应力状态的基本概念1

合集下载

弹性力学_第二章__应力状态分析

弹性力学_第二章__应力状态分析

弹性⼒学_第⼆章__应⼒状态分析第⼆章应⼒状态分析⼀、内容介绍弹性⼒学的研究对象为三维弹性体,因此分析从微分单元体⼊⼿,本章的任务就是从静⼒学观点出发,讨论⼀点的应⼒状态,建⽴平衡微分⽅程和⾯⼒边界条件。

应⼒状态是本章讨论的⾸要问题。

由于应⼒⽮量与内⼒和作⽤截⾯⽅位均有关。

因此,⼀点各个截⾯的应⼒是不同的。

确定⼀点不同截⾯的应⼒变化规律称为应⼒状态分析。

⾸先是确定应⼒状态的描述⽅法,这包括应⼒⽮量定义,及其分解为主应⼒、切应⼒和应⼒分量;其次是任意截⾯的应⼒分量的确定—转轴公式;最后是⼀点的特殊应⼒确定,主应⼒和主平⾯、最⼤切应⼒和应⼒圆等。

应⼒状态分析表明应⼒分量为⼆阶对称张量。

本课程分析中使⽤张量符号描述物理量和基本⽅程,如果你没有学习过张量概念,请进⼊附录⼀,或者查阅参考资料。

本章的另⼀个任务是讨论弹性体内⼀点-微分单元体的平衡。

弹性体内部单元体的平衡条件为平衡微分⽅程和切应⼒互等定理;边界单元体的平衡条件为⾯⼒边界条件。

⼆、重点1、应⼒状态的定义:应⼒⽮量;正应⼒与切应⼒;应⼒分量;2、平衡微分⽅程与切应⼒互等定理;3、⾯⼒边界条件;4、应⼒分量的转轴公式;5、应⼒状态特征⽅程和应⼒不变量;知识点:体⼒;⾯⼒;应⼒⽮量;正应⼒与切应⼒;应⼒分量;应⼒⽮量与应⼒分量;平衡微分⽅程;⾯⼒边界条件;主平⾯与主应⼒;主应⼒性质;截⾯正应⼒与切应⼒;三向应⼒圆;⼋⾯体单元;偏应⼒张量不变量;切应⼒互等定理;应⼒分量转轴公式;平⾯问题的转轴公式;应⼒状态特征⽅程;应⼒不变量;最⼤切应⼒;球应⼒张量和偏应⼒张量§2.1 体⼒和⾯⼒学习思路:本节介绍弹性⼒学的基本概念——体⼒和⾯⼒,体⼒F b和⾯⼒F s的概念均不难理解。

应该注意的问题是,在弹性⼒学中,虽然体⼒和⾯⼒都是⽮量,但是它们均为作⽤于⼀点的⼒,⽽且体⼒是指单位体积的⼒;⾯⼒为单位⾯积的作⽤⼒。

体⼒⽮量⽤F b表⽰,其沿三个坐标轴的分量⽤F b i(i=1,2,3)或者F b x、F b y和F b z表⽰,称为体⼒分量。

第8章 点的应力状态

第8章 点的应力状态

第八章 点的应力状态
三. 平面应力状态中的正应力 极值和剪应力极值
第八章 点的应力状态
本节将对平面应力公式
2 σ xx+σ yy σ xx-σ yy + σ α= cos2α-τ xy sin2α xy α 2 2 进行讨论,主要内容有:
(1)平面应力状态中的正应力极值和极值面方位 以及正应力极值面上的剪应力; (2)平面应力状态中的剪应力极值和极值面方位 以及剪应力极值面上的正应力.
第八章 点的应力状态
(4) σmax× σmin可大于或小于零,也可等于零. 对于前两种情况, 称原 单元体为平面应力或二 单元体为 向应力状态;对后一种情 况,称原单元体为单向应 力状态. 若构件上某点是平面 应力状态,则描述该点应 力状态的单元体有无数 多个,但该点的主单元体 表述却是唯一的,这是一 种既简单且又能反映一 点应力状态本质内涵的 表述. 只要知道某点应力的 一个单元体表述,就能 找到它的主单元体表述.
第八章 点的应力状态
由四个主平面围成的单元体称为原单元体的主 单元体,在主单元体上剪应力为零。若围绕研 究点取出的是它的主单元体,则称该点的应力 表述为主单元体表述或主应力表述。 2τ xy kπ 1 − arctan ; k = 0,±1,±2 主方向角 α p = σ x −σ y 2 2
⎛ 2 τ xy ⎞ ⎛ 2 τ xy ⎞ tan 2 2α p 1 2 (3) 主应力: 将 tan 22α pp=⎜⎜ cos 2α p = ± ; sin 2α p = ± ⎟ tan 2α =⎜ ⎟ 2 ⎜ σ x − σ y ⎟代入 ⎟ 1 + tan 2α p 1 + tan 2 2α p ⎝ σ x −σ y ⎠ ⎝ ⎠
第八章 点的应力状态

