先进船型与船体结构设计技术综述

先进船型与船体结构设计技术综述
先进船型与船体结构设计技术综述

先进船型与船体结构设计技术

1 概述

1.1船型与船体结构设计技术的概念与内涵

船型,通常指船舶的类型,按不同的分类标准可以划分为许多种不同的船型。例如按载货方式可分为散货船、油船、集装箱船,其中散货船又有灵便型、巴拿马型、超巴拿马型、好望角型等系列;按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效翼船等;按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等;按动力装置种类可分为柴油机推进船、电力推进船、燃气动力装置船、核动力装置船等。

船体结构设计是在满足船舶总体设计的要求下,解决船体结构的形式、构件的尺度与连接等设计问题,保证船体具有恰当的强度和良好的技术经济性能。船体结构设计应考虑以下几方面:1)安全性,结构设计应保证船舶在各种外力作用下,具有一定的强度和防振性能。2)适用性,结构的布置与构件尺度的选用应符合营运的要求。3)整体性,结构设计必须与船舶性能、轮机、没备、电气及通风等设计密切配合,确保船舶在各个方面都具有良好的工作性能。4)工艺性,结构形式与连接形式的选择应便于施工,选用结构材料应适当减少规格,根据船厂的设备情况和生产组织管理等特点,采用先进、高效、经济的工艺措施。5)经济性,考虑上述方面条件下,力求减少结构的重量,材料选用恰当,使船舶具有更好的经济性能。

1.2 重要性

在国防工业领域,采用新的结构形式、新材料、新型推进方式等新技术开发先进船型,是改善海军舰船总体性能、提高作战效率的重要手段。近十几年来,随着科技的进步,海军对舰船的航行性能、隐身性能、负载能力等要求不断提高;在对近海作战能力的不断重视下,舰船在浅水海域作战需要小吃水,为安装模块化装备需要宽大甲板面积,快速航渡需要高航速。常规单体船型虽然推进效率较高、超载能力强、船体结构简单、维修方便、造价低,但已较

难在耐波性、快速性方面作大幅度改进。应用新技术研究开发新船型,成为军事大国提高国防工业和海军作战水平的重要途径之一。

新的船型开发离不开先进的船体结构设计技术。船型研发周期长、成本高、舰船使用期长、环境和载荷恶劣,在其使用期内可能遭遇到多种随机事故或战斗伤害,损害一旦发生,将对结构产生不利影响,导致整个船体结构失去工作或战斗能力,也造成很大的经济损失。因此,要求船体结构设计技术不断进步、领先,船体线型最优化、构件尺寸合理,工况和承载能力计算和校核精确,以支撑先进可靠的船型开发。

2 国外研究现状

船型与船体结构设计技术在国防工业领域的研究和发展突出体现在海军舰艇的需求不断升级,促使一些先进船型的开发、试验和发展,对船舶设计技术的要求也不断提高。

多体船型主要有双体船、三体船、四体船和五体船等,同单体船相比,多体船具有更加优越的浮性和稳性、耐波性、机动性和隐身性,能够大量装载,抗打击能力强,在民用和军用领域得到了广泛的应用,其各船型也是各军事大国研究的热点。小水线面双体船(SWATH)、穿浪双体船是高性能船舶中发展较快、趋于成熟的船型。美国多年来一直大力开发小水线面双体船,在小水线面双体船的线型、流体、结构、耐波性、操纵性等基础理论与研究试验方面取得了一系列成果,并拥有相当的技术储备。自1973年到21世纪初,美国开发了“卡玛利诺”号、“海影”号、“胜利”号、“搜索”号、“海刀锋”号和“无瑕”号等6型小水线面双体船型的水声监听船、试验船等。2005年,法国研制出一种SWATH型近海巡逻舰,该舰排水量2000吨,采用全电力推进系统,航速12节时续航力达5000海里,并可在6级海况下正常作业。澳大利亚INCAT公司租借给美海军的Incat 050型“联合探险”号、Incat 060型“矛头”号,以及Incat 061型等穿浪双体高速船舶用于进行系列试验、评估及操作使用。英国海军2000年建成下水的“海神”号三体试验舰在美海军的资助下进行了耐波性、直升

机起降补给、结构、海上作战等试验。该船总长95米,水线长90米,船宽20米,吃水3米,排水量1035吨,柴油电力推进,最大航速20节。美国“濒海作战舰”中的LCS 2型“独立”号三体船于2009年7月开始海试,是世界上第一艘多体船型的战斗舰。“独立号“为铝质结构,长127米,排水量2784吨,航速43节,舰首尖细、舰身和舰尾宽阔。美国洛克希德·马丁公司设计的Slice四体船型的潜体采用球鼻艏和尖锥艉形,前双下体间距小于后双下体,又都采用短支柱,有利于高速航星和保持高耐波性;前后四下体的线型和重量分配均采用优化设计,使其避开兴波阻力曲线峰点,以减少兴波阻力,提高推进效率和航速、改善运动姿态。五体船作为20世纪90年代后期在英国诞生的一种船型概念,比三体船具有更小的高速力和更高的破舱稳性,目前其研发工作仍然仅局限于英国、挪威、西班牙等少数国家,英国BMT公司提出了五体护卫舰和五体海运船概念,挪威船舶设计研究所也对五体船模型进行过水池试验。

