2007年天津高考物理试题及标准答案
2007年全国统一高考物理试卷(ⅱ)及解析

第 2 页(共 13 页)
A.
B.
C.
D.
二、实验题
9.(17 分)(1)在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议:
A、适当加长摆线
B、质量相同,体积不同的摆球,应选用体积较大的
C、单摆偏离平衡位置的角度不能太大
D、单摆偏离平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆
【解答】解:在物体下落的过程中,只有重力对物体做功,故机械能守恒
第 6 页(共 13 页)
故有 mgh=
解得 v= 所以在相同的高度,两物体的速度大小相同,即速率相同. 由于 a 的路程小于 b 的路程.故 ta<tb,即 a 比 b 先到达 s. 又到达 s 点时 a 的速度竖直向下,而 b 的速度水平向左. 故两物体的动量不相等. 故选 A. 【点评】两物体运动的路程关系:sb>sa,但在相同的高度速率相同,这是本题的突破 口.所以挖掘出隐含条件是解题的关键. 4.(3 分) 【考点】光的偏振. 【分析】根据光的现象,只要光的振动方向不与偏振片的狭逢垂直,都能有光通过偏振 片. 【解答】解:A、太阳光包含垂直传播方向向各个方向振动的光,当太阳光照射 P 时能在 P 的另一侧观察到偏振光,故 A 正确; B、沿竖直方向振动的光能通过偏振片,故 B 正确; C、沿水平方向振动的光不能通过偏振片,因为它们已经相互垂直.故 C 是错误的; D、沿与竖直方向成 45°角振动的光也能通过偏振片,故 D 正确; 故选:ABD 【点评】D 选项容易漏选,其实题中另一侧能观察到光即可.
采用的测量电路图如图所示,实验步骤如下:a.断开 S1 和 S2,将 R 调到最大;b.合上
S1,调节 R 使 满偏;c.合上 S2,调节 R1 使 半偏,此时可认为的 的内阻 rg=R1.试 问:
2007年---2012年高考物理(新课标)真题解析

2007年普通高等学校招生全国统一考试(新课标)二、选择题:本题包括8小题,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对得6分,选对但不全得3分,有选错的得0分14、天文学家发现了某恒星有一颗行星在圆形轨道上绕其运动,并测出了行星的轨道半径和运行周期。
由此可推算出A .行星的质量B .行星的半径C .恒星的质量D .恒星的半径 15、下列说法正确的是A .行星的运动和地球上物体的运动遵循不同的规律B .物体在转弯时一定受到力的作用C .月球绕地球运动时受到地球的引力和向心力的作用D .物体沿光滑斜面下滑时受到重力、斜面的支持力和下滑力的作用16、甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t =0时刻同时经过公路旁的同一个路标。
在描述两车运动的v -t 图中(如图),直线a 、b 分别描述了甲乙两车在0-20 s 的运动情况。
关于两车之间的位置关系,下列说法正确的是 A .在0-10 s 内两车逐渐靠近 B .在10-20 s 内两车逐渐远离 C .在5-15 s 内两车的位移相等 D .在t =10 s 时两车在公路上相遇17、一正弦交流电的电压随时间变化的规律如图所示。
由图可知A .该交流电的电压瞬时值的表达式为u =100sin(25t)VB .该交流电的频率为25 HzC.该交流电的电压的有效值为D .若将该交流电压加在阻值R =100 Ω的电阻两端,则电阻消耗的功率时50 W18、两个质量相同的小球用不可伸长的细线连结,置于场强为E 的匀强电场中,小球1和小球2均带正电,电量分别为q 1和q 2(q 1>q 2)。
将细线拉直并使之与电场方向平行,如图所示。
若将两小球同时从静止状态释放,则释放后细线中的张力T 为(不计重力及两小球间的库仑力)A .121()2T q q E =- B .12()T q q E =-C .121()2T q q E =+ D .12()T q q E =+19、在如图所示的电路中,E 为电源电动势,r 为电源内阻,R 1和R 3均为定值电阻,R 2为滑动变阻器。
2007年普通高等学校招生全国统一考试(天津卷)

绝密★启用前2007年普通高等学校招生全国统一考试(天津卷)文科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共300分,考试用时150分钟。
第Ⅰ卷1至8页,第Ⅱ卷9至16页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共35题,每题4分,共140分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
读图1回答1~2题。
图11.甲、乙两图所示大洲的人口特点是A.城市人口若悬河B.生育率较低C.人口平均密度大D.老龄化程度高2.李明同学发现乙、丙、丁三图所示现象有因果联系,地理老师认为有道理。
此因果顺序应该是A.乙→丙→丁B.丙→丁→乙C.丙→乙→丁D.丁→丙→乙读图2和图3,回答3~5题。
