd cd b a b a 2. 二、计算题12(6分).()()()()()()1075282015-+-+-+++-++—三、解答题13(7分).10名同学参加数学竞赛,以80分为准,超过的记为正数,不足的记为负数,评分记录如下:+10,+15,-10,-9,-8,-1,+2,-1,-2,+1.(1)10名同学的总分超过或不足标准分多少(2)总分是多少14(8分).有8筐白菜,称重的记录如下(单位:千克):,22,27,,26,23,23,。
(1)以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,重新写出称重记录;(2)求8筐白菜的总重量是多少.5.有理数的减法(满分90分)知识要点: 1.有理数的减法法则:减去一个数,等于 。
即=-b a .2.加法与减法互为 的关系,所以加与减可以互相转化。
减法法则就是一种转化法则.3.减法无交换律。
当一个数是减数时切忌与 交换位置.,4.减法运算的步骤:(1)把减法转化为 ;(2)按 的运算法则运算.(基础知识填空10分,每错一空扣2分)同步练习A 组一、填空题(每题3分,共12分)1.比0小-3的数是 ;比-5大2的数是 ;-7比 小-2.2.(1)若()47-=-+x ,则=x ;(2)若33-=-y ,则=y .3.(1)-6与()5.1--的差是 ;(2) 与a 的差等于a -.4.(1)温度3℃比-8℃高 ; (2)温度-10℃比-2℃低 ;(3)海拔-10m比-30m高 ;(4)从海拔20m到-8m,下降了 .二、选择题(每题3分,共18分)5若减数为正,则差与被减数的大小关系是( )A. 差比被减数大B. 差比被减数小C. 差可能等于被减数D. 以上答案都不是6.如果0>a ,且b a >,那么b a -是( )—A. 正数B. 负数C. 正数或负数D. 07.较小的数减去较大的数,所得的差一定是( )A. 零 B. 正数 C. 负数 D. 零或负数8.下列说法正确的是( )A. 有理数减法中,被减数不一定比减数大B. 减去一个数,等于加上这个数C. 零减去一个数,仍得这个数D. 两个相反数相减得零9. 下列说法错误的是( )A. 若b a >,则0>-b aB. 若b a =,则0=-b aC. 若b a <,则0<-b aD. 若0 ,0<<b a ,则0<-b a10.若2 ,3==b a ,则b a -等于( )A. 1B. -5C. 1±D. 5±或1±三、计算题(每题3分,共18分)11.(1)()()2723--+; (2)()()1818+--; (3)()5.132+-⎪⎭⎫ ⎝⎛--; 】(4)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-2143; (5)()()1.69.5---; (6)()7.30--.12(每题4分,共24分).(1)()()932+----; (2)⎪⎭⎫ ⎝⎛-----4365;(3)312165--⎪⎭⎫ ⎝⎛--; (4)()[]()[]1331+------. B 组(5)()()()()4.25.35.31.7----+-+; (6)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-213218415411.?13.某矿井下A、B、C三处的标高分别为A(-37.4米),B(-12.9米),C(米),A处比B处高多少米B处比C处低多少米A处比C处高多少米(8分)6.有理数的加减混合运算(满分80分)知识要点:1.加减法统一成加法:(1)有理数加减混合运算可以统一成只有 运算的运算式。