三段论格的证明
三段论的格和式

• [例1] 的大前提、小前提和结论分别都是A命题,因此, 它被称为AAA式;[例2] 的大前提、小前提和结论分别 是E、A、O命题,因此,它被称为EAO式。
• 在三段论的每一格中,A、E、I、O四种命题都可以分别 作为大、小前提和结论,其组合数目为:4×4×4=64。 因此,就其可能性而言,每一格有64式,三段论的四个 格的可能式共有64×4=256个。 • 但是,这256个可能式并非都是有效的,其中很多明显 违反三段论的规则,例如AAE、EEE、III、OOO式等等; • 首先,根据一般规则得出11个式:
• 第四格:中项在大前提中是谓项,在小前提中是主项。 其图式为: P M
M
S
S
P
第四格的规则: ①如果前提中有一个是否定的,则大前提全称。 ②如果大前提是肯定的,则小前提全称。 ③如果小前提是肯定的,则结论特称。 ④任何一个前提都不能是特称否定判断。 ⑤结论不能是全称肯定判断。 证明? 例: 有些干涉他人婚姻自由的是犯罪行为, 所有犯罪行为都要追究刑事责任, 所以,有些要追究刑事责任的是干涉他人婚姻自由的行为。
三段论的格和式
1、三段论的格 • 从三段论的形式结构来看,大、小项和中项在前提中的 位置有几种不同的排列。其中,只要中项的位置确定了, 大项和小项的位置也就确定了。 • 三段论的格,就是由于中项所处的位置的不同而构成的 三段论的不同形式。 • 三段论共有四个格。
M-------P S-------M P-------- M S-------- M M-------P M-------S P-------M M------S
• 现将第一格的规则证明如下: • ①小前提必须是肯定的。 • 假设小前提是否定的。根据规则,大前提必为肯定命题。 大前提肯定,则大前提的谓项不周延。而在第一格中, 大项是大前提的谓项,所以大项在大前提中不周延。同 时,根据规则,结论是否定的。结论否定,则结论的谓 项即大项必是周延的。这样,根据规则,则犯了“大项 不当周延”的错误。这种错误是由于小前提否定造成的。 所以,假设不成立,小前提必须是肯定的。 • ②大前提必须是全称的。 • 已证小前提肯定,则小前提的谓项不周延。而小前提的 谓项是中项,故中项在小前提中是不周延的。根据基本 规则,中项在大前提中必须周延。在此格中,中项是大 前提的主项,主项要周延,则大前提必须是全称的。
三段论规则的证明

三段论规则的证明三段论规则是逻辑学中最基本的推理规则之一,它被广泛应用于各个领域,尤其在数学、哲学、计算机科学等领域中具有重要的地位。
本文将从三段论规则的定义、证明过程以及应用方面进行详细探讨。
一、三段论规则的定义三段论规则是指:如果前提A蕴含前提B,前提B又蕴含结论C,则前提A可以推出结论C。
表述为:A→BB→C∴ A→C其中,“→”表示蕴含关系,“∴”表示推出关系。
二、三段论规则的证明过程三段论规则可以通过直接证明或间接证明两种方式来进行证明。
下面我们将分别介绍这两种证明方式。
1. 直接证明直接证明是指通过逻辑运算和推理来得到结论的过程。
在证明三段论规则时,我们可以采用如下步骤:步骤一:假设前提A成立,并且前提A蕴含前提B。
步骤二:根据假设,在前提A成立的情况下,可以得到前提B成立。
步骤三:再假设前提B成立,并且前提B蕴含结论C。
步骤四:根据假设,在前提B成立的情况下,可以得到结论C成立。
步骤五:由于前提A蕴含前提B,前提B又蕴含结论C,因此可以得出结论A推出C成立。
2. 间接证明间接证明是指通过反证法来证明一个命题的过程。
在证明三段论规则时,我们可以采用如下步骤:步骤一:假设前提A成立,并且前提A不推出结论C。
步骤二:根据假设,在前提A成立的情况下,结论C不成立。