3.图2所示季节,一位俄罗斯专家在e地看到日落正西方,之后1小时下列各地发生的现象是A.a——日光直射B.b——夕阳西下C.c——旭日东升D.d——午阳低垂4.在之后的两个月中,下列变化规律符合实际的是A.a地白昼逐渐变长B.a、c两地气温都在下降C.b地牧草日益茂盛D.c、d两地河流水位升高5.俄罗斯专家发现图3中标示的某种地理事物与实际分布不符..。
它是图4显示了2001年至2005年格陵兰岛某冰川末端不断消融后退的“足迹”。
读图4回答6~7题。
6.据图中M、N两点量算,此期间该冰川末端年平均后退的距离约为A.0.4 kmB.0.5kmC.1.2kmD.1.5km7.若全球冰川大规模融化,可能产生的影响有A.极地高压增强B.沿海平原扩大C.陆地淡水减少D.植被类型增多图5是喜马拉雅山区某交通不便谷地中的景观图。
读图回答8~9题。
8.图中地质构造形成并出露地表的主要原因是岩层A.受挤压,经侵蚀B.受挤压,经风化C.受张力,经搬运D.受张力,经沉积9.形成图中乡村聚落最基本的环境条件应该是A.地质灾害少B.土地可以耕牧C.河湖密度大D.旅游资源丰富景假,某地理小组在图6(冀东某地等高线地形图)所示地区野外考察。
2007年高考物理试题全集含答案(2020082790257)

)
16.如图所示,质量为 m 的活塞将一定质量的气体封闭在气缸内,活塞与气缸之间无
摩擦。 a 态是气缸放在冰水混合物中气体达到的平衡状态,
b 态是气缸从容器中移出后,在
室温( 270C)中达到的平衡状态。气体从 a 态变化到 b 态的过程中大气压强保持不变。 若忽
略气体分子之间的势能,下列说法正确的是(
体在 3 秒末的速率,则这四个速率中最大的是(
)
A 、 v1
B 、 v2
C、 v3
D 、 v4
19 .用大量具有一定能力的电子轰击大量处于基态的氢原子,
线。调高电子的能力在此进行观测,发现光谱线的数目比原来增加了
观测到了一定数目的光谱 5 条。用△ n 表示两侧
观测中最高激发态的量子数 n 之差, E 表示调高后电子的能量。 根据氢原子的能级图可以判
撞。在平衡位置附近存在垂直于纸面的磁场。 已知由于磁场的阻尼作用, 金属球将于再次碰
撞前停在最低点处。求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
450。
25.两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为
x 和 y 轴,
交点 O 为原点,如图所示。在 y>0, 0<x<a 的区域有垂直于纸面向内的匀强磁场,在
断,△ n 和 E 的可能值为(
)
A 、△ n=1, 13.22 eV < E<13.32 eV
B、△ n=2, 13.22 eV < E<13.32 eV
C、△ n=1, 12.75 eV < E<13.06 eV
D、△ n=2, 12.75 eV < E<13.06 Ev
20.a、b、c、d 是匀强电场中的四个点,它们正好是一个矩形的四个顶点。电场线与矩
2007年天津高考物理试题及答案

2007年天津高考物理试题及答案2007年普通高等学校招生全国统一考试(天津卷)物理部分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共300分,考试用时150分钟。
第Ⅰ卷1至5页,第Ⅱ卷6至16页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共21题,每题6分,共126分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
以下数据可供解题时参考:相对原子质量:H 1 Li 7 C 12 O 16S 32 Fe 56 Cu 64 Zn 6514.下列说法正确的是A.电路中交变电流的频率为0.25 HzB.通过电阻的电流为2AC.电阻消耗的电功率为2.5 WD.用交流电压表测得电阻两端的电压是5 V12.我国绕月探测工程的预先研究和工程实施已取得重要进展。
设地球、月球的质量分别为m 1、m 2,半径分别为R 1、R 2,人造地球卫星的第一宇宙速度为v ,对应的环绕周期为T ,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为 A.v R m R m 2112,T R m R m 312321 B. v R m R m 1221,T R m R m 321312 C.v R m R m 2112,T R m R m 321312 D. v R m R m 1221,T R m R m 31232118.右图为氢原子能级的示意图,现有大量的氢原子处于n =4的激发态,当向低能级跃迁时辐射出若干不同频率的光。
关于这些光下列说法正确的是A.最容易表现出衍射现象的光是由n=4能级跃迁到n=1能级产生的B.频率最小的光是由n=2能级跃迁到n=1能级产生的C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34eV的金属铂能发生光电效应19.如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是A.aB v 23,正电荷B. aB v 2,正电荷 C.aB v 23,负电荷 D. aB v2,负电荷 20.A 、B 两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同。