应力状态广义胡克定律

应力状态广义胡克定律
铸铁拉伸
低碳钢拉伸
TSINGHUA UNIVERSITY
塑性材料拉伸时为什么会出现滑移线?
两种材料的扭转试验
低碳钢扭转
铸铁扭转
TSINGHUA UNIVERSITY
为什么脆性材料扭转时沿45º螺旋面断开?
TSINGHUA UNIVERSITY
为什么要研究应力状态 试件的破坏不只在横截面,
有时也沿斜截面发生破坏;
90
2
sin 2(
90 )
cos2
பைடு நூலகம்
2
sin 2
TSINGHUA UNIVERSITY
3 提取扭转变形杆件危险点的应力状态
T
Wt
纯剪切应力状态
TSINGHUA UNIVERSITY
4 提取横力弯曲变形杆件下边缘一点的应力状态
M
Wz
单向应力状态
5 提取横力弯曲变形杆件任意一点的应力状态
应力的点的概念与面的概念
应力
哪一个面上? 哪一点?
指明
哪一点? 哪个方向面?
应力状态:
——过同一点不同方向面上应力的集合,称 为这一点的应力状态;
TSINGHUA UNIVERSITY
二、为什么要研究应力状态?
请看下列实验现象:
低碳钢和铸铁的拉伸实验 低碳钢和铸铁的扭转实验
两种材料的拉伸试验








状 特例 状


单向应力状态
特例
纯剪应力状态
常用术语 主单元体 主平面
x1
x1
TSINGHUA UNIVERSITY
主应力 单元体的某个面上切应力等于零时的正应力;

应力与应变状态分析

应力与应变状态分析

ma x
min
x y 2
(x 2y)2x2 y ——主应力的大小
1 ; 2 ; 3 ; m ;am x;i0 n
最大正应力(σmax)与X轴的夹角规定用“α0 ” 表示。 简易判断规律:由τ的方向判断。
α0 α0
2、 τ的极值及所在平面
x 2ysi2n xy co 2s
d 0 d
tg21
3、三向应力状态:三向主应力都不等于零的应力状态。
平面应力状态:单向应力状态和二向应力状态的总称。 空间应力状态:三向应力状态 简单应力状态:单向应力状态。 复杂应力状态:二向应力状态和三向应力状态的总称。 纯剪切应力状态:单元体上只存在剪应力无正应力。
§8-2 平面应力状态分析——解析法
一、任意斜面上的应力计算
主应力排列规定:按代数值由大到小。 1 2 3
10 σ1=50 MPa ;
50
30 σ2=10 MPa ; σ3=-30 MPa 。
单位:MPa
10 σ1=10 MPa ;
30 σ2=0 MPa ; σ3=-30 MPa 。
8、画原始单元体: 例 :画出下列图中的 a、b、c 点的已知单元体。
二、σ、τ的极值及所在平面(主应力,主平面)
1、 σ的极值及所在平面(主应力,主平面)
x 2 y x 2 yc2 o s xs y 2 i n d d 0 x 2 ys2 i n 0 xc y 2 o 0 s0 0 0
tg20
2xy x y
——主平面的位置
( 0;
0 0900 )
F
F a
x
a
x
x
F A
y b C
z
y b
C z
M F L

一 一点的应力状态与应力张量

一 一点的应力状态与应力张量

一 一点的应力状态与应力张量二 主应力与应力不变量对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P 点处应力状态在直角坐标系可表示为ij S σ==x xy xz yx y yz zx zy z στττστττσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦如图1-1所示。