地效翼船、气垫船及其他新概念船型等高性能舰船也为各军事大国海军研究所关注。2012年1月,俄罗斯联邦边防局称其正在北部城市彼得罗扎沃茨克建立一个地效翼船生产中心,生产猎户座-20地效翼船,以更好保卫其领海。德国也研制了X系列、乔格系列、TAⅧ系列、HW20等地效翼船,发展方向更趋向于民用化、小型化和实用化。伊朗国防部2010年9月公开信念2型地效翼船的照片,称该型地效翼船对雷达具有隐身能力。2012年2月,韩国地效翼船重工建造的韩国首艘50客位地效翼WSH-500进行了首次离水试验并获得成功。军用气垫船的研究、使用上领先进的国家主要有美国、俄罗斯、英国等军事强国。如美军的LCAC 全垫升气垫登陆船,舰船设计科学,通用性、经济性和可维修性强,装载容量大,有效载重比率高。LCAC载重60吨,满载时速度超过40节,续航距离可达300英里,能越过四呎以下的障碍物。前苏联早在20世纪70年代初期开始用气垫船装备其部队,经过长时间的研发,前苏联先后成功研制了“欧洲野牛”级、“鹞”级、“鹅”级、“鹳”级和“暴风”级等不少

颇具特色的气垫船。其较为典型的“欧洲野牛”级总重量高达3700吨,最高航速60节,最大运载负荷130吨,是迄今为止世界上最大的全垫升气垫登陆艇。英国国防部投资800万英镑与奎奈蒂克公司开发PACSCAT(局部气垫支撑双体船)的创新方案示范艇,该艇于2008年在英国皇家海军两栖试验训练基地下水并进行一系列的试验。该艇在载重55吨,在0~2级海况下航速25节,3~4级海况下航速14节。德国的IMAA公司联合德国战舰设计署共同设计出一艘长为110米,航速可达50节的局部气垫双体船濒海战斗舰。美国海军试验艇“短剑”号采用了双M船型。M船型由M船舶公司开发,包括中央主船体和两侧围壁三部分,主船体与侧体之间为空气通道。高速航行时,通道中流动的空气可产生升力,将船体抬升,减少舰艇尾迹,实现快速平稳航行;船体采用碳纤维复合材料建造,外形经过优化,舰艇的雷达波、红外和磁信号特征很低。

各种船型的开发离不开先进的船舶设计技术,CAX、CFD技术、虚拟仿真技术和数字控制加工技术等“数字化船舶设计”技术是现代造船技术的核心和基础。美国“海狼”号攻击型核潜艇是世界上第一艘运用数字化技术全部采用模块化设计和建造的核潜艇。2003年4月,美国Intergraph公司宣布完成了LPD-17两栖船坞运输舰计划综合产品数据环境的开发。日本三菱重工在引进Tribon公司船舶自动化设计系统的同时,又引进并开发了MATES系统。IHI联合造船开发了名为“紫阳花”的设计信息自动化系统。三井造船开发了MACISS设计自动化系统。川崎造船在Tribon系统的基础上,开发了新的智能化的K-KARDS自动化设计系统,该系统充分利用知识库,建立Inference Engine系统,几乎全部设计结果都能以立体图形显示,信息变换更快更直觉。

2 先进船型和船体结构设计的发展趋势

近年来世界经济高速发展,整体上船舶正大型化、高速化、自动化和专用化的方向发展,而在国防工业领域,关注更多、发展更快的则是高性能船舶,其发展趋势呈现如下特点:

(1)单体船变形化,植入一些新的船型特征及新技术成果以改善单体船的性能成为未来军用单体船发展的趋势。例如美国海军“自由”号近海战斗舰采用“海刃”半滑行单体船型,通用动力公司为近海战斗舰开发的反潜无人艇采用了空压隧道式单体船型(ETM),荷兰达门公司开发了“斧刃”船首单体船,法国DCNS公司在2010年欧洲海军展上推出Advansea全电力单体舰等。

(2)多体船及其复合船型是当前开发的重点。科研实践说明多体船在波性、快速性、甲板面积、舱室容积、隐蔽性等方面较单体船型有优势,但多体船型尚需在结构稳定性、使用可靠方便性、经济合理性、材料选用等方面不断改进,才能真正在军用舰艇中发挥理想效用。

(3)地效翼船、气垫船、水翼艇等非排水量船型关键技术亟待突破。因其气动布局、结构等设计、材料选取中需要综合考虑水、气两方面的环境因素,以确保其气/水两相流环境的适应性;波浪的喷溅、撞击,使船体的姿态和运动要素受到影响,结构强度及防腐要求较高;此外,动力选择也是一项不容忽视的关键技术难点。未来发展和应用与这些技术的发展进步息息相关。

(4)复合材料在船型开发中应用日趋广泛。随着船艇功能要求提高,传统的建造材料已经无法满足功能和线型要求。相比之下,复合材料无论从强度上、重量上、耐腐蚀上、隔音防振上等方面均占有优势,未来船型开发和船体结构设计中,新型复合材料的应用将发挥重要作用。

