差分信号和单端信号概述.

合集下载

差分输入与单端输入

差分输入与单端输入
因而受工艺同时也更适
合于低幅度信号的电路。目前流行的
LVDS

low voltage differential signaling
)就是指这种
小振幅差分信号技术。
水质监测
油田水处理
单端输入
,输入信号均以共同的地线为基准.这种输入方法主要应用于输入信号电压较高(高于1 V),信号源到模拟输入硬件的导线较短(低于15 ft),且所有的输入信号共用一个基准地线.如果信号达不到这些标准,此时应该用差分输入.对于差分输入,每一个输入信号都有自有的基准地线;由于共模噪声可以被导线所消除从而减小了噪声误差.单端输入时
被耦合到两条线上,
而接收端关心的只是两信号的差值,
所以外界的共模噪声可以被完全抵
消。
b.
能有效抑制
EMI
,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相
互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
c.
时序定位精确,
由于差分信号的开关变化是位于两个信号的交点,
而不像普通单端信号依
靠高低两个阈值电压判断,
,
是判断信号

GND
的电压差
.
差分输入时
,
是判断两个信号线的电压差
.
信号受干扰时
,
差分的两线会同时受影响
,
但电压差变化不大
. (
抗干扰性较佳
)
而单端输入的一线变化时
, GND
不变
,
所以电压差变化较大
. (
抗干扰性较差
)
差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:
a.
抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时

差分电路与单端电路的区别

差分电路与单端电路的区别

差分信号与单端信号一、基本区别不说理论上的定义,说实际的单端信号指的是用一个线传输的信号,一根线没参考点怎么会有信号呢?easy,参考点就是地啊。

也就是说,单端信号是在一跟导线上传输的与地之间的电平差那么当你把信号从A点传递到B点的时候,有一个前提就是A点和B点的地电势应该差不多是一样的,为啥说差不多呢,后面再详细说。

差分信号指的是用两根线传输的信号,传输的是两根信号之间的电平差。

当你把信号从A点传递到B点的时候,A点和B点的地电势可以一样也可以不一样但是A点和B点的地电势差有一个范围,超过这个范围就会出问题了。

二、传输上的差别单端信号的优点是,省钱~方便~大部分的低频电平信号都是使用单端信号进行传输的。

一个信号一根线,最后把两边的地用一根线一连,完事。

缺点在不同应用领域暴露的不一样归结起来,最主要的一个方面就是,抗干扰能力差。

首先说最大的一个问题,地电势差以及地一致性。

大家都认为地是0V,实际上,真正的应用中地是千奇百怪变化莫测的一个东西我想我会专门写一些地方面的趣事。

比如A点到B点之间,有那么一根线,用来连接两个系统之间的地那么如果这根线上的电流很大时,两点间的地电势可能就不可忽略了,这样一个信号从A的角度看起来是1V,从B的角度看起来可能只有0.8V了,这可不是一个什么好事情。

这就是地电势差对单端信号的影响。

接着说地一致性。

实际上很多时候这个地上由于电流忽大忽小,布局结构远远近近地上会产生一定的电压波动,这也会影响单端信号的质量。

差分信号在这一点有优势,由于两个信号都是相对于地的当地电势发生变化时,两个信号同时上下浮动(当然是理想状态下)差分两根线之间的电压差却很少发生变化,这样信号质量不久高了吗?其次就是传输过程中的干扰,当一根导线穿过某个线圈时,且这根线圈上通着交流电时,这根导线上会产生感应电动势~~好简单的道理,实际上工业现场遇到的大部分问题就是这么简单,可是你无法抗拒~如果是单端信号,产生多少,就是多少,这就是噪声你毫无办法。