普通高等学校招生全国统一考试(天津卷)理综试卷

高中物理学习材料金戈铁骑整理制作2007年普通高等学校招生全国统一考试(天津卷)理综试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共300分,考试用时150分钟。
第Ⅰ卷1至5页,第Ⅱ卷6至16页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共21题,每题6分,共126分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
以下数据可供解题时参考:相对原子质量:H 1 Li 7 C 12 O 16 S 32 Fe 56 Cu 64 Zn 651.下列关于细胞基因复制与表达的叙述,正确的是A.一种密码子可以编码多种氨基酸B.基因的内含子能翻译成多肽C.编码区增加一个碱基对,只会改变肽链上的一个氨基酸D.DNA分子经过复制后,子代DNA分子中(C+T)/(A+G)=12.下列关于动物新陈代谢的叙述,不正确...的是A.在正常情况下,肝脏细胞可以将多余的脂肪合成为脂蛋白B.当血糖含量升高时,肌肉细胞可以将葡萄糖合成为糖元C.糖类分解时可以产生与必需氨基酸相对应的中间产物D.氨基酸脱氧基产生的不含氮部分可以合成为脂肪3.下列叙述正确的是A.当病毒侵入人体后,只有细胞免疫发挥防御作用B.大肠杆菌在葡萄糖和乳糖为碳源的培养基上,只有葡萄糖耗尽才能利用乳糖C.大水分供应充足的大田中,只有通风透光才能提高光能利用率D.当甲状腺激素含量偏高时,只有反馈抑制下丘脑活动才能使激素含量恢复正常4.下图表示玉米种子的形成和萌发过程。
据图分析正确的叙述是A.①与③细胞的基因型可能不同B.①结构由胚芽、胚轴、胚要和胚柄四部分构成C.②结构会出现在所有被子植物的成熟种子中D.④过程的初期需要添加必需矿质元素5.利用细胞工程方法,以SARS病毒核衣壳蛋白为抗原制备出单质克隆抗体。
[实用参考]2007年(理)天津卷
![[实用参考]2007年(理)天津卷](https://img.taocdn.com/s3/m/a67bc20a0722192e4536f69f.png)
20GG 年(理)天津卷第Ⅰ卷一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C6.D7.B8.B9.A10.A一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,32i 1i=-( )A.1i + B.1i -+ C.1i -D.1i -- 2.设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( )A.4 B.11 C.12 D.143.“2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件4.设双曲线22221(00)x y a b a b-=>>,24y x =的准线重合,则此双曲线的方程为( )A.2211224x y -= B.2214896x y -=C.222133x y -= D.22136x y -= 5.函数2log 2)(0)y x =>的反函数是( ) A.142(2)x x y x +=-> B.142(1)x x y x +=-> C.242(2)x x y x +=->D.242(1)x x y x +=->6.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A.若a b ,与α所成的角相等,则a b ∥;B.若a b αβ,∥∥,αβ∥,则a b ∥ C.若a b a b αβ⊂⊂,,∥,则αβ∥D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.在R 上定义的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[12],上是减函数,则()f x ( )A.在区间[21]--,上是增函数,在区间[34],上是增函数 B.在区间[21]--,上是增函数,在区间[34],上是减函数C.在区间[21]--,上是减函数,在区间[34],上是增函数D.在区间[21]--,上是减函数,在区间[34],上是减函数8.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A.2B.4C.6D.89.设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( )A.a b c << B.c b a << C.c a b << D.b a c << 10.设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,中央电视台m λ的取值范围是( )A.B.