七年级数学图形的平移与旋转复习课件
《平移与旋转》课件

用不同的中心点和角度展示圆形的旋
转过程和效果。
3
三角形的旋转
用不同的中心点和角度展示三角形的 旋转过程和效果。
结论和关键要点
平移和旋转
平移和旋转是几何学中重要的操作,广泛应用于数学、物理和工程等领域。
性质和特点
平移和旋转各有自己的性质和特点,通过深入理解可以更好地应用和创新。
实例和案例分析
通过丰富的实例和案例分析,可以更加生动和直观地理解平移和旋转。
平移的示例和案例分析
正方形的平移
展示正方形在平移时保持大小 和形状时保持大小和 形状不变的过程和效果。
三角形的平移
展示三角形在平移时保持大小 和形状不变的过程和效果。
旋转的示例和案例分析
1
正方形的旋转
用不同的中心点和角度展示正方形的
圆形的旋转
2
旋转过程和效果。
平移的性质和特点
向量和平移
平移可以用向量表示,向量的长度和方向表示 平移的距离和方向。
平移的合成
连续的平移操作可以合成为一次平移,满足平 移的可结合性。
旋转的性质和特点
角度和旋转 旋转的中心
旋转可以用角度表示,角度的大小决定了旋 转的幅度。
旋转的中心可以是任意点,不同的中心会产 生不同的旋转效果。
《平移与旋转》PPT课件
本PPT课件将深入讲解平移和旋转的定义、概念、性质和特点,并通过丰富 的示例和案例分析帮助大家更好地理解这两个重要的数学概念。
平移的定义和概念
1 什么是平移?
平移是将图形沿着一定 方向移动一段距离,而 保持图形的大小、形状 和方位不变。
2 平移的特点
平移是一种移动操作, 图形的所有点都按照相 同的方向和距离进行移 动。
平移与旋转PPT课件

旋转是将图形绕某一点转动一定的角度,其实质是点的旋转。旋转不改
变图形中各点之间的相对位置关系,但改变其角度。
03
平移与旋转的联系
平移和旋转都是图形在平面内的运动,它们都可以改变图形的位置,但
不改变其形状和大小。在实际应用中,平移和旋转常常结合使用,以实
现图平移
在实际应用中,物体往往同时进行平 移和旋转运动,这种运动称为复合运 动。
旋转运动
旋转运动是围绕一个固定点进行的运 动,物体在平面内以该点为中心进行 旋转,其轨迹是一个圆或一个圆弧。
计算机图形学
计算机图形学是研究计算机生成 和操作图形的科学,它广泛应用 于游戏开发、电影制作、建筑设
计等领域。
平移与旋转是计算机图形学中基 本变换之一,通过这些变换可以
三维平移
总结词
三维平移是指空间内的移动,可以沿 三个方向进行。
详细描述
在三维空间中,三维平移可以表示为在 x轴、y轴和z轴上的三个单位向量的组 合,例如[1,0,0]、[0,1,0]和[0,0,1]。三 维平移会改变物体的位置和方向。
03 旋转的数学表示
一维旋转
总结词
一维旋转是指绕着一条直线进行的旋转。
都有广泛的应用。
THANKS FOR WATCHING
感谢您的观看
总结词
一维平移是指沿一个方向进行的移动。
详细描述
在数学中,一维平移通常表示为在坐标轴上的一个单位向量,例如在x轴上,可 以表示为[1,0,0]。一维平移不改变物体的方向,只改变位置。
二维平移
总结词
二维平移是指平面内的移动,可以沿两个方向进行。
详细描述
在二维坐标系中,二维平移可以表示为在x轴和y轴上的两个单位向量的组合, 例如[1,0]和[0,1]。二维平移会改变物体的位置,但不改变方向。
初中数学华东师大七年级下册轴对称平移与旋转最短路径问题(将军饮马问题)PPT

3、【一次函数中的将军饮马】
如图,在平面直角坐标系中,点 A(-2,3),B(4,5),点 P 是 x 轴上一动点,求:①PA+PB 的最小值及此时点 P 的坐标; ②| PA-PB|的最大值及此时点 P 的坐标.