单端阻抗和差分阻抗

单端阻抗和差分阻抗

单端阻抗和差分阻抗单端阻抗和差分阻抗是在电路设计和信号传输中非常重要的概念。

它们在不同的应用中起着不同的作用,并且需要根据具体的情况进行选取和分析。

本文将从单端和差分信号的定义开始,讨论单端阻抗和差分阻抗的概念和计算方法,以及它们在电路设计和信号传输中的应用。

一、单端信号和差分信号的定义单端信号是指信号的发送和接收端都是通过相同的引脚或者线路进行传输。

通常情况下,单端信号是通过一个引脚发送信号,另一个引脚接收信号。

差分信号则是通过两个相互对称的引脚进行传输,其中一个引脚发送正向信号,另一个引脚发送反向信号。

这两种信号传输方式在电路设计和信号传输中有着不同的应用。

二、单端阻抗和差分阻抗的概念单端阻抗是指在单端信号传输中,发送端和接收端之间的阻抗匹配情况。

阻抗匹配是指发送端和接收端之间的阻抗相等,从而使信号能够以最大的功率传输。

在单端传输中,阻抗匹配是非常重要的,因为阻抗不匹配会导致信号反射和功率损失。

差分阻抗则是指在差分信号传输中,发送端和接收端之间的阻抗匹配情况。

在差分信号传输中,阻抗匹配同样是非常重要的,因为阻抗不匹配会导致信号失真和干扰。

三、单端阻抗的计算方法在单端信号传输中,发送端和接收端之间的阻抗匹配可以通过一些简单的计算来实现。

其中,发送端的驱动阻抗和接收端的输入阻抗是两个主要的阻抗。

驱动阻抗是指信号源端的输出阻抗,它需要与传输线的特性阻抗匹配,以减少信号的反射和功率损失。

输入阻抗是指信号接收端的输入阻抗,它需要与传输线的特性阻抗匹配,以提高信号的接收性能。

当驱动阻抗和输入阻抗匹配时,信号传输将达到最佳状态。

四、差分阻抗的计算方法在差分信号传输中,发送端和接收端之间的阻抗匹配同样可以通过一些简单的计算来实现。

其中,发送端和接收端之间的差分阻抗是一个非常重要的参数。

差分阻抗是指发送端和接收端之间的差分模式传输线的特性阻抗,它需要与传输线的特性阻抗匹配,以减少信号的失真和干扰。

差分阻抗的计算方法与单端阻抗的计算方法类似,都是需要考虑到传输线的特性阻抗和驱动阻抗等因素。

单端连接和差分连接

单端连接和差分连接

两个输入放大器,并不能完美的互相匹配,因此对 于公共电压,多少会出现一些差别的。对于设备放 大器接近于理想情况的程度大小,可以表述为共模 抑制比,单位是分贝。此参数越高越好。 另外需要考虑的一点是,公共电压的范围,即放大 器所能处理的最大的公共电压,如果环境电压超过 此阈值,那么测量结果就不准确了。(你的硬件操 作范围也许可以设计的比公共电压范围更大,但是 操作电压范围只能保证你的硬件不会被损坏,却不 能保证一定能正常工作。) (3)差分输入需要更少的信号? 差分输入和 Single-ended 输入相比,有一个显而易见 的缺点:你需要两倍数目的线,然后你才可以连接 到一半数目的信号。如果你只有更短的信号线,信 号线之间更近,信号大于 100mV 的话,经过评估, 觉得用 Single-ended 输入,对你也是 OK 的,这时, 你可以在 Single-ended 输入模式中使用差分输入模 式。具体做法是,短路其中一根信号线(通常是短 路输入端)接到 V 输入上。这样的话,差分输入, 就可以提供两种模式任你选了。 解决了 Single-ended 模式所具有的问题,即,(只要 他们的电压不是太大,而使得功法无法处理的话) 使用此法测得的值,是与接地无关的。 同样地,此法中,两个信号线,如果有噪音,那么 也是相同的,而做了差值后,也就消除了,减去了 噪音的干扰。
式输入的时候会出错。
比如 Microlink 有一个标示为 0V 的插槽。从“-”线
(2)噪音错误:Single-ended 模 上连一个连到这个 0V 的插槽,或者直接通过一个电
式输入对于噪音错误很敏感。噪 阻相连,即可解决此问题。而如果你的信号本身是
音,即非期望的信号组合。由于 自接地的,那么就不需要接这个 0V 了。