[48],C. D.第Ⅱ卷二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.212.14π13.314.30x y +=15.83-16.390二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.11.若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中2x 的系数为52,则a = (用数字作答).12.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .13.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22lim n n na n S →∞-= . 14.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线AB 的方程是 .15.如图,在ABC △中,12021BAC AB AC ∠===,,°,AB DCD 是边BC 上一点,2DC BD =,则AD BC =· .16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答). 三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.17.本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫= ⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭,3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区 间π3π84⎡⎤⎢⎥⎣⎦,上的最大值为,最小值为3π14f ⎛⎫=- ⎪⎝⎭.x18.(本小题满分12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望. 18.本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件A B ,相互独立,且23241()2C P A C ==,24262()5C P B C ==. 故取出的4个球均为黑球的概率为121()()()255P AB P A P B ==⨯=··. (Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C D ,互斥,且21132422464()15C C C P C C C ==··,123422461()5C C PD C C ==·. 故取出的4个球中恰有1个红球的概率为417()()()15515P C D P C P D +=+=+=.(Ⅲ)解:ξ可能的取值为0123,,,.由(Ⅰ),(Ⅱ)得1(0)5P ξ==,7(1)15P ξ==,13224611(3)30C P C C ξ===·.从而3(2)1(0)(1)(3)10P P P P ξξξξ==-=-=-==. ξ的分布列为ξ的数学期望17317012351510306E ξ=⨯+⨯+⨯+⨯=.19.(本小题满分12分)如图,在四棱锥P ABCD-中,PA ⊥底面A B C ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点.(Ⅰ)证明CD AE ⊥; (Ⅱ)证明PD ⊥平面ABE ; (Ⅲ)求二面角A PD C --的大小.19.本小题考查直线与直线垂直、直线与平面垂直、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分. (Ⅰ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故PA CD ⊥.AC CD PAAC A ⊥=,∵,CD ⊥∴平面PAC .而AE ⊂平面PAC ,CD AE ⊥∴.(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA =.E ∵是PC 的中点,AE PC ⊥∴.由(Ⅰ)知,AE CD ⊥,且PC CD C =,所以AE ⊥平面PCD . 而PD ⊂平面PCD ,AE PD ⊥∴.PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴.又AB AE A =∵,综上得PD ⊥平面ABE .(Ⅲ)解法一:过点A 作AM PD ⊥,垂足为M ,连结EM .则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥.因此AME ∠是二面角A PD C --的平面角. 由已知,得30CAD ∠=°.设AC a =,可得332PA a AD PD AE a ====,,,. 在ADP Rt △中,AM PD ⊥∵,AM PD PAAD =∴··, ABCDPEACDPEM则7aPA ADAM aPD===·.在AEMRt△中,sin4AEAMEAM==所以二面角A-arcsin4.