3、【一次函数中的将军饮马】
如图,在平面直角坐标系中,点 A(-2,3),B(4,5),点 P 是 x 轴上一动点,求:①PA+PB 的最小值及此时点 P 的坐标; ②| PA-PB|的最大值及此时点 P 的坐标.
A' M
C
A
B
O
N
D
B'
C【一定两动之点与线】
例3:在OA、OB上分别取点M、N,使得PM+MN最小
1、正方形中的将军饮马
【关于对角线对称】
例4: 如图,正方形ABCD的边长是4,M在DC上,且DM=1,N是AC 边上的一动点,则△DMN周长的最小值是多少?
【隐身的正方形】
(2017辽宁营口)4、如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上, BD=3,DC=1,P是AB上的动点,则PC+PD的最小值为( )
A、4 B、5 C、6 D、7
2、三角形中的将军饮马
【等边系列】
例5: 如图,在等边三角形△ABC中,AB=6,N为AB上一点,且AN=2,BC
的高线AD交BC于点D,M是AD上的动点,连结BM,MN,则BM+MN的最小
值是
。
3、【一次函数中的将军饮马】
如图,在平面直角坐标系中,点 A(-2,3),B(4,5),点 P 是 x 轴上一动点,求:①PA+PB 的最小值及此时点 P 的坐标; ②| PA-PB|的最大值及此时点 P 的坐标.
第三章_图形的平移与旋转_复习完整ppt课件

2. (x,y)(x,y-2) 3. (x,y) (x-1 , y)
4. (x,y)(3+x , y)
思考:5. (x,y)(x-1 , y+4)
.
6
例1、
.
7
例2、
.
8
.
9
.
10
二、 旋转
像这样,把一个平面图形绕着某一定点按某 个方向转动一定的角度,这样的图形运动就叫做
旋转.
这个定点O称为旋转中心
(3)经过平移,对应点所连的线段平行且相等、对应线段平行
且相等、对应的角相等。
,
A
A
,
B
B
.
3
C
C,
平移的特征:
1.平移后对应线段平行(或在同一直 线上)且相等,对应角相等。
2. .平移后对应点所连的线段平行(或在 同一条直线上)并且相等
A
D
C
E.
F
4
B
回顾
1、一个图形沿x轴方向平移a(a>0)个单位长度:
对应角有什么特征?
相等
注意:书写时,对应字母应写在对应位置!
.
54
拓展1 如果A,B两个村庄中间有两条平行的
河流(如上右图),准备在两条河上各建一座
桥(桥仍然与河岸垂直),那么,要使由A到B
的路程最短,两座桥又应建在何处呢?
A
B
.
55
两座桥,问题当然变复杂了,画图发现需要计算5条 线段的长度和,当然其中有两条长度是固定的,我 们也可以暂时不考虑这两条线段,通过平移,将其 他三条线段集中起来,不难类似地得到下面的草图, 只要A1,D,E,B1 四点共线即可。
b
b
第十章《轴对称 平移 旋转》小结与复习 课件(共35张PPT)

(A)方块5 (C)红桃7
(B)梅花6 (D)黑桃8
图形全等的概念: (1)全等图形:能够完全重合的两个图形叫做全等图形. (2)全等三角形:能够完全重合的两个三角形叫做全等三角形.
注:表示方法及对应元素的确定 (1)表示方法:△ABC≌△A′B′C′(表示两个三角形全等要求:把 表示对应顶点的字母写在对应的位置上). (2)“对应”概念:相互重合的顶点叫做对应顶点,相互重合的边 叫做对应边,相互重合的角叫做对应角. 全等图形的对应边相等,对应角相等.
C1 B1
l
课后提升
如下图,点A代表烽火台,点B代表营地, 现有一将军牵着马从烽火台出发,走到河边饮 马后要回到营地,请问怎样走可使行驶的路程 最短?在图中作出该处,并说明理由。
河
C
D
A
B
平面图形在它所在的平面上的平
行移动,简称为平移。
小结
平移的基本性质
1.图形上各点沿同一方向移动相同的距离 2. 平移不改变图形的形状、大小,只改变图 形的位置.
C A′
O B′
Hale Waihona Puke BAC′解法二:根据观察,B、B′及C、C ′应分别是两 组对应点,连结BB′ 、CC′ ,它们相交于点O, 则点O即为所求(如图).