单端信号和差分信号的区别

单端信号和差分信号的区别

单端信号和差分信号的区别⼀、单端信号 如图,特点就是⼀根信号线就可以了,其参考的基准电压就是地,当电压⼤于VH就是1(⾼电平);⼩于VL就是0(低电平),为啥⾼低电平不是等于某个值⽽是⼤于/⼩于呢?这很好理解,输出的电压是⼩范围波动的,不可能低电平就是0mv,有可能是1mv,⼗多mv甚⾄更⼤!如果等于0mv才是低电平那估计全是⾼电平了,⽽介于VL~VH为⾼阻态,取决外设怎么解析,有些硬件寄存器会表⽰⾼阻态有些表⽰0或者1 必备条件: a. 参考地 b. VH/VL阈值 c. 时钟切割连续电平(连续⾼电平是代表⼀个1还是多个1) 优点:⾛线少且简单⽅便 缺点:抗⼲扰性差;⼀⽅⾯地势差尽可能接近,否则⼀端输出低电平是0mv,接收端却是10mv,⽽VL=8mv,那就变成⾼电平了(假设极端情况) 另⼀⽅⾯外界电磁⼲扰使得信号线有20mv的⼲扰电压,如果VL=8mv那必然也是⾼电平 注意事项:必须考虑地势差问题以及VL/VH的取值范围有⾜够容差⼆、差分信号 ⼀般在⾼速信号中,其电压幅度⽐较低,像MIPI DSI规范低速振幅=1200mv,⽽⾼速振幅=200mv,所以采⽤上⾯的单端⾛线的话抗⼲扰能⼒实在太差了,因此⾼速(低振幅)⼤部分是使⽤差分信号。

如图: 必备条件: a. 参考地 b. VH/VL阈值 c. 时钟切割连续电平(连续⾼电平是代表⼀个1还是多个1) 优点:抗⼲扰性强; D+ /D-的差值是固定的,不受地势差或者外部⼲扰。

⾄于⾼低电平⽤D+/D-相⽐较得出(上⾯是D+⼤于D-为⾼电平),同时也不需要参考地和VH/VL阈值了! 灵敏度⾼,由于是⽐较相对差值,振幅可以很低,降低设备在通信上的功耗 缺点:信号线多增加布线难度和⼲扰 注意事项: D+、D-⾛线要⼀致,否则电磁⼲扰不⼀致;也正因为电磁⼲扰存在不⼀致所以设计时两个线的差值不能太⼩ (⽐如D+=50mv,D-=30mv,差值是20mv, D+上的⼲扰+10mv最终D+=60,⽽D-上的⼲扰+20mv最终D-=50mv,差值变成10mv!)。

mic 单端和差分电路 arm-概述说明以及解释

mic 单端和差分电路 arm-概述说明以及解释

mic 单端和差分电路arm-概述说明以及解释1.引言1.1 概述概述部分的内容可以是对mic单端和差分电路的简要介绍和背景说明。

可以按照以下内容来组织文章1.1概述部分的内容:概述在现代电子设备中,麦克风(Mic)扮演着至关重要的角色,用于将声音转换为电信号。

为了实现高质量的音频采集和处理,单端和差分电路是常用的麦克风电路设计方案。

在本篇文章中,我们将深入研究mic单端和差分电路的原理和应用。

单端电路是一种简单而常见的电路配置,其中麦克风的输出信号通过一个信号引脚传输给前置放大器或其他后续电路。

该电路方式适用于占用空间较小且成本较低的应用,并且易于实现。

我们将详细探讨mic单端电路的工作原理和适用场景。

与此相反,差分电路包含两个信号引脚,麦克风的输出信号通过这两个引脚之间的差分方式传输。

相比于单端电路,差分电路具有更好的抗干扰能力和共模抑制比,可以提供更高的信号品质和较低的噪音水平。

我们将详细探讨mic差分电路的工作原理和适用场景。

通过研究和分析mic单端和差分电路的原理和应用,我们可以更好地理解它们在实际电路设计中的优缺点和适用范围,从而为选择合适的电路方案提供指导。

接下来的章节将分别介绍mic单端电路和差分电路的原理和应用。

(P.S. 这只是一个提供参考的写作方向,具体的文章内容和表达方式可以根据需要进行调整和修改)1.2文章结构文章结构是指文章的整体框架和组织方式,它决定了文章的逻辑性和系统性。

