第三章CMOS反相器介绍及设计

合集下载

cmos反相器的工作原理

cmos反相器的工作原理

cmos反相器的工作原理
CMOS反相器的工作原理是基于CMOS(互补金属氧化物半导体)技术的电路。

CMOS反相器是一种用于取反输入信号的数字电路。

它由一对互补型MOSFET
(金属氧化物半导体场效应晶体管)组成,包括一个P型MOSFET和一个N型MOSFET。

CMOS反相器的输入端连接到P型MOSFET的栅极,同时也连接到N型MOSFET的栅极。

而输出端则连接到两个MOSFET的源极之间。

其中,P型MOSFET的源极连接到正电源(VDD),而N型MOSFET的源极连接到地。

当输入端的电压为高电平(逻辑1)时,P型MOSFET的栅极电压低于P型MOSFET的阈值电压,导致P型MOSFET处于关闭状态,不导通。

与此同时,N
型MOSFET的栅极电压高于N型MOSFET的阈值电压,导致N型MOSFET处于
导通状态。

当输入端的电压为低电平(逻辑0)时,P型MOSFET的栅极电压高于P型MOSFET的阈值电压,导致P型MOSFET处于导通状态。

与此同时,N型MOSFET的栅极电压低于N型MOSFET的阈值电压,导致N型MOSFET处于关
闭状态,不导通。

根据上述工作原理,当输入端为高电平时,输出端会产生低电平(逻辑0)的
信号;当输入端为低电平时,输出端会产生高电平(逻辑1)的信号。

因此,CMOS反相器能够将输入信号取反输出。

CMOS反相器具有低功耗、高噪声容忍度和良好的抗干扰能力等优点,因此被
广泛应用于数字逻辑电路和微处理器中。

它在现代电路设计中起着重要的作用,帮助实现数字电路中的信号处理和逻辑功能。

CMOS反相器的分析与设计

CMOS反相器的分析与设计

CMOS反相器的分析与设计CMOS反相器由一对互补金属氧化物半导体场效应晶体管(n型MOSFET和p型MOSFET)组成。

n型MOSFET和p型MOSFET分别由n型沟道和p型沟道构成。

它们的沟道接在一起,形成一个共用的沟道。

根据输入电压的高低,CMOS反相器能够在输出端产生相反的电平。

CMOS反相器的工作原理是利用MOSFET的负阈值特性,即当输入电压高于一些阈值电压时,MOSFET处于关断状态;当输入电压低于阈值电压时,MOSFET处于导通状态。

CMOS反相器由这两个互补的MOSFET构成,保证了输入电压上升时一个MOSFET关闭,另一个MOSFET打开,输出电压下降;输入电压下降时,一个MOSFET打开,另一个MOSFET关闭,输出电压上升。

这样就实现了电平的反转。

1.确定输入输出电平:根据电路的需求,确定输入输出电平的高低电压范围,并根据具体电路的工作电压确定电源电压。

2.选择适当的MOSFET:根据设计要求,选择合适的n型MOSFET和p 型MOSFET,以满足工作电流和电压要求。

3.确定电阻参数:根据MOSFET的特性,选择合适的电阻参数来限制输入电流和确定电路的放大倍数。

4.确定电容参数:根据电路的带宽要求,确定输入和输出端的负载电容。

5.确定工作频率:根据电路的工作频率要求,确定MOSFET的开启和关闭时间。

6.进行电路仿真:通过电路仿真软件,验证设计的正确性和性能。

CMOS反相器的设计可以通过电路仿真软件如LTSpice来实现。

首先,根据设计要求选择适当的MOSFET,并确定电源电压和电阻电容参数。

然后,通过电路仿真软件搭建CMOS反相器电路,并进行仿真分析。

通过观察输入电压和输出电压的波形曲线,验证电路的正确性和性能。

如果需要进一步优化电路性能,可以通过调整各个元器件的参数来实现。

总结起来,CMOS反相器是一种常见的数字逻辑门电路,利用MOSFET的特性来实现输入输出电平的反转。

CMOS反相器的概述

CMOS反相器的概述

CMOS反相器的概述CMOS反相器是一种非常常用的逻辑门,可以进行数字信号的反相操作。

CMOS反相器由CMOS技术制造而成,具有低功耗、高可靠性和低噪声的特点。

在数字电路中,CMOS反相器被广泛应用于时序电路、计数器、存储器等模块。

CMOS反相器的基本结构包括一个N型MOS管和一个P型MOS管,N型管和P型管的栅极通过逻辑信号控制,当输入信号为高电平时,N型管导通,P型管截断;当输入信号为低电平时,N型管截断,P型管导通。