在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。

通常,我们称这种具有特定变换关系的一些量为张量。

式(1-1)就是应力张量,它是二阶张量。

因为它具有xz τ=zx τ,xy τ=yx τ,yz τ=zy τ。

已知物体内某点P 的九个应力分量,则可求过该点的任意倾斜面上的应力。

在P 点处取出一无限小四面体oabc (图1-2)它的三个面分别与x,y,z 三个轴相垂直。

另一方面即任意斜面,它的法线N ,其方向余弦为l,m,n 。

分别以dF 、x dF 、y dF 、z dF 代表abc 、obc 、oac 、 oab 三角形面积。

x y z dF ldF dF mdF dF ndF ⎫=⎪=⎬⎪=⎭(1.2)在三个垂直于坐标的平面上有应力分量,在倾斜面abc 上有合应力N P ,它可分解为正应力N σ及切向剪应力N τ,即222N N N P στ=+N P 沿坐标轴方向分量为N x ,N y ,N z ,由平衡条件可得N x xy xz N yx y yz N zx zy z x l m n y l m n z l m n στττστττσ⎫=++⎪=++⎬⎪=++⎭求出N x ,N y ,N z 在法线上的投影之和,即得正应力N σ222222N N N N x y z xy yz zx x l y m z n l m n lm mn nl σσσστττ=++=+++++ 1-5而剪应力则由式1-5得 2N τ=2N P -2N σ在空间应力状态下一点的应力张量有三个主方向,三个主应力。

材料力学应力状态分析

材料力学应力状态分析

材料力学应力状态分析材料力学是研究物质内部力学性质和行为的学科,其中应力状态分析是材料力学中的重要内容之一。

应力状态分析是指对材料内部受力情况进行分析和研究,以揭示材料在外力作用下的应力分布规律和应力状态特征,为工程设计和材料选用提供依据。

本文将从应力状态的基本概念、分类和分析方法等方面展开讨论。

首先,我们来介绍一下应力状态的基本概念。

应力是指单位面积上的力,是描述物体内部受力情况的物理量。

在材料力学中,通常将应力分为正应力和剪应力两种基本类型。

正应力是指垂直于截面的应力,而剪应力是指平行于截面的应力。

在实际工程中,材料往往同时受到多种应力的作用,因此需要对应力状态进行综合分析。

其次,我们将对应力状态进行分类。

根据应力的作用方向和大小,可以将应力状态分为拉应力状态、压应力状态和剪应力状态三种基本类型。

拉应力状态是指材料内部受到拉力作用的状态,压应力状态是指材料内部受到压力作用的状态,而剪应力状态是指材料内部受到剪切力作用的状态。

这三种应力状态在工程实践中都具有重要的意义,需要我们进行深入的分析和研究。

接下来,我们将介绍应力状态分析的方法。

应力状态分析的方法有很多种,常用的有应力分析法、应变分析法和能量方法等。

应力分析法是通过应力分布的计算和分析来揭示应力状态的特征,应变分析法则是通过应变分布的计算和分析来揭示应力状态的特征,而能量方法则是通过能量原理和平衡条件来揭示应力状态的特征。