步骤三:再假设前提B成立,并且前提B蕴含结论C。
步骤四:根据假设,在前提B成立的情况下,可以得到结论C成立。
步骤五:由于前提A不推出结论C,因此可以得出前提A不蕴含前提B。
步骤六:由于前提B蕴含结论C,因此可以得出前提B蕴含非C(即反命题)。
步骤七:将上述两个命题合并起来,则有“如果前提A不蕴含前提B,并且前提B蕴含非C,则前提A不推出结论C。
”步骤八:由于前提A蕴含前提B,因此可以得出结论A推出C成立。
三、三段论规则的应用三段论规则是逻辑学中最基本的推理规则之一,它被广泛应用于各个领域。
以下是三段论规则在不同领域中的应用举例:1. 数学领域:在证明定理时,常常需要使用三段论规则来进行推理。
联考逻辑误区详解丨证明三段论(精选五篇)

联考逻辑误区详解丨证明三段论(精选五篇)第一篇:联考逻辑误区详解丨证明三段论上次,友课菌跟大家讨论了直言三段论中易犯的错误,今天继续讨论在证明三段论中容易犯的错误。
证明三段论一个三段论要成为证明三段论,需要同时满足两个条件:前提真实;推理形式正确。
否则,就会犯对应的联考逻辑错误。
前提不真实所谓前提真实指的是前提的具体内容必须符合客观实际。
一个不真实的前提是无法推导出正确结论的。
例:鱼都生活在水里;木鱼也是鱼;所以,木鱼生活在水里。
解析:这一三段论中,大前提真实,但小前提就不是真实的。
木鱼是和尚诵经时的一种敲打工具,它与鱼的概念是两回事,不是大前提所规定的鱼。
这样的三段论,就会犯小前提不真实的错误,不是证明三段论。
推理形式无效推理形式的正确是指推理的过程必须符合直言三段论的各项规则,否则就算前提是真实的,结论也是不正确的。
在直言三段论的256种推理式中,仅只有19种是正确、有效的形式,其他的形式都犯有推理形式无效的逻辑错误。
例:球队的队员都爱好打球;小林不是球队队员;所以,小林不爱好打球。
解析:此例前提真实,但推理形式不正确,大项(P)爱好打球在结论中是周延的,但在大前提中却并不周延,犯有大项不当周延的毛病,因此结论是不正确的。
第二篇:用三段论证明用三段论证明在三段论中,含有大项的前提叫大前提,如上例中的“知识分子都是应该受到尊重的”;含有小项的前提叫小前提,如上例中的“人民教师是知识分子”。
三段论(syllogism)是传统逻辑中的一类主要推理。
又称直言三段论。
古希腊哲学家亚里士多德首先提出了关于三段论的系统理论。
形式逻辑间接推理的基本形式之一,由大前提和小前提推出结论。
如‘凡金属都能导电’(大前提),‘铜是金属’(小前提),‘所以铜能导电’(结论)。
这称为三段论法或三段论式。
三段论属于一种演绎逻辑,是不同于归纳逻辑的,具有较强的说服力。
小前提:函数x-1在[1,∞)上是增函数大前提:根号内的x在[0,∞)上是增函数结论:函数f(x)=根号x-1在[1,∞)上是增函数厉害吧哈哈2(1)如果有一个前提是否定判断,则大前提为全称判断;(2)如果大前提是肯定判断,则小前提为全称判断;(3)如果小前提是肯定判断,则结论为特称判断;(4)任何一个前提都不能是特称否定判断;(5)结论不能是全称肯定判断;麻烦哪位大虾帮小弟证明下这五点可以吗3四格规则:中项在大前提中作谓项,在小前提中作主项。
三段论中各格证明

三段论中各格证明第一格规则:(1)小前提必是肯定的假如小前提为否定命题,根据从两个否定的前提得不出必然的结论,大前提必为肯定命题,于是结论必为否定命题。
这样,大项在前提中作为肯定命题扽谓项是不周延的,而在结论中作为否定命题的谓项是周延的。
根据前提中不周延的项在结论中也不得周延,假设不成立,所以小前提必是肯定的。
(2)小前提必是肯定的,因而作为小前提谓项的中项是不周延的。
根据中项在两前提中至少周延一次,中项在大前提中必须是周延的,要使其大前提中的中项周延,大前提必须是全称的。