这样,输出信号就与输入信号相反,实现了信号的反相操作。

CMOS反相器的输入和输出特性非常重要。

在CMOS反相器中,输入和输出电平可以区分为三个状态:高电平、低电平和开路状态。

当输入电平为高电平时,即逻辑1时,N型管导通,输出电平为低电平,即逻辑0;当输入电平为低电平时,即逻辑0时,P型管导通,输出电平为高电平,即逻辑1;当输入电平为开路状态时,即逻辑Z,输出电平保持上一个状态。

CMOS反相器的优点在于其低功耗和高可靠性。

由于CMOS技术将N型和P型管结合在一起,只有当输入信号改变时才会有电流流动。

在不改变输入信号时,CMOS反相器几乎不消耗功耗。

此外,由于N型和P型管分别负责导通和截断,CMOS反相器对噪声和电压干扰的抵抗能力较强,能够提供稳定的输出信号。

另外,CMOS反相器还具有较高的噪声容限和抗串扰能力。

在数字电路中,信号的传输会产生一定的噪声和串扰,这会导致信号的失真和误差。

CMOS反相器在设计上减小了管子之间的互感和电路之间的耦合,使其能够在抗噪声和抗串扰方面有较好的性能。

这使得CMOS反相器能够适应较严苛的工作环境,提供可靠的信号处理能力。

尽管CMOS反相器具有许多优点,但它也存在一些问题。

首先,由于CMOS反相器采用两个互补型MOS管连接而成,因此在制造过程中需要精心控制各项参数,如电流、阈值电压等,这使得制造过程复杂,成本较高。

此外,CMOS反相器在频率较高的应用中,存在一定的延迟和功耗问题,因此在高速和高频率应用中需要进行相应的优化和补偿。

CMOS反相器

CMOS反相器

CMOS反相器由本书模拟部分已知,MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。

由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。

下图表示CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。

为了电路能正常工作,要求电源电压V DD大于两个管子的开启电压的绝对值之和,即V DD>(V TN+|V TP|) 。

1.工作原理首先考虑两种极限情况:当v I处于逻辑0时,相应的电压近似为0V;而当v I处于逻辑1时,相应的电压近似为V DD。

假设在两种情况下N沟道管T N为工作管P沟道管T P为负载管。

但是,由于电路是互补对称的,这种假设可以是任意的,相反的情况亦将导致相同的结果。

下图分析了当v I=V DD时的工作情况。

在TN的输出特性i D—v DS(v GSN =V DD)(注意v DSN=v O)上,叠加一条负载线,它是负载管T P在v SGP=0V 时的输出特性i D-v SD。

由于v SGP<V T(V TN=|V TP|=V T),负载曲线几乎是一条与横轴重合的水平线。

两条曲线的交点即工作点。

显然,这时的输出电压v OL≈0V(典型值<10mV ,而通过两管的电流接近于零。

这就是说,电路的功耗很小(微瓦量级)下图分析了另一种极限情况,此时对应于v I=0V。

此时工作管T N在v GSN =0的情况下运用,其输出特性i D-v DS几乎与横轴重合,负载曲线是负载管T P在v sGP=V DD时的输出特性i D-v DS。

由图可知,工作点决定了V O=V OH≈V DD;通过两器件的电流接近零值。

可见上述两种极限情况下的功耗都很低。

由此可知,基本CMOS反相器近似于一理想的逻辑单元,其输出电压接近于零或+V DD,而功耗几乎为零。

2.传输特性下图为CMOS反相器的传输特性图。

图中V DD=10V,V TN=|V TP|=V T= 2V。

CMOS反相器版图设计

CMOS反相器版图设计

XXXXXXX实验报告课程名称:集成电路设计实验名称:CMOS反相器版图设计学号姓名:指导教师评定:____________________________ 签名:_____________________________一、实验目的1、了解集成电路版图设计流程。

2、利用L-Edit 进行NMOSFET 版图设计。

3、利用L-Edit 进行CMOS反相器设计。

二、实验器材计算机一台,Tanner L-Edit软件三、实验原理CMOS 反相器由PMOS 和NMOS 晶体管组成,利用PMOS晶体管版图和NMOS 晶体管版图可以完成COMS反相器版图的设计。