(5)船型和船体结构设计过程趋于数字化、信息化、模块化、绿色化。随现代信息技术已渗透到船舶企业的经营、开发、设计、制造、管理的各个方面和领域,各项先进技术的发展已与数字化、网络化、智能化技术密不可分,随着对环境保护意识的不断加强,船舶设计和制造过程也将趋于模块化、绿色化,以达到节约能源、环境友好的需求。

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

船舶强度与结构设计_授课教案_第四章应力集中模块

第四章应力集中模块 一、应力集中及应力集中系数 在船体结构中,构件的间断往往是不可避免的。间断构件在其剖面形状与尺寸突变处的应力,在局部范围内会产生急剧增大的现象,这种现象称为应力集中。 由于船体在波浪上的总纵弯曲具有交弯的特性,应力集中又具有三向应力特性,严重的应力集中更易于引起局部裂纹和促进裂纹的逐渐扩展。第二次世界大战中和大战后,由于结构开口引起应力集中从而产生裂缝导致船体折断的事故占整个船体结构海损事故总数中的极大部分。因此,在第二次世界大战后,关于船体结构的应力集中问题,曾引起了造船界的普遍重视,开展了大量的研究工作。现在,对这个问题已经有了比较清楚地了解。 由于应力集中是导致结构损坏的一个重要原因,结构设计工作者在设计中必须始终注意这个问题。再进一步对船体结构中比较突出的几个应力集中问题及该区域的结构设计作一些介绍。 通常,用应力集中系数来表示应力集中的程度。应力集中区的最大应力m ax σ或m ax τ分别与所选基准应务0σ或0τ之比值,即 0max 0max ττσσ==k k 或 (1)

称为应力集中系数。基准应力不同,应力集中系数也不同。所以,给定应力集中系数时,应指明基准应力的取法。 间断构件的应力变化规律以及应力集中系数的大小很大程度上决定于这些构件的形状。目前,已经能够确定各种形状的间断构件的应力集中系数。 二、开口的应力集中及降低角隅处应力集中的措施 在大型船舶上,强力甲板上的货舱口、机舱口等大开口,都严重地破坏了船体结构的连续性。当船舶总纵弯曲时,在甲板开口角隅外的应力梯度急剧升高,引起严重的应力集中,造成船体结构的薄弱环节。关于舱口角隅处应力集中的确定,导致去除方角而采用圆弧形角隅,并在角隅处采用加复板或厚板进行加强,同时要采用IV 级或V 级的材料。 1.开口的应力集中 关于孔边的应力集中,可用具有小椭圆开孔的无限宽板受位抻的情况来说明(见下图)。应用弹性理论可求得A 、B 两点的应力分别为: ?????-=+=σσσσB A p a )21( (2) 式中σ为无限远处的拉伸应力; a b /2=ρ为椭圆孔在A 点的曲率半径;

船体结构与强度设计总结

1、结构的安全性是指结构能承受在正常施工和正常使用时可能出现的各种载荷和(或)载 荷效应,并且在偶然事件发生时及发生后,仍能保持必须的整体稳定性。此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。 2、船体强度计算包括: (1)确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷 (2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。响应 (3)确定合适的强度标准,并检验强度条件。衡准(结构的安全性衡准都普遍采用确定性的许用应力法) 3、通常将船体强度分为总强度和局部强度来研究。 4、结构的安全性是属于概率性的。 5、把船体当做一根漂浮的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏 的能力,通常成为总强度。总强度就是研究船体梁纵弯曲问题。从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。 6、作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷、局部性载荷。 按载荷随时间变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。 7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。 局部性载荷是指引起局部结构、构件变形或破坏的载荷。 冲击载荷,是指在非常短的时间内突然作用的载荷,例如砰击。 8、结构设计的基本任务是:选择合适的结构材料和结构型式,决定全部构件的尺寸和连接 方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。 9、船体结构设计,一般随全船设计过程分为三个阶段,即初步设计、详细设计和生产设计。 10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。 11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。但是,减小结构 尺寸、降低结构重量,往往会增加建造工作量,从而增加制造成本同时还会引起维护保养费用的增加。因此,应该研究怎样才能达到降低结构重量和降低初始成本这两个目标的最佳配合。 1、船体重量按分部情况来分可以分为:总体性重量、局部性重量。 按变动情况分可以分为:不变质量和变动质量。 2、对于船体总纵强度的计算状态,选取满载:出港、到港;压载:出港、到港;以及装载 手册中所规定的各种工况作为计算状态。 3、计算波浪弯矩的船体标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4、计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种, 直接法又称为麦卡尔法。 5、史密斯修正:计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对 浮力曲线所做作的修正,称为波浪浮力修正,或称史密斯修正。 6、船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简称船 体梁。 7、船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体抵抗总纵弯 曲的能力,成为总纵强度(简称纵强度)。 8、波浪附加剪力、波浪附加弯矩完全是由波浪产生的附加浮力(相对于静水状态的浮力增 量)引起的,简称波浪剪力和波浪弯矩。