三段论的第二格,中项在前提中均做谓项。
1、两个前提中必须有一个是否定命题:由于中项在两个前提中都做谓项,根据三段论的基本规则“中项至少要周延一次”,而只有否定命题的谓项是周延的,所以,前提中必须有否定命题。
但是根据三段论基本规则“两个否定的前提不能推出结论”,故两个前提中必须有一个是否定命题。
2、大前提必须为全称命题:三段论第二格的特殊规则中的第一条已经确定,即“两个前提中必须有一个是否定命题”,那么,根据三段论的基本规则“前提中有一个是否定的,结论必然是否定的”,可以得出否定命题为结论。
在结论中,大项作否定命题的谓项,是周延的。
根据三段论基本规则“在前提中不周延的项,在结论中也不得周延”,要保证大项在前提中周延,只有大前提为全称命题。
所以,大前提必须为全称命题第三格规则:1、小前提必须肯定。
2、结论须是特称的。
证明1:如果小前提否定,则大前提必须肯定(两个否定的前提推不出结论);大前提肯定,则大项不周延(肯定判断的谓项不周延);因为前提之一否定,所以结论否定;结论否定,则大项在结论中周延;大项在前提中不周延,而在结论中周延,违反“前提中不周延的项在结论中不得周延”的规定,所以,小前提必须肯定。
证明2:因为小前提是肯定的(证明1已证明),所以小项是不周延的,根据“前提中不周延的项在结论中不得周延”的规则,所以,结论只能是特称的(特称判断的主项不周延)。
自学考试普通逻辑学三段论

自学考试普通逻辑学三段论第一篇:自学考试普通逻辑学三段论1、用三段论基本规则证明第一格的小前提必须是肯定的。
证明:假设小前提是否定的,那么根据规则五,结论也是否定的,结论否定,则大项在结论中周延。
大项在结论中周延,根据规则三,在前提中必然也周延,否则就要犯“大项不当周延”的错误。
在第一格中,大项是大前提的谓项,大项在大前提中周延,则大前提必否定。
由假设,小前提也是否定的。
这样规则四,两个否定前提不能推出结论。
所以,假设不能成立,小前提须是肯定的。
2、用三段论基本规则证明第一格大前提须是全称的。
证明:由第一格规则(1),小前提肯定。
在第一格中,中项是小前提的谓项,所以,中项在小前提中不周延。
根据规则二,中项须在大前提中周延,否则会犯“中项两次不周延”的错误。
在第一格中,中项是大前提的主项,所以,大前提须全称。
3、用三段论基本规则证明第二格中前提中须有一个是否定的。
证明:假设两个前提都是肯定的,则大、小前提的谓项都不周延。
在第二格中,中项分别为大、小前提的谓项,所以中项在前提中两次不周延,违反规则二。
所以,假设不能成立,前提中须有一个是否定的。
称的。
证明:由第二格规则(1),前提中有一个是否定的,所以根据规则五,结论是否定的。
结论否定,则大项在结论中周延。
大项在结论中周延,则在前提中也周延。
在第二格中,大项是大前提的主项,所以大前提全称。
5、用三段论基本规则证明第三格小前提须是全称的。
证明:假设小前提是否定的——*结论否定——*大项在结论中周延——*大项在前提中周延——*大前提否定(因为在第三格中,大项是大前提的谓项)——*两否定前提推不出结论。
所以,假设不能成立,小前提须是肯定的。
6、用三段论基本规则证明第三格结论须是特称的。
证明:根据规则(1)小前提是肯定的——*小项在前提中不周延(在第三格中,小项是小前提的谓项)——*小项在结论中周延——*结论特称。
7、用三段论基本规则证明第四格不能是全称肯定命题。
三段论的格式举例说明

三段论的格式举例说明三段论是一种常见的逻辑推理方法,由前提、推理和结论三个部分组成。
下面我将通过一个例子来说明三段论的格式。
例子:前提1:所有的人都需要氧气来维持生命。
前提2:小明是一个人。
结论:小明需要氧气来维持生命。