四、实验步骤1、设计PMOS晶体管版图。

2、设计N MOS晶体管版图。

3、设计CMOS反相器版图:(1)启动版图编辑器L-Edit。

(2)新建文件。

新建一个Layout 文件,文件的设置信息可以从前面创建的文件中复制。

(3) 对文件进行重命名。

将L-Edit 编辑器默认的文件名Layout 改为Inverter。

(4) 设置格点与坐标。

格点与坐标的设定方式与创建PMOS 晶体管时设定的方法一致。

(5) 调用PMOS 和NMOS 晶体管作为例化单元。

使用Cell---Instance 命令来调用PMOS 单元。

在出现的Select Cell to Instance 对话框中,通过点击Browse按钮浏览到“MOS”文件,可以看到该文件下面有PMOS 和NMOS 两个单元,点击PMOS,然后点击“OK”,可以看到Inverter 文件cell0 单元的版图已经添加了PMOS 单元。

利用同样的方法,可以将NMOS 单元也添加进来。

(6) 连接PMOS 和NMOS 晶体管的栅极。

从CMOS 反相器电路可知,PMOS晶体管和NMOS 晶体管的栅极要连在一起作为反相器的输入端,所以在放置这两个晶体管的时候可以将两者的栅极对准,以便连接。

具体操作是,选择Layer的多晶硅(Poly)层和方框绘图工具后,在版图区域中画一个宽度与晶体管栅极相等的多晶硅矩形,如图1 所示。

cmos反相器逻辑电路设计的方法

cmos反相器逻辑电路设计的方法

cmos反相器逻辑电路设计的方法CMOS反相器是基本的逻辑门之一,可以用来构建更复杂的逻辑电路。

以下是设计CMOS反相器逻辑电路的方法:
1.选择合适的器件:CMOS反相器由PMOS和NMOS组成,
需要选择合适的器件来满足电路的要求。

通常,PMOS
的沟道为空穴,具有高电导率,适合作为开关,而NMOS
的沟道为电子,具有低电导率,适合作为负载。

2.设计电路结构:根据反相器的设计要求,设计电路结构,
包括PMOS和NMOS的排列方式、输入和输出的连接方式
等。

3.确定参数:根据电路的要求,确定参数,如阈值电压、
静态电流、动态电流等。

4.进行模拟验证:使用电路模拟软件进行验证,确认电路
的功能和性能是否达到设计要求。

5.进行版图设计:根据电路设计的要求,进行版图设计,
包括器件的排列、布线、电学参数的优化等。

6.进行制造和测试:将版图提交给制造厂家进行制造,并
进行测试,确认电路的性能和可靠性是否符合设计要
求。

需要注意的是,在设计CMOS反相器逻辑电路时,需要考虑电路的稳定性、速度、功耗等因素,以满足实际应用的要求。

同时,还需要遵循基本的电路设计规则和安全规范,如避免电流过大、避免信号过冲等。

详细讲解cmos反相器的原理及特点

详细讲解cmos反相器的原理及特点

详细讲解cmos反相器的原理及特点详细讲解cmos反相器的原理及特点CMOS(cornplementary MOS)由成对的互补p沟道与n沟道MOSFET所组成.CMoS逻辑成为目前集成电路设计最常用技术的缘由,在于其有低功率损耗以及较佳的噪声抑止才干.事实上,由于低功率损耗的需求,目前仅有CMOS技术被运用于ULSI 的制造.CMOS反相器如图6. 28所示,CMOS反相器为CMOS逻辑电路的基本单元.在CMOS反相器中,p 与n沟道晶体管的栅极衔接在一同,并作为此反相器的输入端,而此二晶体管的漏极也连接在一同,并作为反相器的输出端.n沟道MOSFET的源极与衬底接点均接地,而p沟道MOSFET的源极与衬底则衔接至电源供应端(VDD),需留意的是p沟道与n沟道MOSFET 均为增强型晶体管,当输入电压为低电压时(即vin=O,VGsn=o|VTp|(VGSp与VTp 为负值),所以p沟道MOSFET.为导通态,因此,输出端经过p沟道MOSFET充电至VDD,当输入电压逐渐升高,使栅极电压等于VDD时,由于VGSn=VDD>VTn,所以n 沟道MOSFET将被导通,而由于|VGSp |≈O欲更深化天文解CMOS反相器的工作,可先画出晶体管的输出特性,如图6.29所示,其中显现Ip以及In为输出电压(V out)函数.Ip为p沟道MOSFET由源极(衔接至VDD)流向漏极(输出端)的电流;In为n沟道MOSFET由漏极(输出端)流向源极(衔接至接地端)的电流.需留意的是在固定V out下,增加输入电压(vin)将会增加In而减少Ip,但是在稳态时,In应与Ip相同,关于给定一个Vin 可由In(Vin)与Ip(Vin)的截距,计算出相对应的V out如图6. 29所示.如图6.30所示的Vin-V out曲线称为CMOS反相器的传输曲线.CMOS反相器的一个重要的特性是,当输出处于逻辑稳态(即V out=或VDD)时,仅有一个晶体管导通,因此由电源供应处流到地端的电流非常小,且相当于器件关闭时的漏电流.事实上,只需在两个器件暂时导通时的极短暂态时间内才会有大电流流过,因此与。