解法二:由题设PA⊥底面ABCD,PA⊂平面PAD,则平面PAD⊥平面ACD,交线为AD.过点C作CF AD⊥,垂足为F,故CF⊥平面PAD.过点F作FM PD⊥,垂足为M,连结CM,故CM PD⊥.因此CMP∠是二面角A PD C--的平面角.由已知,可得30CAD∠=°,设AC a=,可得13326PA a AD PD a CF a FD a=====,,,,.FMD PAD∵△∽△,FD=.于是,14FD PAFM aPD===·.在CMFRt△中,1tanaCMFFM==所以二面角A PD C--的大小是.20.(本小题满分12分)已知函数2221()()1ax af x xx-+=∈+R,其中a∈R.(Ⅰ)当1a=时,求曲线()y f x=在点(2(2))f,处的切线方程;(Ⅱ)当0a≠时,求函数()f x的单调区间与极值.20.本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分.(Ⅰ)解:当1a=时,22()1xf xx=+,4(2)5f=,又2222222(1)2222()(1)(1)x x x xf xx x+--'==++·,6(2)25f'=-.所以,曲线()y f x=在点(2(2))f,处的切线方程为46(2)525y x-=--,即62320x y+-=.(Ⅱ)解:2222222(1)2(21)2()(1)()(1)(1)a x x ax a x a axf xx x+--+--+'==++.由于0a≠,以下分两种情况讨论.ABCDPEFM(1)当0a >时,令()0f x '=,得到11x a=-,2x a =.当x 变化时,()()f x f x ',的变化情况如下表:所以()f x 在区间1a ⎛⎫-- ⎪⎝⎭,∞,()a +,∞内为减函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为增函数. 函数()f x 在11x a =-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭,函数()f x 在21x a=处取得极大值()f a ,且()1f a =.(2)当0a <时,令()0f x '=,得到121x a x a==-,,当x 变化时,()()f x f x ',的所以()f x 在区间()a -,∞,1a ⎛⎫- ⎪⎝⎭,+∞内为增函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为减函数.函数()f x 在1x a =处取得极大值()f a ,且()1f a =. 函数()f x 在21x a=-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭. 21.(本小题满分14分)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k n ka aa a ++≤对任意n *∈N 均成立. 21.本小题以数列的递推关系式为载体,主要考查等比数列的前n 项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解法一:22222(2)22a λλλλ=++-=+,2232333(2)(2)222a λλλλλ=+++-=+, 3343444(22)(2)232a λλλλλ=+++-=+.由此可猜想出数列{}n a 的通项公式为(1)2n n n a n λ=-+.以下用数学归纳法证明. (1)当1n =时,12a =,等式成立.(2)假设当n k =时等式成立,即(1)2k k k a k λ=-+,那么111(2)2k k k a a λλλ++=++-11(1)222k k k k k k λλλλλ++=-+++-11[(1)1]2k k k λ++=+-+.这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n n n a n λ=-+对任何n *∈N 都成立.解法二:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,所以2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,其公差为1,首项为0,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,所以数列{}n a 的通项公式为(1)2n n n a n λ=-+.(Ⅱ)解:设234123(2)(1)n n n T n n λλλλλ-=++++-+-, ①345123(2)(1)n n n T n n λλλλλλ+=++++-+- ②当1λ≠时,①式减去②式,得212311(1)(1)(1)1n nn n n T n n λλλλλλλλλ+++--=+++--=---, 21121222(1)(1)(1)1(1)n n n n n n n n T λλλλλλλλλ++++----+=-=---. 这时数列{}n a 的前n 项和21212(1)22(1)n n n n n n S λλλλ+++--+=+--. 