这些方法各有特点,可以根据具体情况选择合适的方法进行分析。

最后,我们需要注意的是,在进行应力状态分析时,需要考虑材料的本构关系、边界条件和载荷情况等因素,以确保分析结果的准确性和可靠性。

同时,还需要注意应力状态分析的结果对工程实践的指导意义,以便更好地指导工程设计和材料选用。

总之,材料力学应力状态分析是一个复杂而重要的课题,需要我们进行深入的研究和分析。

只有深入理解应力状态的特征和规律,才能更好地指导工程实践,为实际工程问题的解决提供科学依据。

工程力学-应力状态

工程力学-应力状态
σ 30 100 50 2 100 50 2
sy
n
例1 已知 sx= –100MPa、sy =50MPa 、tx = – 60MPa,a = –30º
cos[2 ( 30)] ( 60)sin[2 ( 30)]
114.5MPa
τ 30
上海应用技术学院
τ T WP
此时不适用基本变形下的强度条件,应同时考虑s 、t 的影响。 又如:受内压容器筒壁
上海应用技术学院
sy
A 筒壁某点A处应力: sx 、sy,为双向受拉状态。 又如:火车车轮与铁轨接触处表层
4
sx
s s
A
s
A点应力:为三向受压状态。 此外:在通过A点不同斜截面上的应力是不同的,将影响到构 件的破坏形式。
s
OC CFcos2 α DFsin2 α σx σy σx σy cos2 α τ x sin2 α σ α 2 2
上海应用技术学院
证明: H点横坐标: OM 纵坐标: MH CD与s 轴夹角为2a0
OM σx σy 2 σx σy 2 cos2 α τ x sin2 α σ α
ty
e
cos2 α τ x sin2 α
b
sy
切线方向上: Σ F 0 τ
τ α d A (σ x d A cos α )sin α ( τ x d A cos α )cos α (σ y d A sin α )cos α ( τ y d A sin α )sin α 0
∴ τ α σ x sin α cos α σ y sin α cos α τ x cos2 α τ y sin 2 α
上海应用技术学院

应力状态分析实验报告

应力状态分析实验报告

一、实验目的1. 了解并掌握应力状态的基本概念。

2. 学习如何通过实验方法测定应力状态。

3. 掌握应力状态分析的基本原理和方法。

4. 培养实验操作技能和数据分析能力。

二、实验原理应力状态是指物体内部在受力作用下,各个点上的应力分布情况。

应力状态分析是研究物体内部应力分布规律的重要方法。

本实验主要研究平面应力状态和空间应力状态。

三、实验设备1. 载荷试验机2. 应变片3. 数据采集系统4. 比较材料5. 标准试验件四、实验步骤1. 实验准备(1)将试验件放置在试验机上,确保试验机水平。

(2)将应变片粘贴在试验件表面,确保应变片粘贴牢固。

(3)连接数据采集系统,检查系统是否正常工作。

2. 加载过程(1)按照实验要求对试验件进行加载。

(2)在加载过程中,实时采集应变数据。

(3)记录加载过程中的应力、应变数据。

3. 数据处理(1)将采集到的应变数据输入计算机,进行数据处理。

(2)根据应力-应变关系,计算应力状态。

(3)分析应力状态的变化规律。

4. 结果分析(1)根据实验数据,绘制应力-应变曲线。

(2)分析应力状态的变化规律,得出结论。

五、实验结果与分析1. 平面应力状态(1)在平面应力状态下,试验件表面出现正应力和剪应力。

(2)通过实验数据,可以计算出应力状态的变化规律。

(3)结果表明,随着加载力的增大,正应力和剪应力逐渐增大。

2. 空间应力状态(1)在空间应力状态下,试验件表面出现正应力和剪应力。

(2)通过实验数据,可以计算出应力状态的变化规律。

(3)结果表明,在空间应力状态下,应力状态的变化规律与平面应力状态相似。

六、实验结论1. 本实验成功地测定了应力状态,并分析了应力状态的变化规律。

2. 通过实验,掌握了应力状态分析的基本原理和方法。

3. 本实验为后续的应力分析、结构设计等提供了实验依据。

七、实验注意事项1. 实验过程中,确保试验机水平,避免试验误差。

2. 在粘贴应变片时,注意粘贴牢固,避免脱落。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C O B(sy ,tyx)
txy
x A(sx ,txy)
2a
sa

两面夹角a 且转向一致。
x 两半径夹角2a ;
思考题:在何种情况下,平面应力状态下的应力圆符 合以下特征: s s t 0 x y (1)一个点圆; xy (2)圆心在原点; s x s y (3)与y轴相切。