CMOS反相器的设计

CMOS反相器的设计

KN=3.46×10-5 (A/V2),
考察噪声容限:VNLM= Vit=2.43V=0.49 VDD,
11
VNHM=VDD- Vit=2.57V=0.51 VDD
tpHL tpLH 2 CLVHL 1 tpHL f 2 Iav,HL 1 N tp CLVLH 1 tpLH r 2 Iav,LH 1 P
9
例 题

设计一个CMOS反相器,使最大噪声容限不小于0.44 VDD,且驱动1pF负载电容时上升、下降时间不大于 10ns,设VDD = 5V,VTN = 0.8V,VTP = -1V,Cox = 4.6×10-8 F/cm2,μn = 500 cm2/Vs、μp = 200 cm2/Vs。

完成能够实现设计要求的集成电路产品 设计要求:

功能 可靠性 速度 面积 功耗
3
1、反相器的可靠性
噪声容限:逻辑阈值点
把Vit做为允许的输入高电平和 低电平极限 VNLM=Vit VNHM=VDD-Vit VTN 1 K r VDD VTP VNLM与VNHM中较小的 Vin 决定最大直流噪声容限 1 1 K
10
1 1 Kr Vit = VTN 1 K r VDD VTP 1 1 Kr K r VTN VDD VTP 1 Kr
1 t r r P 2 2(1 ) ln (1 P ) P
0.1

1.9 2 P 0.1

1
CMOS反相器的设计

实际情况:不可能获得完全对称设计
输入信号较差:考虑噪声容限 负载电容较大:考虑速度 对于大部分内部电路(扇出为1):考虑面积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V0
Vdd
0≤Vi<Vtn时: n截止 p线性 (Vi<vtn<v0+Vtp) p管无损地将Vdd传送到输出端:
Vth
V0=Vdd, 如图a——b段。 Vtn≤Vi<V0+Vtp时: n饱和 p线性 由In=-Ip得:
a----b b----c c----d d----e e----f
Vi
一、结构特点
第二节 CMOS反相器
IN
nMOS和pMOS交替导通 高电Dep平artm-ent“of M1ic”roe为lectrVonDicsD, P,KU低,X电iaoy平an L-iu “0”为
二、CMOS反相器的直流电压传输特性
Department of Microelectronics, PKU,Xiaoyan Liu
dVOUT 1 dVIN
VOUT VIN dVOUT 1 dVIN
VIL VM VIH
VTC-直流下,将Vout描述为Vin的函数
Department of Microelectronics, PKU,Xiaoyan Liu
阈值电压 VM-VTC曲线中 VOUT VIN 的点
VOH:当输出电平为逻辑“1”时的最小输出电压,转折点
理想情况
再生能力抑制噪声
Department of Microelectronics, PKU,Xiaoyan Liu
再生的条件
为了具备再生能力,在VTC的不定区域具有大于1的增益
Department of Microelectronics, PKU,Xiaoyan Liu
最大噪声容限
理想反相器
IDp

1 Wp 2 Lp
pCox
VIN VDD VTp
2
对上式求导
dVOUT 1 dVIN
VIN=VIH
kn VIH VTn 2VOUT kp VIH VTp VDD
VIH
VDD VTp kR (VTn VOUT ) 1 k Department of MicroRelectronics, PKU,Xiaoyan Liu
第三章 CMOS反相器
第一节 反相器的特性 第二节 CMOS反相器 第三节 CMOS反相器的设计 第四节 环振和反相器链
Department of Microelectronics, PKU,Xiaoyan Liu
第一节 反相器的特性
一、直流特性
1、定义
符号
真值表
反相器是实现只有一个输入变量的最基本的逻辑门电路
time
Department of Microelectronics, PKU,Xiaoyan Liu
电路的优值
• 功耗-延迟积 Power-delay product (PDP) = Pav * tp = (CLVDD2)/2 – PDP 每个开关动作所需的平均能量 (Watts * sec = Joule)
Tp
DD
R Tn
V IL 1 k Department of MicroRelectronics, PKU,Xiaoyan Liu
VIH的确定
在VIN=VIH处,nMOS处于线性区,pMOS处于饱和区
IDn