先进制造技术综述

先进制造技术综述 Prepared on 22 November 2020

先进制造技术产生的背景 摘要 随着科学的发展与技术的进步,先进的制造技术越来越成为在科技竞争中成功的一个重要条件。先进制造技术是制造业为了适应现代生产环境及市场的动态变化,在传统制造技术基础上通过不断吸收科学技术的最新成果而逐渐发展起来的一个新兴技术群。本文主要在社会经济发展、科学技术发展、可持续发展战略等几个方面分析了先进制造技术产生的背景。 关键词先进制造技术背景社会发展科学技术可持续发展 1 制造技术的进步与发展 制造技术 制造技术是制造业所使用的一切生产技术的总称,是将原材料和其它生产要素经济合理地转化为可直接使用的具有较高附加值的成品、半成品和技术服务的技术群[1][2]。制造技术的发展是由社会、政治、经济等多方面因素决定的。 制造技术的发展时期 ⑴工场式生产时期 18世纪后半叶,蒸汽机和工具机的发明,揭开了近代工业的历史,促成了制造企业的雏形——工场式生产的出现,标志着制造业以完成从手工作坊式向以机械加工和分工原则为中心的工厂式的艰难转变。 ⑵工业化规模生产时期 19世纪电气化技术的发展,开辟了电气化新时代,制造业得到了飞速发展,出现了大批量生产的局面。 ⑶刚性自动化发展时期 20世纪初内燃机的发明、泰勒科学管理方法的应用、福特公司的流水生产线,引起了制造业的革命,降低了生产成本。然而,这也仅仅适用于单一品种的大批量生产的自动化。 ⑷柔性自动化发展时期 二次大战之后,计算机、微电子、信息和自动化技术有了迅速的发展,推动了生产模式由中大批量生产向多品种小批量柔性生产自动化转变。期间形成了一批新型的柔性制造的技术,如数控技术(CNC)、FMC、FMS等。同时,现代化的生产管理模式开始应用到生产中,如JIT 、TQM 等。 ⑸综合自动化发展时期

先进船型与船体结构设计技术综述

先进船型与船体结构设计技术 1 概述 1.1船型与船体结构设计技术的概念与内涵 船型,通常指船舶的类型,按不同的分类标准可以划分为许多种不同的船型。例如按载货方式可分为散货船、油船、集装箱船,其中散货船又有灵便型、巴拿马型、超巴拿马型、好望角型等系列;按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效翼船等;按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等;按动力装置种类可分为柴油机推进船、电力推进船、燃气动力装置船、核动力装置船等。 船体结构设计是在满足船舶总体设计的要求下,解决船体结构的形式、构件的尺度与连接等设计问题,保证船体具有恰当的强度和良好的技术经济性能。船体结构设计应考虑以下几方面:1)安全性,结构设计应保证船舶在各种外力作用下,具有一定的强度和防振性能。2)适用性,结构的布置与构件尺度的选用应符合营运的要求。3)整体性,结构设计必须与船舶性能、轮机、没备、电气及通风等设计密切配合,确保船舶在各个方面都具有良好的工作性能。4)工艺性,结构形式与连接形式的选择应便于施工,选用结构材料应适当减少规格,根据船厂的设备情况和生产组织管理等特点,采用先进、高效、经济的工艺措施。5)经济性,考虑上述方面条件下,力求减少结构的重量,材料选用恰当,使船舶具有更好的经济性能。 1.2 重要性 在国防工业领域,采用新的结构形式、新材料、新型推进方式等新技术开发先进船型,是改善海军舰船总体性能、提高作战效率的重要手段。近十几年来,随着科技的进步,海军对舰船的航行性能、隐身性能、负载能力等要求不断提高;在对近海作战能力的不断重视下,舰船在浅水海域作战需要小吃水,为安装模块化装备需要宽大甲板面积,快速航渡需要高航速。常规单体船型虽然推进效率较高、超载能力强、船体结构简单、维修方便、造价低,但已较

先进制造技术结课论文

先进制造技术课程论文 学院:机电学院 专业:机械设计制造及其自动化 姓名: 学号: 2014年4月20

自动化立体仓库的基本设施与特点 摘要:自动化立体仓库又称自动化高架仓库和自动存储系统。它是一种基于高层货架、采用电子计算机进行控制管理、采用自动化存储输送设备自动进行存取作业的仓储系统。自动化立体仓库是实现高效率物流和大容量的关键系统,在自动化生产和商品流通中具有举足轻重的作用。 自动化立体仓库系统最早在美国诞生。20世纪50年代初美国开发了世界上第一个自动化立体仓库,并在60年代即采用计算机进行自动化立体仓库的控制和管理。日本在1967年制造出第一座自动化立体仓库,并在此后的20年间使这一技术得到广泛应用。进入20世纪80年代,自动化立体仓库在世界各国发展迅速,使用的范围涉及几乎所有行业。 关键字:自动化;立体仓储;发展;高效率; 正文: 一、自动化立体仓库的概述 (一)、自动化立体仓库的发展 随着现代工业发展的发展,柔性制造系统、计算机集成制造系统和工厂自动化对自动化仓库提出更高的要求,搬运存储技术要具有更可靠更实时的信息,工厂和仓库中的物流必须伴随着并行的信息流。无线数据通信、条形码技术和数据采集越来越多的应用于自动化立体仓库系统。 在自动化立体仓库发展过程中,经历了自动化、集约化、集成化和智能化几个发展过程。自动化时期主要在20世纪60到70年代,随着计算机技术的发展,自动化立体仓库得到了迅猛发展。在1967到1977年 10年中,日本建设超过了8000套自动化立体仓库系统。集约化发展是伴随大规模生产需求而发展的。其 规模曾经发展到超过100个巷道,货位数超过20万个。但事实表明,大型自动化立体仓库系统已不再是发展方向。美国Hallmark公司安装的多达120个巷道的系统已经达到巅峰。为了适应工厂发展的新趋势,出现了规模更小,反应速度更快,用途更广的自动化仓库系统。它结合先进的控制技术,应用到分段输送和按预定线路输送方面保持了高度的柔性和高生产率,满足了工业库存搬运的需要。儿大规模的立体仓库系统一般应用于大型配送中性。集成化的标志是随着信息系