C A′
O B′
B A
C′
2.小明把如图所示的扑克牌放在一张桌子上,请 一位同学避开他,任意将其中一张牌倒过来,然 后小明很快辨认出被倒过来的那张扑克牌是( )
A ED
“若AD=3,FG=5,求BBC的F长”
GC
像这样,把一个平面图形绕着某一定点按某个 方向转动一定的角度,这样的图形运动就叫做 旋转.
这个定点O称为旋转中心
华师版七年级数学下册精品课件(HS) 第10章 轴对称、平移与旋转 专题课堂(十) 图形变换的应用

6.(原创题)如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点 A与CB延长线上的点E重合.
(1)三角尺旋转了多少度? (2)连结CD,试判断△CBD的形状; (3)在等腰三角形中存在“两个底角相等”的事实,请用这个结论,求∠BDC的度 数. 解:(1)因为∠ABC=30°,所以∠ABE=180°-∠ABC=180°-30°=150°, 即三角尺旋转了150° (2)因为由旋转的特征可知BC=BD,所以△CBD是等腰三角形 (3)因为△BCD是等腰三角形,所以∠BCD=∠BDC.∴∠DBE=∠BCD+∠BDC= 2∠BDC.又因为由平移的特征知∠DBE=∠CBA=30°,所以2∠BDC=30°,所以 ∠BDC=15°
(3)略
(3)选择图③,④中的一种说明理由.
解:(2)画图如下:
(3)略
分析:(1)由平移的特征可知∠C=∠BED=45°,根据三角形的内角和求出∠A; (2)由平移的特征可得 DE=AF,DE=FC,则 AF=CF=DE=12 AC,可求出 DE; (3)由(2)即可得出结论.
解:(1)∠A=65°,∠C=45° (2)DE=6 cm (3)成立,理由:由平移可得 DE=AF,DE=FC,所以 DE=AF=FC,所以 2DE=AF+FC,所以 2DE=AC, 所以 DE=12 AC
点E处,若∠A=25°,则∠CDE的度数为( C ) A.50° B.65° C.70° D.75°
3.如图,在Rt△ABC中,∠BAC=90°,将△ABC沿直线BC向右平移得到△DEF,
著名机构七年级数学秋季班讲义图形的平移和旋转(教师)

第15课时图形的平移和旋转教学目标1.认识图形的平移和旋转运动,理解图形平移、旋转的概念.2.掌握图形平移后、旋转后的性质.3.会根据条件画出图形平移、旋转后得到的新图形.知识精要1. 平移的意义与基本要素(1)意义:在平面内,将一个图形沿某个方向移动一定的单位距离,这样的图形运动称为平移.(2)两个要素:平移的方向和平移的距离2. 平移的基本性质(1)平移前后图形的大小、形状都不变.(2)平移前后对应点之间的距离、对应线段的长度、对应角的大小相等.(3)平移前后的两个图形能够互相重合.(4)平移前后的两个图形对应点所连线段平行(或在同一条直线上)且相等. 3. 图形平移的作图(1)确定原图形中的关键点;(2)将这些关键点沿指定的方向移动指定的单位距离;(3)联结这些对应点,得到平移后的图形.4. 图形的旋转(1)在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转. 这个定点叫做旋转中心.(2)三个要素:旋转中心、旋转方向、旋转角度5. 旋转的基本性质(1)旋转前后图形的形状和大小都不变;(2)旋转前后对应点到旋转中心的距离、对应线段的长度、对应角的大小相等;(3)图形绕任意一点旋转360°都与初始图形重合.6. 图形旋转的作图(1)旋转画图的依据:图形旋转的基本性质(2)旋转画图的步骤:第一步:确定旋转中心及旋转方向、旋转的角度;第二步:确定图形中的关键点第三步:图形的关键点与旋转中心联结起来,然后按旋转方向分别将它们旋转指定的角度,得到此关键点的对应点;第四步:按原图形顺序联结这些对应点,所得到的图形就是旋转后的图形.7. 旋转对称图形把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(︒0α).︒360<<8. 中心对称图形如果把一个图形绕着一个定点旋转180度后,与初始图形重合,那么这个图形叫做中心对称图形.这个点叫做对称中心.注:旋转对称图形不一定是中心对称图形,但中心对称图形一定是旋转对称图形9. 