1 2
Wn Ln
nCox
2
VIN VTn
VOUT VOUT 2
Ln
nCox
VIN VTn
2

Wp Lp
pCox
2
VIN VDD VTp
VOUT VDD
VOUT VDD
2
对上式求导
dVOUT 1 dVIN
VIN=VIL
kn VIL VTn kp 2VOUT VIL VTp VDD
2V V V k V OUT
Department of Microelectronics, PKU,Xiaoyan Liu
Watts Watts
功率和能量
功率是指曲线的高度
简单的低功耗设计只需降低速度
Approach 1
Approach 2
time 能量是指曲线的面积
上述两种方法的能量相同 Approach 1
Approach 2
CMOS反相器直流特性的计算
Tp Ip
Vi
V0
Tn
In
Vi为低电平时:Tn截止,Tp导通,VoH=Vdd Vi2为高电平时:Tn导通,Tp截止,VoL=0
电流方程如下:设 Vtn=-Vtp

V V 0 0
通常阈值 电压固定 VTn=-VTp VM受kR=kp/kn (kR反相器的比 Department of Microelectronics, PKU,Xi例aoya因n L子iu 的控制)
对称情形
VTn=-VTp
若 n 2p
此时为理 想反相器 的值
通常
Department of Microelectronics, PKU,Xiaoyan Liu
nVtn p Vdd Vtp
n p
Vth
V0与Vi无关,如图c——d段。
V0+Vtn<Vi≤Vdd+Vtp时:
VIL的确定
在VIN=VIL处,nMOS处于饱和区,pMOS处于线性区
IDn

1 2
Wn Ln
nCox
VIN VTn
2
IDp

1 Wp 2 Lp
pCox
2
VIN
VDD
VTp
VOUT VDD
VOUT VDD
2
Wn
在对称情形中 VTn=-VTp
VIH+VIL=VDD
低电平信号的噪声容限NML: NML=VIL-VOL=VIL
高电平信号的噪声容限NMH: NMH=VOH-VIH = VDD-VIH
具有相等的噪 声容限
NML=NMH
非对称情形1 一旦VIN>VTn, NMOS开启,即导通
非对称情形2 一旦VIN低于
PLH
输入电压下降到V50%时和输出电压 上升到V50%时之间的延迟时间
延迟时间tp
三、功率和能量
• 功率,Power 单位:瓦 Watts – 单位时间内的能量,决定了电池的寿命
峰值功率 – 影响电源线的布置、封装、噪声和可靠性
• 能量 单位:焦耳 Joules Energy = power * time(delay) – Joules = Watts * seconds – 电路较低的能量意味着在同样频率下执行同样的操作需要较低的 功率
2
0.15
1.5
0.1
1
0.05
0.5
Gain=-1
0
0
0
0.05
0.1
0.15
0.2
0
0.5
1
1.5
2
2.5
Vin (V)
Vin (V)
器件的阈值电压始终不变
直流导通电流随输入、输 出电平的变化而变化,在 VIN=VM时最大
Department of Microelectronics, PKU,Xiaoyan Liu
3、噪声容限
定义噪声容限:数字电路中对噪声的 容忍量。 电路的抗噪声干扰能力随噪 声容限(NM)的增加而增加。
NMH
低电平信号的噪声容限NML:
NML=VIL-VOL
NML
高电平信号的噪声容限NMH: NMH=VOH-VIH
Noise Margin
Department of Microelectronics, PKU,Xiaoyan Liu

dd

tp

i
截止
dd

I
p



p
2
V iV tpV dd
V V V V V 2

饱和
0
tp i
dd
tp

p 2

V
i
V
tp
V
dd
2

V iV tpV 0
V V V 2





i

0
线性
tp
– 能量-延迟积 Energy-delay product (EDP) = PDP * tp = Pav * tp2
b
c
aay better
Department of Microelectronics, PKU,Xiaoyan Liu
反相器中功耗
E = CL VDD2 P01 + tsc VDD Ipeak P01 + VDD Ileakage
, PMOS开启,即导通
Department of Microelectronics, PKU,Xiaoyan Liu
KR KR KR KR
Department of Microelectronics, PKU,Xiaoyan Liu
电源电压VDD的变化
Vout (V) Vout (V)
2.5
0.2

i
截止
tn


In
n
2
V iV tn
V V V V 2

饱和
tn
i
0
tn

n 2

V iV tn
2

V iV tnV 0
V V 2





0
相关文档
最新文档