船舶结构设计基础作业1

1波浪包括哪些要素?并叙述在实际计算时各个波浪要素的选取方法。 答:波浪要素包括波形、波长与波高。 在实际计算时,波形为坦谷波, 取计算波长等于船长,波高随船长变化,并且规定按波峰在船舯和波谷在船舯两种典型状态进行计算。 2试简述浮力曲线的绘制方法 答:浮力曲线是指船舶在某一装载状态下(一般为正常排水量状态),浮力沿船长分布状况的曲线。浮力曲线的纵坐标表示作用在船体梁上单位长度的浮力值,其与纵向坐标轴所围的面积等于作用在船体上的浮力,该面积的形心纵向坐标即为浮心的纵向位置。通常根据邦戎曲线求得浮力曲线。下图为邦戎曲线及获得的浮力曲线. 船舶在波浪中有可能发生倾斜,若浮心与重心的纵向坐标之差不超过船长的0.05%~0.1%,则可认为船舶已处于平衡状态,否则须进行纵倾调整。 浮态第一次近似计算 根据静水力曲线去确定相应与给定排水量时的平均吃水dm、浮心纵向坐标xb、水线面漂心坐标xf 以及纵稳心半径R。 由于实船的R远大于KC,所以 确定了首尾吃水之后,利用邦戎曲线求出对应于该吃水线时的浮力分布,同时计算出总浮力及浮心纵向坐标。如果求得的这两个数值不满足精度要求,则应作第2次近似计算。 浮态第二次近似计算 A-水线面面积 若浮心与重心的纵向坐标之差不超过船长L的0.1%,排水量与给定的船舶重量之差不超过排水量 ,应根据最后一次确定的首尾吃水求出浮的0.5%,则认为调整好了,由此产生的误差不超过5%M max 力分布曲线。 3若被换算构件的剖面积为ai,其应力为σi,弹性模量为Ei;与其等效的基本材料的应力为σ,弹性模量为E,根据变形相等且承受同样的力P,则与其等效的基本材料的剖面积为a为多少?

先进制造技术综述

先 进 制 造 技 术 综 述 学院:机械工程学院 专业:机械制造及其自 动化

《先进制造技术》试题 在课程学习和检索文献资料的基础上,撰写一份先进制造技术综述论文,包括以下具体内容: 1.绿色制造的关键技术。 2.超高速切削和超高速磨削技术,包括:超高速切削和超高速磨削的机理、关键技术和应用范围。 3.超周密加工技术,包括:超周密车削、超周密砂轮磨削、超周密砂带磨削、电泳磨削的加工原理、技术特点和应用范围。 4.特种加工,包括: (1)电火花成形加工、电火花线切割加工、电火花磨削加工、电火花表面强化等加工技术的加工原理与特点、应用范围。 (2)激光加工、电子束加工、离子束加工、水喷射加工等加工技术的加工原理、技术特点和应用范围。 5. 先进生产治理的技术,包括:敏捷制造、精益生产、智能制造等先进制造模式的定义、内涵、特点和关键技术等。 6.你自己对先进制造技术进展与创新历程的理解和观点。 答题要求: 1.论文包括题目、摘要、关键词、正文、结语、参考文献等部分。

2.论文正文字数许多于3000字,参考文献许多于30篇。 3.综述时应尽可能提供加工实例及其示图。 4.要按参考或引用的顺序列出文献资料的出处,并在引用处标注。 5.本试题页符在答卷上一并交回,提交试卷时,同时提交电子文档。 6.参照《西安科技大学学报》排版格式。试卷用A4纸,一级标题用黑体四号字,二级标题用仿宋体小四号字,行间距为1.5倍。 7.卷面不得雷同,否则不记成绩。

先进制造技术综述 摘要:本文通过大量列举典型的先进制造工艺和先进 的治理系统来介绍先进制造技术的进展现状及特点,其 中包括典型的先进制造工艺有:绿色制造技术、超高速 加工技术、超周密加工技术以及特种加工技术;典型的 先进治理系统有:敏捷制造、精益制造以及智能制造等 先进制造技术。文中分析了以上各种先进技术的加工原 理、技术特点、关键技术以及该技术的应用范围。最后, 阐述了本人对先进制造技术进展与创新历程的理解和 观点。 关键词:先进制造;绿色制造;超高速加工;超周密加 工;先进生产治理系统 0 引言 先进制造技术AMT(advanced manufacturing technology)是制造业不断汲取机械、电子、信息(计算机与通信、操纵理论、人工智能等)、能源及现代系统治理等方面的成果,并将其综合应用于产品设计、制造、检测、治理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高