s x s y s x s y 2 t xy 2 2 2 s xs y t xy
4、 极值剪应力
ta
dt a 令 da
s x s y
2
0
sin 2a t xy cos 2a
s x s y tg2a1 2t xy
tg2a 0 2t xy
a a1
s x s y
s s t max x y 2 t 2 ± ( ) xy 2 t min tg2a 0 tg2a1 1
¢ Í ° Е ª ¶ Ä û (O.Mohr),1835« ¡ 1918
3、主应力与主平面 表明:主应 主平面:剪应力为零的截面。 力具有极值 主应力:主平面上的正应力。 的性质。 主方向:主平面法线方向即主应力方向。 主应力是所 s x s y 有垂直于xy ta sin 2a t xy cos 2a 坐标平面的 2 方向面上正 2t xy 主应力 tg2a 0 应力的极大 s x s y 值或极小值。
a 0 a1
4
0 , 即极值剪应力面与主 平面 成 45
30
例:已知应力状态(MPa),求主应 力并画出主单元体。 解: s 80MPa x
80
s max 90 2 2 MPa 40 40 30 40 50 s min 10
方位a 0
第八章 强度理论 组合变形
8.1平面应力状态分析 一、应力状态的基本概念 1、概述 引言:在讨论拉压、扭转、剪切、弯曲时,建立的强度条 件都是分别建立正应力或剪应力的强度条件。 组合变形怎么办?
4
1 3

2
再有杆件内任意一点处不同方位的截面上应力是不同的。
2、应力状态的概念 定义:过一点有无数的截面,这一点的各个截面上应力 情况的集合,称为这点的应力状态。 如何研究?取单元体。 单元体:构件内的点的代表物,是包围被研究点的无限 小的几何体,常用的是正六面体。显然, 各个面上,应力均布;平行面上,应力相等。
2
2
例题: 已知应力圆。画出 初始单元体及其应力主单 元体(单位:MPa)。 解:初始单元体
20
20
ta
Dy
C
40
sx
Dx
8.28
主单元体
48.28
22.5

有三个主应力:两个求出的主应力加上平面应力状态固 有的等于零的主应力(相互垂直)。按代数值由大到小 s 3 表示,且 s 1 s 2 s 3 顺序排列,分别用 s1、s 2 、

根据主应力的大小和方向可以确定材料何时发生失效 或破坏,确定失效或破坏的形式。因此,可以说主应 力是反映应力状态本质的特征量。

普遍状态下的应力表示 注意:剪应力符号与正 应力保持一致
s
y
y
空间应力状态
sz
z
txy
sx
x
二、 平面应力状态分析 如果单元体有一对平面上的应力为零,则称为平面应力 状态。 y
sy
sx
x
sy
t yx
sx
txy
z
txy
两种特殊情况
C
t xy
sx
A
sx
纯剪切应力状态 单(轴)向应力状态
1、任意斜截面上的应力
2
s y Ssin 2a t yx S sina cos a 0 s x s y s x s y sa cos 2a t xy sin 2a 2 2 s x s y ta sin 2a t xy cos 2a 同理: 2
(或莫尔圆,德国工程师) 2、应力圆 对上述方程消去参数(2a),得:
C O
sa
s x s y 2
2 t xy
2
s x s y
2
德国工程师Christian Otto Mohr 摩尔 Moore, Raymond Cecil 1892.2.20~ 1974.4.16, 美国美国古生物学家 戈登·摩尔Gordon Moore,1929版本1:集成电路芯片上所集成的电路的 数目,每隔18个月就翻一番。 版本2:微处理器的性能每隔18个月提高 一倍,而价格下降一半。 版本3:用一个美元所能买到的电脑性能, 每隔18个月翻两番。
60 3 tg 2a 0 80 4
s max
18.45
s y 0 t xy 30MPa
a 01 18.45
o
a 02 71.55
o
x
s min
sy
补充:单元体与应力圆的对应关系 a面上的应力(s a,t a) 应力圆上一点(s a,t a)
n
sa ta
y O
a
sx
ta n D( sa , ta
tyx
n 规定: sy sa sa ——截面外法 线同向为正; a t t a ——绕研究对 sx sx ta tyx 象顺时针转为正; txy sy a ——逆时针为 正。 设斜截面面积为S,由分离体平衡得:
F 0
n
s a S s x S cos a t xy S cos a sina
sa
ds a a 0

s x s y
2
cos 2a t xy sin 2a
s x s y sin 2a 0 2t xy cos2a 0 0
sa
s x s y
2

s x s y
2
cos 2a t xy sin 2a
sx sy sx sy 2 sm ax 2 ±( ) txy 2 2 sm in
s x s y s x s y 2 2 s t t a xy a 2 2
圆心坐标 :
2
2
s x s y 2 ,0
半径 :
ta
s x s y 2
2
2 t xy
相关文档
最新文档