当1λ=时,(1)2n n n T -=.这时数列{}n a 的前n 项和1(1)222n n n n S +-=+-. (Ⅲ)证明:通过分析,推测数列1n n a a +⎧⎫⎨⎬⎩⎭的第一项21aa 最大,下面证明:21214,22n n a a n a a λ++<=≥. ③ 由0λ>知0n a >,要使③式成立,只要212(4)(2)n n a a n λ+<+≥, 因为222(4)(4)(1)(1)2n n n a n λλλλ+=+-++124(1)424(1)2n n n n n n λλλ++>-+⨯=-+·1212222n n n n a n λ++++=,≥≥.所以③式成立.因此,存在1k =,使得1121n k n k a a aa a a ++=≤对任意n *∈N 均成立. 22.(本小题满分14分)设椭圆22221(0)x ya b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中0y >.由于点A 在椭圆上,有22221c y a b +=,即222221a b y a b -+=. 解得2by a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,.直线1AF 的方程为2()2by x c ac=+,整理得2220b x acy b c -+=. 由题设,原点O 到直线1AF 的距离为113OF2,将222c a b =-代入上式并化简得222a b =,即a 证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,.过点O 作1OB AF ⊥,垂足为B ,易知1F BO △∽12F F A △,故211BO F AOF F A=. 由椭圆定义得122AF AF a +=,又113BO OF =,所以2212132F AF A F A a F A ==-, 解得22a F A =,而22b F A a =,得22b a a =,即a=(Ⅱ)解法一:设点D 的坐标为00()x y ,.当00y ≠时,由12OD QQ ⊥知,直线12Q Q 的斜率为0程为0000()x y x x y y =--+,或y kx m =+,其中00x k y =-,200x m y y =+.点111222()()Q x y Q x y ,,,的坐标满足方程组22222y kx m x y b =+⎧⎨+=⎩,. 将①式代入②式,得2222()2x kx m b ++=,整理得2222(12)4220k x kmx m b +++-=,于是122412km x x k +=-+,21222212m bx x k-=+. 由①式得2212121212()()()y y kx m kx m k x x km x x k =++=+++2222222222242121212m b km m b k k km m k k k---=++=+++··. 由12OQ OQ ⊥知12120x x y y +=.将③式和④式代入得22222322012m b b k k --=+, 22232(1)m b k =+.将200000x x k m y y y =-=+,代入上式,整理得2220023x y b +=. 当00y =时,直线12Q Q 的方程为0x x =,111222()()Q x y Q x y ,,,的坐标满足方程组022222x x x y b =⎧⎨+=⎩,.所以120x x x ==,12y =,. 由12OQ OQ ⊥知12120x x y y +=,即200202x -=,解得22023x b =. 这时,点D 的坐标仍满足2220023x y b +=.综上,点D 的轨迹方程为 22223x y b +=.解法二:设点D 的坐标为00()x y ,,直线OD 的方程为000y x x y -=,由12OD QQ ⊥,垂足为D ,可知直线12Q Q 的方程为220000x x y y x y +=+.记2200m x y =+(显然0m ≠),点111222()()Q x y Q x y ,,,的坐标满足方程组 0022222x x y y m x y b +=⎧⎪⎨+=⎪⎩, ①. ②由①式得00y y m x x =-. ③ 由②式得22222200022y x y y y b +=. ④将③式代入④式得222220002()2y x m x x y b +-=.整理得2222220000(2)4220x y x mx x m b y +-+-=,于是222122200222m b y x x x y -=+. ⑤ 由①式得00x x m y y =-. ⑥由②式得22222200022x x x y x b +=. ⑦将⑥式代入⑦式得22222000()22m y y x y x b -+=,。
2007年普通高等学校招生全国统一考试理科综合试卷及答案-天津卷

2007年普通高等学校招生全国统一考试(天津卷)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共300分,考试用时150分钟。