船体结构设计任务书答案

船体结构设计任务书 1.根据“中国船级社”颁布的《钢质海船入级规范(2006)》设计下述船舶的船中剖面结构。 船型:甲板驳 主尺度: 船长L=110.0 m 船宽B=21.0 m 型深D=5.8 m 排水量?=7400吨 方型系数0.84 C B 2.设计相关条件 本甲板驳横剖面草图见下图,本船采用单层底,左右距中5200mm各设有一道纵舱壁,甲板、舷侧、纵舱壁和船底采用纵骨架式,肋距550mm,每三档设一道横框架(Web Frame)。

3.提交作业 (1)船体结构规范设计计算书; 对设计船舶特征做简要概述(包括船型、主尺度和结构基本特征等),设计所根据的规范版本等。按照船底、舷侧、甲板、舱壁的次序,分别写出确定每一构件尺寸的具体计算过程,并明确标出所选用的尺寸。计算书应简明、清晰,便于检查。 (2)绘制设计典型横剖面结构图,包括强框架剖面和非强框架剖面。 结构图应符合船舶制图规定,图上所标构件尺寸应与计算书中所选用构件尺寸 一致。

1.概述 本船为航行于长江A级航区驳船,船舶采用单底、单舷、单甲板纵骨架式结构。结构计算依据CCS颁布的《钢质海船入级规范(2006)》相关规定。 1.1 主要尺度 船型:甲板驳(无自动力)总长Loa :110.0 m 设计水线长Lw :105.0 m 型宽B :21.0 m 型深D : 5.8 m 设计吃水d : 4.2 m (A 级) 结构吃水: 4.3 m (结构计算) 肋距S :0.55 m 排水量? :7400 t 方型系数CB:0.84 1.2尺度比 1.2.1 尺度比(按CCS—3.1.1) 本船本船采用单层底,左右距中5200mm各设有一道纵舱壁,甲板、舷侧、纵舱壁和船底采用纵骨架式,肋距550mm,每三档设一道横框架(Web Frame)。