本文的结构分为引言、正文和结论三个部分。

在引言部分,我们将对mic单端和差分电路的概念和背景进行概述。

通过介绍mic单端和差分电路的定义、原理和应用,为后续的详细介绍做好铺垫。

在正文部分,我们将详细介绍mic单端电路和差分电路。

首先,我们将以mic单端电路为主题,分别介绍其原理和应用。

通过解释mic单端电路的基本工作原理和其在实际应用中的表现,让读者对mic单端电路有更深入的了解。

接着,我们将转向mic差分电路,同样介绍其原理和应用。

差分信号 电压

差分信号 电压

差分信号电压
差分信号是指由两个相对电位不同的信号构成的信号对。

在电路和通信系统中,差分信号常用于减少干扰、提高信号完整性和抗噪性。

以下是有关差分信号电压的详细介绍:
定义:
单端信号:一般的信号都是单端信号,即相对于某个参考电位的电压信号。

差分信号:由两个相对电位不同的信号的差值构成,通常表示为V diff =V1−V2,其中V1V2是两个信号的电压。

优势:
抗干扰性:差分信号在传输中对电磁干扰和噪声的抗性更强,因为干扰往往会影响两个信号的相同方面,而差分信号依赖于差值。

共模抑制:差分信号的差值减小了共模信号(两个信号的相同部分),使得系统更容易抑制这些共模信号。

信号完整性:在长距离传输中,差分信号能够更好地保持信号完整性,减小信号失真。

应用领域:
通信:高速差分信号在数据传输中常用于降低时延、提高数据速率。

模拟电路:在一些放大器和传感器接口中,采用差分信号可以提高信噪比。

数字信号处理:在差分信号的处理中,常用在差分放大器和差分放大输入的ADC(模数转换器)等。

电压表示和分析:
差分电压:
表示差分信号的电压,是两个信号电压之差。

共模电压:
表示共模信号的电压,是两个信号电压之和的一半。

总体而言,差分信号在电子系统中广泛应用,特别是在对抗噪声、提高传输质量和增强信号完整性方面发挥着重要作用。

差分信号和单端信号概述

差分信号和单端信号概述

差分信号与单端信号概述差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a. 抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。

b. 能有效抑制EMI(电磁干扰),同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。

c. 时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。

目前流行的LVDS (low voltage differential signaling )就是指这种小振幅差分信号技术。

1、共模电压和差模电压我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。

就像初中时平面坐标需要用x,y两个数表示,而到了高中或大学就只要用一个“数”v,但这个v是由x,y两个数构成的“向量”……而共模、差模正是“输入信号”整体的属性,差分输入可以表示为vi = (vi+, vi-) 也可以表示为vi = (vic, vid) 。

c表示共模,d表示差模。

两种描述是完全等价的。

只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。

运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比CMRR条件下允许的共模信号的范围。

显然,不存在“某一端”上的共模电压的问题。

但“某一端”也一样存在输入电压范围问题。

而且这个范围等于共模输入电压范围。

道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。

对其它放大器,共模输入电压跟单端输入电压范围就有区别了。

例如对于仪放,差分输入不是0 ,实际工作时的共模输入电压范围就要小于单端输入电压范围了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

差分信号与单端信号概述差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。

b.能有效抑制EMI(电磁干扰),同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。

c. 时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。

目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。

1、共模电压和差模电压我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。

就像初中时平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”……而共模、差模正是“输入信号”整体的属性,差分输入可以表示为vi = (vi+, vi-)也可以表示为vi = (vic, vid)。