第Ⅰ卷1至5页,第Ⅱ卷6至16页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共21题,每题6分,共126分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
以下数据可供解题时参考:相对原子质量:H 1 Li 7 C 12 O 16 S 32 Fe 56 Cu 64 Zn 651.下列关于细胞基因复制与表达的叙述,正确的是A.一种密码子可以编码多种氨基酸B.基因的内含子能翻译成多肽C.编码区增加一个碱基对,只会改变肽链上的一个氨基酸D.DNA分子经过复制后,子代DNA分子中(C+T)/(A+G)=12.下列关于动物新陈代谢的叙述,不正确的是A.在正常情况下,肝脏细胞可以将多余的脂肪合成为脂蛋白B.当血糖含量升高时,肌肉细胞可以将葡萄糖合成为糖元C.糖类分解时可以产生与必需氨基酸相对应的中间产物D.氨基酸脱氧基产生的不含氮部分可以合成为脂肪3.下列叙述正确的是A.当病毒侵入人体后,只有细胞免疫发挥防御作用B.大肠杆菌在葡萄糖和乳糖为碳源的培养基上,只有葡萄糖耗尽才能利用乳糖C.大水分供应充足的大田中,只有通风透光才能提高光能利用率D.当甲状腺激素含量偏高时,只有反馈抑制下丘脑活动才能使激素含量恢复正常4.下图表示玉米种子的形成和萌发过程。
据图分析正确的叙述是A.①与③细胞的基因型可能不同B.①结构由胚芽、胚轴、胚要和胚柄四部分构成C.②结构会出现在所有被子植物的成熟种子中D.④过程的初期需要添加必需矿质元素5.利用细胞工程方法,以SARS病毒核衣壳蛋白为抗原制备出单质克隆抗体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(天津卷)
物理部分
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共300分,考试用时150分钟。
第Ⅰ卷1至5页,第Ⅱ卷6至16页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!
第Ⅰ卷
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共21题,每题6分,共126分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
以下数据可供解题时参考:
相对原子质量:H1ﻩLi7 ﻩC12ﻩO 16 ﻩS 32 ﻩFe 56 Cu 64 Zn65
14.下列说法正确的是
A.用三棱镜观察太阳光谱是利用光的干涉现象
B.在光导纤维束内传送图象是利用光的全反射现象
C.用标准平面检查光学平面的平整程度是利用光的偏振现象
D.电视机遥控器是利用发出紫外线脉冲信号来换频道的
15.如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相等的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是
A.A开始运动时
B.A的速度等于v时
C.B的速度等于零时
D.A和B的速度相等时
16.将阻值为5Ω的电阻接到内阻不计的交流电源上,电源电动势随时间变化的规律如图所示。
下列说法正确的是
A.电路中交变电流的频率为0.25Hz
B.通过电阻的电流为2A
C.电阻消耗的电功率为2.5 W
D.用交流电压表测得电阻两端的电压是5V
12.我国绕月探测工程的预先研究和工程实施已取得重要进展。
设地球、月球的质量分
别为m 1、m 2,半径分别为R 1、R2,人造地球卫星的第一宇宙速度为v ,对应的环绕周期为T,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为
A .v R m R m 21
12,T R m R m 312321 ﻩﻩ B. v R m R m 1221,T R m R m 32
1312 C. v
R m R m 2112,T R m R m 3213
12 ﻩﻩﻩﻩ D. v R m R m 1221,T R m R m 3
12321 18.右图为氢原子能级的示意图,现有大量的氢原子处于n =4的激发态,当向低能级跃迁时辐射出若干不同频率的光。
关于这些光下列说法正确的是
A.最容易表现出衍射现象的光是由n =4能级跃迁到n =1能级产生的
B.频率最小的光是由n =2能级跃迁到n =1能级产生的
C.这些氢原子总共可辐射出3种不同频率的光
D.用n =2能级跃迁到n =1能级辐射出的光照射逸出功为6.34eV 的金属铂能发生光电效应
19.如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a ,则该粒子的比荷和所带电荷的正负是
A .
aB v 23,正电荷ﻩﻩﻩ ﻩ B. aB v 2,正电荷 C. aB v 23,负电荷ﻩ ﻩ ﻩﻩ D. aB
v 2,负电荷 20.A 、B 两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同。
将两管抽成真空后,开口向下竖起插入水银槽中(插入过程没有空气进入管内),水银柱上升至图示位置停止。
假设这一过程水银与外界没有热交换,则下列说法正确的是。