先进制造技术(英文版第三版)唐一平,第一章翻译

P1 制造技术已经存在很多年了。这些年来,它经历了许多变化,从简单到复杂,背后的驱动力的变化是人的欲望提高的基本需要,如食物,衣服,住房,娱乐。为了满足这些愿望,方法已经从简单的生产设备,如获取食物到今天的现代制造系统的武器的发展,使用计算机来生产电视机和空间飞行器等项目。 计算机正在成为制造系统中越来越重要的作用。计算机能够接收和处理大量的数据,再加上其快速的处理时间,使系统成为不可缺少的方法。使用计算机的制造,现在时代的到来。计算机应用在制造业的生产控制的物理过程,通常被称为计算机辅助制造(CAM)。它是建立在数控系统的基础上,交流,机器人,自动导引车系统(AGVS),自动存储/检索系统(AS / RS),柔性制造系统(FMS)。一些新的用途进行简要讨论如下。在以后的章节中更详细的讨论,提出了。许多相互关联的生产活动共同构成了一个特殊的应用系统,可以称为生产和控制系统(PACS)。制造活动为PACS 的分组从一个生产环境的不同而不同。PACS系统是在全球制造环境子系统。它可能是一个单一的子系统,也可能是一组复杂的子系统。例PACS在全球制造系统的工作是显示在图1-1。PACS系统满足设计功能要求,设计时应独立于其他系统功能。同时,系统应该能够在一个全集成制造环境的其他PACS集体工作。 P2 在全系统各PACS可以在总系统中的其他系统都有影响,和系统规划方法必须考虑以下原因:防止效应使重要信息通过有效地通过系统允许每个PACS知道别人的关系的重复和它如何影响他人使整个生产系统的功能更有效和高效的计算机是迄今为止用于集成和操纵的一系列相互关联的PACS最强大的单一方法。他们带来的制造技术成为时代的“智能”的机器。生产技术的进步带来了计算机技术和制造技术,提高了制造技术的发展。这种婚姻是计算机辅助生产和控制系统的基础上,这是(研究)计算机驱动的研究。因此,研究增加了智能机的更加亲密的交流等的设计,生产,财务,人事功能之间的相互作用,和市场营销。在生产经营的概念,形式化,排出的方式正在改变,并进行研究。 P3 在制造典型CAPACS如下:CAD计算机辅助设计:该隐:计算机辅助检测CAM:计算机辅助制造CAPP:计算机辅助工艺规划CAQC:计算机辅助质量控制 中心:计算机集成生产管理系统:直接数字控制技术:成组技术图1-2对研究相关的功能的概述,从集成的数 据库系统的工作。设计数据, 通过研究之间产生相互作 用,是一个收集的所有资料, 介绍产品及相关业务。它是 制造系统的中心。的CAD系 统采用工程在履行其职责的 主要工具。车轮的辐条是由 参与活动的研究种类。每个 cspacs具有通信链路控制数 据库,将捕捉到的数据形成 自己的分布式 P4 数据库。增加了分布式数据 库的价值以满足其预期的用 户需要和要求。CAPACS制造 过程的应用使整个系统来提 高生产效率,减少浪费,并 产生了不能够使。因此,新 技术,对高质量和降低生产 成本,产品的需求,在一个 竞争的社会需要改进技术造 成了广泛使用CAPACS。1.1.1 自动化概念自动化可以被定 义为一个系统,是相对自主 经营。这样的一个系统,包 括复杂的机械和电子设备和 计算机为基础的系统,以观 察,努力的地方,并由操作 者决定。这是一个系统,有 人按照预先确定的行动或应 对编码指令。1.1.2计算机过 程控制过程控制是指在制造 过程中的控制变量,其中一 个或任何组合的材料和设备 生产或修改产品,使其更加 有用,因此更有价值。在过 程控制系统中,计算机作为 控制机构自动控制连续操 作。两种控制系统是开环和 闭环。在一个开环控制系统, 计算机本身并没有自动化的 过程。那是,没有自我修正。 这个过程是人类操作员的直 接控制之下,谁读从各种信 息来源如仪器,建立校准盘 的过程监管,改变控制的媒 介。闭环控制系统使用计算 机的过程自动化。计算机直 接在充电的过程中。调整所 有控件提供的信息B传感装 置以保持这一过程所需的技 术规格,使用一个反馈机制。 P3 反馈是衡量实际和预期的结 果和利用这种差异,以推动 实际向所期望的结果之间的 差异的作用。期限反馈来自 测量样本的输出过程(生产) 功能,成为投入的控制功能。 那是,输出的控制功能,满 足特殊要求设计的控制系统 的输入。因此,信号从控制 生产函数和两端的生产投 入。过程系统的典型功能是 监测,数据记录,质量控制, 输出的最大化,利润最大化 对于一个给定的输出,监控, 和工厂信息系统(FIS)。计算 机过程控制的好处是提高生 产率,提高产品质量,提高 了工作效率,安全,舒适, 方便。1.1.3管理信息系统 (mis0 管理信息系统,用来辅助管 理功能的性能。这些系统产 生的计算机系统和开发管理 人员提供了有关企业运作的 最新信息。必要时,使用信 息系统来辅助管理决策职能 的企业。查看CIM(计算机 集成制造)作为企业决策的 信息系统,cspacs必须信息 互联。因此,有许多软件包 相关的研究由这些都是典型 的DCS和CAD,CAPP,FIS。 MIS的概念是一个设计目标, 其目的是得到正确的信息在 正确的时间,以适当的。因 此,管理信息系统的实施有 很大的差别,因为制造企业 之间的各组织的功能,生产 类型,信息资源,与组织承 诺管理。 P4 1.1.4工程计算机广泛应用在 大多数工程功能。工程是一 种专业的自然科学知识的应 用与判断满足开发利用自然 材料和能量的途径。是设计, 工艺规划典型的工程使用, 综合分析,优化,评价和文 件,仿真,建模,和质量控 制计划。在工程使用cspacs 增加工程师的生产力并提高 设计质量。例如,计算机的 应用到工程设计的过程是由 一个CAD系统工程师完成和 彻底测试的概念迅速和简单 地从一个工作站的设计。计 算机允许工程师把概念从原 来的设计,通过试验的数值 控制(NC)输出,或结合步 骤之间。他们进行复杂的科 学和工程计算精度高,在实 际的部分,提供了一种快速 计算的物理特性,来创建模 型的联系实际部分是由之前 提供一个快速简便的方法, 创造最复杂的零件模型的简 易方法。电脑已经影响到了 产品设计的方式,记录和发 布生产。随着技术的发展, 工程业务越来越自动化,许 多繁琐的人工计算工程师。 1.1.5企业在今天的制造环 境,计算机在支持各种业务 功能中扮演着重要的角色。 在制造企业中的关键业务职 能,典型的是生产计划与控 制,财务会计,销售管理, 维护调度和控制,管理信息 系统,数据处理,和产品规 划。计算机协助或帮助在这 些函数中执行各种 operationd应用称为计算机 辅助业务室)。 P9 电脑是影响制造企业开展业 务的方式的改变和管理生产 函数。电脑有助于通过有效 的管理为目标的完成计划。 他们协助规划和建立在哪 里,如何,当各种各样的活 动,是一个长期计划的一部 分进行。他们帮助规划者产 生优化的调度,提高生产线 的效率,并使用制造资源计 划(MRPⅡ),这是一个正式 的规划和管理一个生产函数 的资源系统。 计算机的使用已经超越了计 算工资或花哨的电动打字 机,可以通过纸的吨产品报 告。计算机已导致许多劳动 密集型任务的救济,复杂的 程序,协助设计过程和工厂 自动化。 计算机改变生产组织的内部 结构,他们的操作方法,以 及他们对社会的外部关系。 他们协助所有制造业务。在 这种情况下,所有的活动都 发生在工程在新产品构思, 然后呈现给潜在客户。计算 机有一个关键的作用,而且 是计算机图形学的一个核心 工具。它是在概念或初步设 计迭代开发产品后进行迭代 的惯例。分析与仿真的方法 也借鉴了计算机支持。使用 图形软件包提供了这些功 能,或者它的接口程序,将 提供这些功能。当一个概念 被卖给一个客户,程序控制 开发项目的所有功能的主计 划和预算。设计并生产的肉 对骨骼的概念。制造工程准 备工具计划和工艺方案。材 料采购订单在物料清单 (BOM)的定义。工具设计 准备设计完成生产计划和工 具制造构建工具。然后生产 控制问题的制造和装配订单 确保P是在正确的地方在正 确的时间和一个产品是 created.quality 保证检查零件和装配体与工 程一致性 P10 定义的产品,并交付给客户 完成。 整个过程的核心是工程设 计。整合需要工程设计的所 有用户,甚至工程本身,与 主图文件在导致最终产品的 事件链的数据提取接口功 能。还有其他的协助这个过 程。典型的如工具NC处理 器,图形系统,工程/科学CAD /CAM处理器,工作站,和 有限元求解器。 1.6制造系统的计算机控制 计算机控制的制造系统利用 计算机作为控制的一个组成 部分。因此,计算机控制是 通过产品设计在现代制造自 动化产品从概念使用,所有 的操作过程,包括产品的运 输和支持。他们控制的独立 的系统,如机器人焊接,喷 漆,加工计划,加工。他们 提供的资源利用最优控制生 产销售的产品组合以满足销 售预测,为公司创造利润。 他们控制的复杂系统,如自 动存储/检索系统(AS / RS), 自动导引车系统(AGVS),柔 性制造系统(FMS)。这些概 念将在后面章节讨论。 计算机控制系统已经开始控 制了整个生产周期的许多操 作,运行的生产线,并在整 个工厂的控制。更具挑战性 的是计算机控制的数据通 信,数据库的管理和使用, 在整个企业自动化的许多岛 屿的整合。 未来的工厂建在一个集成的 控制系统(ICS)的概念,在 制造一个新的推力开始意味 着控制概念的一个显着的变 化。 1.6.1计算机集成控制系统 一个集成的理念是绑在一起 的业务子系统, P11 工程和生产,在整个生产周 期来创建一个平滑的制造业 务,是machine.121,ICS占 所有变量在做生意的过程 中,这些变量之间的相互关 系。 集成控制系统是针对改变控 制词义的细微差别的概念是 在制造企业中的各种功能的 应用。他们也针对捆绑在一 起的生产产品所需要的企业 和各种处理功能的管理目