c 表示共模,d 表示差模。

两种描述是完全等价的。

只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。

运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。

显然,不存在“某一端”上的共模电压的问题。

但“某一端”也一样存在输入电压范围问题。

而且这个范围等于共模输入电压范围。

道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。

对其它放大器,共模输入电压跟单端输入电压范围就有区别了。

例如对于仪放,差分输入不是 0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。

可以通俗的理解为:两只船静止在水面上,分别站着两个人,A和B。

A和B相互拉着手。

当船上下波动时,A才能感觉到B变化的拉力。

这两个船之间的高度差就是差模信号。

当水位上升或者下降时,A并不能感觉到这个拉力。

这两个船离水底的绝对高度就是共模信号。

于是,我们说A和B只对差模信号响应,而对共模信号不响应。

当然,也有一定的共模范围了,太低会沉到水底,这样船都无法再波动了。

太高,会使会水溢出而形成水流导致船没法在水面上停留。

理论上,A和B应该只是对差模有响应。

但实际上,由于船上下颠簸,A和B都晕了,明明只有共模,却产生了幻觉:似乎对方相对自己在动。

这就说明,A和B内力较弱,共模抑制比不行啊。

说笑了啊,不过大致也就是这个意思。

当然,差模电压也不可以太大,否则会导致把A和B拉开。

主要是这句“共模是两输入端的算术平均值,差模是直接的同相端与反相端的差值”。

共模电压应当是从源端看进来时,加到放大电路输入端的共同值,差模则是加到放大电路两个输入端的差值。

共模电压有直流的,也有交流的。

直流的称为直流共模抑制(比),交流的称为交流共模抑制(比),统称共模抑制(比)。

一般的放大器特别是仪表放大器,有较好的直流共模抑制,但对交流共模抑制,频率一高往往就不行了----急剧下降,即频率响应不行。

一般的信号均有源阻抗,此阻抗可以不同程度破坏电路的对称性,因此,用差分放大器时要小心它引起的误差。

参考相关数据数册。

不仅仅是在运放电路中。

只要是电信号传输,都可以分为共模和差模差模是两根信号线之间的。

共模是信号对地的所以只要有信号传输就有共模干扰。

准确说是:一根线共模和差模叠加在一起,无法区分,只有双线传输才能区分共模和差模。

先看共模和差模的由来,也就是这种区分的价值1. 传导干扰下:假设系统的公共参考点(“地”)受干扰,电位发生了波动。

其实电位这个概念严格说只有相对意义,一个孤立点不存在什么“电位”,所以波动一定要相对另一个参考点的,例如:大地,或与你的板子或整机相连的那个设备的参考点。

这时,两个设备间的两根信号线上的干扰是近似相同的。

2. 空间耦合干扰下:电磁波具有一定的空间连续性,在很小的空间内,可以认为电磁波是均匀的,如果两根线靠得很近,两根线所受干扰也是近似相同的。

按一般说法,任意一根信号线相对地线所受干扰,就是共模干扰。

但只有双线传输时,共模和差模的区分才有价值。

而且,一根线可以有“共模”,但没有差模。

当然,概念也是人为定的。

要么按公认说法(事实标准),要么按权威定义,比如,IEEE标准。

下面我们再来举个例子来看看:差分运放一端加3 v 一端 2v相当于一端加vd=0.5vc=2.5;一端加:vd=-0.5 vc=2.5。

任何一种信号,都是共模与差模的复合,但是是什么决定了哪些是共模哪些是差模,就是看参考的信号了。

单纯的讲一根线是没有意义的,参考地其实只不过是以地为0信号。

如果一端是VI,那么地端相当于共模信号为VI/2,差模信号为-VI/2,综合起来就为0了而任意参考位为V2的话,VI里面的共模量应为(V1+V2)/2,差模量为(V1-V2)/2另一端相当于共模量(V1+V2)/2,差模量为-(V1-V2)/2,差模与共模只有相比较才有意义。

简单理解:你选择了一个地之后,两根线的相对高度就是差模。

而两根线的绝对高度的平均值就是共模,当两根线的距离缩小到0,变成一根线时,就只有一个高度了,因此它的绝对值就是共模。

此外,这里有一些在公开发表的学术期刊上的定义,都是各个作者的理解,供参考:1. 共模干扰是指干扰电压出现在仪表输人端的一端(正端或负端)对地之间的交流信号,它可用晶体管电压表跨接于仪表输人端的一端(正端或负端)与地之间测量,一般对地干扰大多在几伏到几十伏的范围内2. 共模干扰是指电路中两个被测量点电位相对大地同时发生同方向交化而产生的干扰,而差模jf扰则是电路中两个被测量点的电位差发生相对变化而产生的干扰3. 共模干扰是指模数转换器两个输入端上共有的干扰电压,它可能是直流或交流电压,电压幅值可根据应用现场的环境达几伏甚至更高.共模干扰又称共态干扰,常用共模抑制比(CMRR)表示输入电路对共模干扰的抑制能力4. 共模干扰是指由电源的相线与地线所构成回路中的干扰.差模干扰是指电源的相线和相线所构成的回路中的干扰.传导干扰主要是由电路中高速切换的电压、电流与杂散寄生参数之间相互作用而产生的高频震荡所引起5. 实际上传导干扰又有共模和差模之分,所谓共模干扰是指地线与相线干扰信号,线间的相位相同、电位相等,而差模干扰是相线间干扰信号相位差180(电位相等)6. 共模干扰是指在保护装置所有电路或电路的某一点与地(或外壳)之间形成的干扰(电位),如图1中的Vt 所示.它是保护装置工作不正常的重要原因7. 共模干扰”是指干扰大小和方向一致,其存在于电源任何一相对大地、或中线对大地间.共模干扰也称纵模干扰、不对称干扰或接地干扰,是载流体与大地之间的干扰共模信号和差模信号是指差动放大器双端输入时的输入信号。