在这个例子中,前提1是一个普遍性的陈述,即所有的人都需要氧气来维持生命。
前提2是一个特定性的陈述,即小明是一个人。
根据前提1和前提2,我们可以得出结论:小明需要氧气来维持生命。
这个例子中的三段论格式如下:1.前提1:所有的人都需要氧气来维持生命。
2.前提2:小明是一个人。
3.结论:小明需要氧气来维持生命。
在这个三段论中,前提1和前提2是已知的事实或信息,而结论是根据前提1和前提2推导出来的。
三段论的格式要求前提和结论之间要有逻辑上的联系,即前提要能够支持结论。
在这个例子中,前提1和前提2都是关于人的陈述,而结论也是关于人的陈述,因此它们之间有逻辑上的联系。
除了这个例子之外,还有很多其他的三段论格式,例如:1.前提1:所有的猫都喜欢鱼。
前提2:这只猫是一只猫。
结论:这只猫喜欢鱼。
在这个例子中,前提1是一个普遍性的陈述,即所有的猫都喜欢鱼。
前提2是一个特定性的陈述,即这只猫是一只猫。
根据前提1和前提2,我们可以得出结论:这只猫喜欢鱼。
1.前提1:这个城市的交通状况很糟糕。
前提2:这个城市的人口密度很高。
结论:这个城市的交通状况很糟糕可能是因为人口密度很高。
在这个例子中,前提1是一个普遍性的陈述,即这个城市的交通状况很糟糕。
前提2也是一个普遍性的陈述,即这个城市的人口密度很高。
根据这两个前提,我们可以得出结论:这个城市的交通状况很糟糕可能是因为人口密度很高。
这个结论提供了一个可能的原因来解释为什么这个城市的交通状况很糟糕。
以上这些例子都是三段论的格式,它们都是由前提、推理和结论三个部分组成的。
通过这些例子,我们可以看出三段论是一种常见的逻辑推理方法,它可以帮助我们从一个已知的事实或信息推导出另一个事实或信息。
三段论规则证明

根据:1)P69三段论的七条一般规则2)周延定义1、中项至少周延一次2、在结论中周延的项、、3、两否定不能得结论4、前提中有一否定,结论否定5、结论否定,前提中必有一否定6、两特称不能得结论7、前提中有一特称,结论特称周延定义:全称判断主项周延,特称判断主项不周延;肯定判断谓项不周延,否定判断谓项周延;第一格:M--P 1)小前提肯定S--M 2)大前提全称证明:小前提肯定设小前提否定--(规则4)结论否定--(周延定义+P是结论的谓项)大项在结论中周延--(规则2)大项在前提中周延--(周延定义+P是大前提的谓项)大前提否定——(规则3)两否定不能得结论,所以,小前提不能否定。
证明:大前提全称小前提肯定(已证)--(周延定义+M在小前提中作谓项)中项在小前提中不周延--(规则1)中项在大前提中应当周延--(周延定义+M 在大前提中作主项)大前提全称。
证明(第2格)前提中必有一否定M在两个前提中都是谓项——(周延定义+规则1)两前提中必有一否定证明(第2格)大前提全称因为两前提中有一否定(已证)——(规则4)结论否定——(周延定义)大项在结论中周延——(规则2)大项在前提中周延——(周延的定义+大项在大前提中作主项),所以大前提全称。
证明(第3格)结论特称因为小前提肯定(已证)——(周延定义+S在小前提中作谓项)S在前提中不周延——(规则2)S在结论中不周延——(周延定义+S是结论的主项)结论特称证明(第4格)规则1前提中有一否定(条件)——(规则4)结论否定——(周延定义+P是结论的谓项)大项在结论周延——(规则2)大项在前提中也周延---(周延定义+大项在前提中作主项),所以大前提全称;证明(第4格)规则2大前提肯定(条件)——(周延定义+中项在大前提中作谓项)中项在大前提中不周延——(规则1)中项在小前提中必周延——(周延定义+中项在小前提中作主项),所以,小前提全称。