两个图形成中心对称(1)把一个图形绕一定点旋转180°后,和另一个图形重合,那么叫做这两个图形关于这点对称,也叫做中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)在成中心对称的两个图形中,联结对称点的线段都经过对称中心,并且被对称中心平分.(3)“两个图形成中心对称”与“中心对称图形”的区别和联系区别:①中心对称是指两个图形的关系,中心对称图形是指具有某种性质的一个图形.②成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上.联系:若把中心对称图形的两部分分别看作两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形.热身练习一、填空题1.平移是由 平移的方向和平移的距离两个要素所决定.2. 如图,四边形ABCD 沿着'AA 方向,平移到四边形''''D C B A ,则点A 的对应点是点'A ,点B 的对应点是'B ,线段AB 的对应线段是线段''B A .的DAB ∠对应角是'''D A B ∠,四边形''''C D A ADD 沿着平移到''BCC B ,四边形''A ABB 沿着AD 方向平移到''DCC D .3.如图,=∠︒=∠∠∠DEF ,ABC ,ABC DEF 则经过平移得到的是33 33°.4.如图,DEF ABC ∆∆是经过平移得到的,若AD=4cm ,则BE= 4cm , CF= 4cm ,若=MN ,DE ,N AB M 则中点为中点为 4cm .5.如图,平移方向是经过平移到ABC ,C B A ABC ∆∆∆''''AA 或是'BB ,或是'CC . 二、选择题.1. 将一个图形沿着某个方向移动一定的距离,这样的图形运动称为( D ) A 、旋转 B 、旋转对称 C 、中心对称 D 、平移3题图2题图 D 'C 'B ' A'DCBAABCEF 'DEDC B A2.'''C B A ABC ∆∆和关于点O 对称,下列结论不正确的是 ( C )A 、O A OA '=B 、AB ∥''B AC 、BO CO =D 、∠BAC=∠'''C A B 3.下列图形中,绕某个点旋转︒180能与自身重合的有( D ) ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A 、 5个 B 、2个 C 、3个 D 、4个 三、作图题1. 将字母A 按箭头所指的方向,平移3㎝,作出平移后的图形.2. 经过平移,EF ,AB ABC 平移到了的边∆作出平移后的三角形.3. 如图,ABC BDE ∆∆是由等边绕着B 点按逆时针方向旋转30º得到的,按图回答: (1)A 、B 、C 的对应点是什么?(2)线段AB 、AC 、BC 的对应线段是什么? (3)∠A 、∠C 和∠ABC 的对应角是什么? 解:(1)点A 与点D ,点B 与点B ,点E 与点C(2)线段AB 与线段DB ,线段AC 与线段DE ,线段BC 与线段BE ,(3)∠A 与∠D ,∠C 与∠E ,∠ABC 与∠DBE精解名题1.与三角形全等相关的图形运动(1)如图,△ABC 和△DCE 都是等边三角形,点B 、C 、D 在同一条直线上.在此图中,△ACD 绕着 C 点沿 逆时针 方向旋转 60 度可得到三角形△BCE .EDCBAGFEDBA(2)如图,正方形ABCD 和正方形ECGF ,点B 、C 、G 在同一条直线上,在此图中,△BCE 绕着 C 点沿 顺时针 方向旋转 90 度可得到三角形 △DCG . 2.如图,以O 点为旋转中心,将△ABC 顺时针方向旋转60°,画出图形. 解:(1)连续OA ,OB ,OC(2)以OA 为始边,顺时针方向作60°角,在角的终边上截取线段/OA ,使/OA OA ,得到点/A ; O· (3)同样分别可得B ,C 的对应点/B ,/C (4)联结//////,,A B B C A C3.已知图中的两个四边形是中心对称的,请确定这两个图形的对称中心.解:A ,E 是对称点,B ,F 是对称点,联结AE ,BF 相交于点O.巩固练习O第7题FEODCBA第6题NMDCBA1.将图形上所有点都按照某一方向移动一定的单位距离,叫做图形的平移.2.国旗上的五角星是 旋转对称 图形,它的旋转最小角度是 72 度.3.平移不改变图形的 大小 和 形状 ,只改变图形的 位置 .4.三角形 是 中心对称图形,平行四边形 是 中心对称图形.(填是或否) 5在电子屏显示的0-9的数字中,是中心对称 图形有 5 个.6.