共模信号:双端输入时,两个信号相同。

差模信号:双端输入时,两个信号的相位相差180度。

任何两个信号都可以分解为共模信号和差模信号。

设两路的输入信号分别为:A,B.m,n分别为输入信号A,B的共模信号成分和差模信号成分。

输入信号A,B可分别表示为:A=m+n;B=m-n则输入信号A,B可以看成一个共模信号m 和差模信号n 的合成。

其中m=(A+B)/2;n=(A-B)/2。

差动放大器将两个信号作差,作为输出信号。

则输出的信号为A-B,与原先两个信号中的共模信号和差模信号比较,可以发现:共模信号m=(A+B)/2不见了,而差模信号n=(A-B)/2得到两倍的放大。

这就是差模放大器的工作原理。

(5&3 ,5 = 4+1 ,3= 4-1,共模信号=4,差模信号=1 ,5-3=2,结果是2,将差模信号1放大2倍)差分信号一般是前级输入的,或者一段接共模信号,一端接输入信号。

最最前面,可以用单端转双端啊。

对于差分放大,首先要建立正确的静态工作点,也就是共模信号,譬如vcc为1.8v的时候,输入的共模信号一般是0.9v,放大的差分信号是在0.9v上下摆动的信号~2、基本区别单端信号指的是用一根线传输的信号,一根线没参考点怎么会有信号呢?参考点就是地。

也就是说,单端信号是在一根导线上传输的与地之间的电平差。

利用单端信号把信号从A点传递到B点,有一个前提就是A点和B点的地电势应该差不多是一样的,为啥说差不多呢,后面再详细说。

当你把信号从A点传递到B点的时候,A点和B点的地电势可以一样也可以不一样但是A点和B 点的地电势差有一个范围,超过这个范围就会出问题了。

差分信号指的是用两根线传输的信号,传输的是两根信号之间的电平差。

3、传输上的差别单端信号的优点是,省钱~方便~大部分的低频电平信号都是使用单端信号进行传输的。

一个信号一根线,最后把两边的地用一根线一连,完事。

缺点在不同应用领域暴露的不一样归结起来,最主要的一个方面就是,抗干扰能力差。

首先说最大的一个问题,地电势差以及地一致性。

大家都认为地是0V,实际上,真正的应用中地是千奇百怪变化莫测的一个东西我想我会专门写一些地方面的趣事。

比如A点到B点之间,有那么一根线,用来连接两个系统之间的地那么如果这根线上的电流很大时,两点间的地电势可能就不可忽略了,这样一个信号从A的角度看起来是1V,从B的角度看起来可能只有0.8V了,这可不是一个什么好事情这就是地电势差对单端信号的影响。

接着说地一致性。

实际上很多时候这个地上由于电流忽大忽小,布局结构远远近近,地上会产生一定的电压波动,这也会影响单端信号的质量。

差分信号在这一点有优势,由于两个信号都是相对于地的当地电势发生变化时,两个信号同时上下浮动(当然是理想状态下)差分两根线之间的电压差却很少发生变化,这样信号质量不就高了吗?其次就是传输过程中的干扰,当一根导线穿过某个线圈时,且这根线圈上通着交流电时,这根导线上会产生感应电动势~~好简单的道理,实际上工业现场遇到的大部分问题就是这么简单,可是你无法抗拒~如果是单端信号,产生多少,就是多少,这就是噪声你毫无办法。

但是如果是差分信号,你就可以考虑拉,为啥呢,两根导线是平行传输的每根导线上产生的感应电动势不是一样吗,两个一减,他不就没了吗~确实,同样的情况下,传输距离较长时,差分信号具有更强的驱动能力、更强的抗干扰能力,同样的,当你传输的信号会对其他设备有干扰时,差分信号也比单端信号产生的信号相对小,也就是常说的EMI 特性(EMI是Electro Magnetic Interference的缩写,有传导干扰和辐射干扰两种。

相关文档
最新文档