证明(第4格)规则3小前提肯定(条件)——(周延定义+S在小前提中作谓项)小项在前提中不周延——(规则2)小项在结论中不周延——(周延定义+S是结论的主项),特称判断主项不周延,所以结论特称。
逻辑学 三段论中各格具体规则的证明自证参考

三段论中各格具体规则的证明第一格规则: 1、小前提必就是肯定的;2、大前提必就是全称的。
M PS MS P1、小前提必就是肯定的假如小前提为否定命题,根据从两个否定的前提得不出必然的结论,大前提必为肯定命题,于就是结论必为否定命题。
这样,大项在前提中作为肯定命题扽谓项就是不周延的,而在结论中作为否定命题的谓项就是周延的。
根据前提中不周延的项在结论中也不得周延,假设不成立,所以小前提必就是肯定的。
2、大前提必就是全称的小前提必就是肯定的,因而作为小前提谓项的中项就是不周延的。
根据中项在两前提中至少周延一次,中项在大前提中必须就是周延的,要使其大前提中的中项周延,大前提必须就是全称的。
第二格规则: 1、两个前提中必须有一个就是否定命题;2、大前提必须为全称命题。
P MS MS P1、两个前提中必须有一个就是否定命题:由于中项在两个前提中都做谓项,根据三段论的基本规则“中项至少要周延一次”,而只有否定命题的谓项就是周延的,所以,前提中必须有否定命题。
但就是根据三段论基本规则“两个否定的前提不能推出结论”,故两个前提中必须有一个就是否定命题。
2、大前提必须为全称命题:三段论第二格的特殊规则中的第一条已经确定,即“两个前提中必须有一个就是否定命题”,那么,根据三段论的基本规则“前提中有一个就是否定的,结论必然就是否定的”。
在结论中,大项作否定命题的谓项,就是周延的。
根据三段论基本规则“在前提中不周延的项,在结论中也不得周延”,要保证大项在前提中周延,只有大前提为全称命题。
所以,大前提必须为全称命题第三格规则: 1、小前提必须肯定;2、结论须就是特称的;3、至少有一个前提就是全称的。
M PM SS P1、小前提必须肯定如果小前提否定,则大前提必须肯定(两个否定的前提推不出结论); 大前提肯定,则大项不周延(肯定判断的谓项不周延); 因为前提之一否定,所以结论否定; 结论否定,则大项在结论中周延; 大项在前提中不周延,而在结论中周延,违反“前提中不周延的项在结论中不得周延”的规定,所以,小前提必须肯定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前面在讲三段论推理的结构时,已讲到按照中项所处的4种不同位置,我们可以把三段论推理分成四种,这四种就是4个格。
M—P P—M M—P P—M
S—M S—M M—S M—S
S—P S—P S—P S—P
(第一格) (第二格)(第三格)(第四格)
由于中项所处的特殊位置,运用三段论的一般规则,可以推出不同的格的特殊规则,这些同时规则的好处是更为简便直观。
第一格规则p165
M—P
S—M
S—P
1、小前提必须肯定。
2、大前提必须全称。
证明1:
设小前提否定,则结论否定(前提之一否定结论否定);
结论否定,P一定周延(因其处在否定判断的谓项);
P周延,则前提必须否定(P在前提种处于谓项位置,而只有否定判断的谓项才周延);
小前提否定,大前提也否定,推不出结论(两个否定的前提推不出结论);
所以,小前提必须肯定。
证明2:
因为小前提必须是肯定的,处于谓项的中项必不周延(肯定判断的谓项不周延);
根据“中项至少在前提种周延一次”的规则,中项只能在大前提中周延,而中项在大前提中处主项位置;
所以,大前提必须全称。
第一格的特点是根据一般的原理推出特殊的和个别的结论。
由于前提是全称的,推出的又是特殊和个别的结论,最能体现“遍有遍无”的公理,所以可以把它称为“典型格”。
第二格规则p166
P—M
S—M
S---P