如图,四边形,AD ABCD 中∥BC ,DM ∥M ,BC AB 于交DN ∥AC 交BC 延长线于N ,线段AD 沿AB 的方向平移到BM ,ABC DMN ∆∆沿着BN 的方向平移到,其平移的距离BM .7.如图,如果把钟表的指针看成四边形AOBC ,它绕着O 点旋转到四边形DOEF位置在这个旋转过程中:(1)旋转中心是 O ,旋转角是 90° ;(2)经过旋转点A 转到 D ,点C 转到 F ,点B 转到 E ;(3)线段OA 与线段 OD ,线段OB 与线段 OE ,线段BC 与线段 EF 是对应线段;(4)与A ∠ ∠D ,与B ∠ ∠E ,与C ∠ ∠F ,∠AOB 与 ∠DOE 是对应角; (5)四边形OACB 与四边形ODFE 的形状、大小 不变 .8.如图,,.590按逆时针方向的ABC cm AC ,AB BAC ABC ∆==︒=∠∆转动一个角度后成为ACD ∆,则图中:(1)点 A 是旋转中心,旋转角90 度;(2)点B与点 C 是对应点,点C与点 D 是对应点,(3)∠ACD= 45°,AD= 5cm.9.如图,E为正方形ABCD内一点,∠AEB=135º,BE=3cm,AEB∆按顺时针方向旋转一个角度后成为CFB∆,图中 B 是旋转中心,旋转90 度,点A与点 C 是对应点,点E与点 F 是对应点,BEF∆是等腰直角三角形,∠CBF=∠ EBA ,∠BFC= 135 度,∠EFC= 90 度,BF= 3cm.10.如图,△ABC、△ADE均为是顶角为42º的等腰三角形,BC和DE分别是底边,图中△ADE 可以由△AEC 旋转得到,点 A 为旋转中心,旋转角度42度.其中∠BAD=∠CAE ,CE= BD .11.如图,四边形ABCD是旋转对称图形,点O 是旋转中心,旋转180度后能与自身重合,则AD= BC ,AO= OC ,BO= OD .自我测试1.如果某图形绕它的中心旋转45°后能与自身重合,则该图形是( C )A.是中心对称图形,但不是旋转对称图形B .是旋转对称图形,但不一定是中心对称图形.C .既是中心对称图形,又是旋转对称图形D .既不是中心对称图形,也不是旋转对称图 2.平移或旋转前后的两个图形是( C )A .形状不变,但大小不等B .大小变,但形状不同C .形状不变且大小相等D .以上说法都不对 3.下列图形中,不是中心对称图形的是( C ) A .平行四边形 B .正方形 C .等边三角形 D .环形4. 如图,AC ,,AB BAC ABC =︒=∠∆90的D 、E 在BC 上,∠DAE=45º,AEC ∆按顺时针方向转动一个角后成AFB ∆. (1)图中哪一点是旋转中心? (2)旋转了多少度?(3)指出图中的对应点、对应角. (4)写出∠DAF 的度数. 解:(1)旋转中心A (2)90度(3)对应点A 和A , C 和B , E 和F对应角∠C 和∠ABF ,∠AEC 和∠F ,∠EAC 和∠FAB (4)∠DAF=45º5. 如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45º,DEC ∆按顺时针方向转动一个角度后成DGA ∆. (1)图中哪一个点是旋转中心? (2)旋转了多少度?CEBFAD(3)求∠GDF 的度数.GFEDCB A4321解:(1)D (2)90° (3)∠GDF=90°-45°=45°6. 如图,四边形ABCD 的∠BAD=∠C=90º,AB=AD ,AE ⊥BC 于E ,ΔBEA 旋转后能与DFA ∆重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5㎝,求四边形AECF 的面积.FEDCBA解:(1)A (2)90° (3)252cm7.如图,ABO ∆经过平移后得到GCD ∆,G 点是B 的对应点,作出GCD ∆.8.任画一个直角∆ABC,其中∠B=90º,取ABC∆外一点P为旋转中心,按逆时针方向旋转60º,作出旋转后的三角形.9.如图,把ABC∆绕B点逆时针方向旋转30º后,画出旋转后的三角形.。
人教版中考数学一轮复习--平移、旋转与位似(精品课件)

解:∵线段AD由线段AB绕点A按逆时针方向旋转90°得到, ∴∠DAB=90°,AD=AB=10,∴∠ABD=45°. ∵△EFG由△ABC沿CB方向平移得到, ∴AB∥EF,∴∠BDF=∠ABD=45°.
(2)求CG的长. 解:由平移的性质,得AE∥CG,AB∥EF,
∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°.
A.3 B.4 C.6 D.9
4.一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),
B(3,0),C(3,3).若以原点O为位似中心,将这个正方 形的边长缩小为原来的 1 ,则新正方形的中心的坐标为
2 _34_,__34__或__- ___34_,__-__34_ _.
5.【2021福州质检8分】如图,等边三角形ABC中,D为 AB边上一点(点D不与点A、B重合),连接CD,将CD平 移到BE(其中点B和点C对应),连接AE.将△BCD绕着点 B逆时针旋转至△BAF,连接DF.
∴△ADE≌△CFD(AAS), ∴AE=CD,∴CD=BF.
考点2 图形的旋转 要点知识 性质:(1)对应点到旋转中心的距离相等; (2)每对对应点与旋转中心所连线段的夹角都等于旋转角; (3)旋转前后的图形全等.
福建6年中考聚焦[6年2考]
1.【2017福建4分】如图,网格纸上正方形小格的边长为1, 图中线段AB和点P绕着同一个点做相同的旋转,分别 得到线段A′B′和点P′,则证明:如图,连接AE, ∵线段EF是由线段AB平移得到的, ∴EF∥AB,EF=AB,∴四边形ABFE是平行四边形, ∴AE∥BC,AE=BF,∴∠DAE=∠BCA=90°, ∴∠DAE=∠FCD=90°. ∵△EFD是等腰直角三角形,∴DE=DF.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⊿BP3P ′为______三角形直,角∠BPP ′ =_____度,
90
于是, ∠APB=__1_5_0__度.
B
B
P〞
P′
P
P
A
C
A
C
P′
B
P′
P
A
C
小结
1、知识技能方面
平移与旋转变换的
概念和性质
2、思想方法方面 利用平移可以“化曲为
直”、化复杂为简单,利用旋转可以变分散为
集中。
驶向胜利的 彼岸
种
变
换
旋转
对应点到旋转中心的距离_相__等___;对应点与旋转中心 所连线段的夹角_相__等_____;对应线段___相__等______; 对应角__相__等___.
主要是由__旋__转__中__心_ 和___旋__转__角___决定的,还与 __旋__转__方__向___有关.
在轴对称、平移、旋转这些图形变换下,变换 前后的图形 ____全__等_______.
知 识 梳 理B
A EC
D B C
F A
D E
概
F
平移:把一个图形整体沿某一直线方向移动一定的距离。
念 旋转:把一个图形绕着某一点转动一个角度。
平 相同:
移 与 旋
转 不同:
的 异 同
都是一种 __图__形__变__换__ ,变换前后的___图_形__全__等____.
平移 旋转
变换方向
直线 顺时针或逆时针
作业
2、如图,在正方形ABCD中,M是BC上一点,连接AM,作AM的 垂直平分线GH交AB与G点,交CD与H点,已知AM=10cm,求 GH的长.
A
D
H
E
G
B
M
C
驶向胜利的彼岸
A O
D
MG
A
B
N
C
E
F
B
DG
O
M
F NC
E
综 合
如图,平面上有一个边长为8㎝的正方形ABCD,点O是AC与 BD的交点。将正方形 ABCD 沿AC方向平移,使点A与点O重合, 得到正方形OEFG。请说出图(1)中两个正方形重合部分的面积。
变换方式
移动一定的距离 转动一定的角度
知识梳理
轴对称
图
形
连结对应点的线段___平__行__(__或__在__同__一__条__直__线__上__)__且__相__等__;
之
对应线段_平__行__(__或__在__同__一___条__直__线__上__)__且__相__等_____;
间 的 三
平移 对应角___相__等_____. 主要是由_平__移__方__向___和__平__移__距__离___决定的.