第二格中项都处于谓项位置上,要保证其至少周延一次,就要使它至少有一次处于否定判断的谓项上。
1、前提之一必须否定。
2、大前提必须全称。
证明1:
因为在第二格中,中项都处于谓项位置,而只有在否定判断中谓项才周延;
又由于两个否定的判断推不出结论,所以只能有一个前提是否定的。
所以,前提之一必须否定。
证明2:
因为前提之一是否定的,所以结论是否定的(前提之一否定,结论是否定的);
结论否定,则大项周延(否定判断的谓项周延);
大项在第二格中处于前提的主项,只有全称时主项周延;
所以,大前提必须全称。
第二格的结论总是否定的,常用来区别不同对象,所以又称其为“区别格”。
第三格规则:p167
M—P
M—S
S---P
这一格中项都处于主项位置上,只要有一个前提是全称的,就可以保证中项至少周延一次。
由于大项处在大前提的谓项,就有一个保证其不会“不当周延”的问题。
因此这一格的规则为:
1、小前提必须肯定。
2、结论须是特称的。
证明1:
如果小前提否定,则大前提必须肯定(两个否定的前提推不出结论);
大前提肯定,则大项不周延(肯定判断的谓项不周延);
因为前提之一否定,所以结论否定;
结论否定,则大项在结论中周延;
大项在前提中不周延,而在结论中周延,违反“前提中不周延的项在结论中不得周延”的规定,所以,小前提必须肯定。
证明2:
因为小前提是肯定的(证明1已证明),所以小项是不周延的,
根据“前提中不周延的项在结论中不得周延”的规则,
所以,结论只能是特称的(特称判断的主项不周延)。
第三格只能得出特称结论,常用来反驳全称判断,所以又称其为“反驳格”
第四格规则:p169
P—M
M—S
S---P
第四格是非常特殊的格,也是很不常用的格,而且它的特殊规则不比一般规则简单,只是可能直观一些。
我们对中项规则只作了解。
1、前提之一否定,大前提全称。
2、大前提肯定,则小前提全称。
3、小前提肯定,则结论特称。
4、前提中不得有特称否定判断。
5、结论不能是全称肯定判断。
五、三段论推理的有效式
在一般规则和格的规则的基础上,我们可以证明各格有效的推理形式,也就是说只要根据这些有效式,就能保证推理的正确性。
理论上因为三段论有4个格,4种不同的性质判断,可构成符合规则的有效式为24个,见p171上的表。
而实际上表中带括号的弱式是由全称结论依照对当关系的差等关系推导出来的,并非由大小前提直接推出来的,所以,真正的有效式19个。
我们将它们排列如下:
第一格:
AAA EAE AI I E IO
第二格:
AEE EAE AOO EIO
第三格:
AAI EAO AII EIO IAI OAO
第四格:
AAI EAO AEE EIO IAI
六、三段论的省略式p171
在实际运用三段论推理时,因为语言表达上的原因,经常会用省略式。
而且一些错误的三段论,其错误常常就隐藏在贝省略的部分中,所以必须学会分析省略式。
1、省略的情况
在一个三段论中至多只能省略其中的一个,省略的情况只能有3种。
1)省略大前提
2)省略小前提
3)省略结论
一旦省略,就会对三段论的分析造成困难。
因此有一个恢复省略式的问题。
2、省略式的恢复p175
1)先找结论,方法是在两个分句间加“因为”和“所以”。
如果可以加,凭直觉靠可断定哪个是结论。
2)如结论未被省略,根据结论的主项和谓项断定已有的前提是大前提还是小前提,再相应的补小前提或大前提。
3)如果省略的是结论,就要依据概念的大小断定大前提和小前提。
4)将恢复的三段论整理为规范的三段论形式,并用规则检查是否正确。
再划分省略式时,要注意p175上两点,不违原意,力求真实。
省略式的恢复对于初学逻辑的人不是容易的事,要经过一段实践熟习的过程。
初学时可将各种可能性尽可能考虑到,经过一段时间的学习就可以较直接地断定省略什么并恢复它。