若再将正方形ABCD绕点A逆时针旋转(旋转角为锐角),旋转后, EF交
AD于M,EH交AB于N(如图3)。以上的结论中有哪些成立的?写出来,
并说明理由。
D(F)
C(E)
D FP
C E
A(G)
A QB
B(H) G
H
C
D
PE
FM
NB
A
Q
G
H
图1
图2
图3
探 究
1 、如图,学校有一块长为20米,宽为14米的 草地,要在草地上开一条宽为2 米的曲折小路,
应
当正方形OEFG绕点O逆时针旋转到图(2)的位置时,计算
用
图(2)中两个正方形重合的面积是多少?
当正方形OEFG绕点O旋转到其他的位置时,这两个正方形重 合部分的面积是否变化,若变化,说明理由,若不变,是多少。
D A
O M
B
GC
第2题图
B
C
第3题图
创
新
一个圆经过四次平移得到的,每次平移的方向是一个圆的圆心 到另一个圆的圆心的方向,平移的距离是两圆圆心之间的距离.
提 高
或者一个圆经过四次旋转得到的,每次旋转的中心是在连接两圆 圆心的线段的垂直平分线上的点,旋转角为旋转中心与两圆圆心连线
段之间的夹角。
3、如图,平面直角坐标系中有一个正方形ABCD,点E是AC与BD的交 点。将正方形 ABCD 沿CA方向平移,使点C平移到点E的位置,得到正 方形EMNH,EH交x轴于P,EM交y轴于F。有以下三个结论:①BE=DE,② BP=DF,③两个正方形重合部分的面积=1/4S正方形。(1)这三个结 论成立吗?(2)当正方形ABCD绕点A旋转到图②的位置时,以上的 结论中有哪些成立的?写出来,并说明理由。
B
A
(A)
(B)
(C)
(D)
2、如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将 腰DC绕点D逆时针方向旋转90°至DE,连接AE,则⊿ADE的面积是 _________。
3、如图,点P为正方形ABCD内一点,且PA=1,PB=2,PC=3。试求
∠APB的度数。 E
A
D
A
P
D
创
你能用学过的知识求出这条小路的面积吗?面积
新
是多少?
64平方米
20米
14米
探
2、如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,
究
求∠APB的度数。
创
分析: 若将⊿PAC绕点A逆时针旋转60°后,得到⊿P′AB,则
新
△APP′是___等__边___三角形,点P与P′之间的距离 为_______,
64平方米
20米
作业
1、如图,A和B是一条河两岸的村庄,现要架一座桥MN,如 何架桥才能使路程最短?
2、如图,点P为正方形ABCD内一点,且PA=1,PB=2,PC=3。
试求∠APB的度数。 A
D
P
驶向胜利
B
C
的彼岸
作
1、在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得 到的是( )
C
业
基
下列图形均可以由其中的一部分作为“基本
础
图案”通过变换得到。
闯
(1)可以通过平移变换但不能通过旋转变换
关
得到的图案是_①____;
(2)可以通过旋转变换但不能通过平移变换
得到的图案是__②__④_______ ;
(3)既可以由平移变换, 也可以由旋转变换得
到的图案是___③__ . (填序号)
①
②
③
④
综
如图1,平面中有两个完全重合的正方形ABCD与正方形EFGH 。现将正
合 方形 EFGH 沿CA方向平移,使点E平移到CA的中点处。EF交AD于P,EH
应 交AB于Q,连接BE、DE(如图2), 有以下三个结论成立:①BE=DE,②
用 BQ=DP,③两个正方形重合部分的面积S=1/4S正方形ABCD。
作 业
1、在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得 到的是( )
C
B
A
(A)
(B)
(C)
(D)
2、如图,点P为正方形ABCD内一点,且PA=1,PB=2,PC=3。试求 ∠APB的度数。
A
D
P
B
C
第2题图
探 究 创 新
14米
1 、如图,学校有一块长为20米,宽为14米的草地,要在 草地上开一条宽为2 米的曲折小路,你能用学过的知识求 出这条小路的面积吗?面积是多少?