《船体结构与强度设计》习题题目练习

《船体结构与强度设计》复习题 一、判断题 1、长期以来,总强度一直是船体结构强度校核的主要方面。(√) 2、强度标准设计又称为计算设计方法,是目前应用比较广泛的方法。(√) 3、船舶除具有一定的强度外,还必须具有一定的刚度。(√) 4、对那些抗扭刚度较低的船体来说,扭转强度的研究就显得十分必要。(√) 5、在单跨梁的弯曲理论中,我们规定弯矩在梁的左断面逆时针为正,在梁的右断面顺时针为正,反之为负。(√) 6、在材料力学中,多数是根据剪力方程与弯矩方程或根据载荷、剪力与弯矩三者之间的微积分关系来画剪力图与弯矩图,在结构力学中也是一样。(×) 7、通过在方程中引入初始点的弯曲要素值来求解梁挠度曲线方程的方法叫做“初参数法”。(√) 8、如果梁上受到几个载荷共同作用时,就可以用“叠加原理”来进行计算。(√) 9、求解静不定梁往往是利用弯曲要素表,并通过变形协调条件来进行,而不能利用“初参数法”。(×) 10、在船体结构中,除了少数的桁架结构外,大多数的结构都是以弯曲变形为主的静不定杆系,例如连续梁、刚架及板架等属于这类杆系。(√) 11、变形连续条件就是变形协调条件。(√) 12、交叉梁系中不受任何外载荷作用的杆系称为无载杆。(√) 13、从原则上讲,力法可以解一切静不定结构。(√) 14、在船体结构计算中,常将甲板纵骨与船底纵骨视作连续梁,而甲板横梁与船底肋板作为它们的弹性支座。(×) 15、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 16、位移法中关于弯曲要素正负号的规定与力法中的规定一样。(×) 17、节点平衡方程又叫位移法方法,且此方程为正则方程。(√) 18、在弯矩分配法基本结构下,连接于节点的各杆杆端的固端弯矩一般来说相互平衡,即作用于节点上的固端弯矩之和等于零。(×) 19、和位移法相比,弯矩分配法可以使问题简单化,因为绕过了求节点转角这一步而直接求出杆端弯矩。(×) 20、正则方程就是力的互等定理的反应。(√) 21、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 22、最小变形能定理,又称最小功原理,是莫尔定理的特殊情况。(×) 23、广义位移应理解为杆件在变形中广义力作用点处沿力作用方向的位移,广义力与广义位移永远成线性关系。(×) 24、运用能量法能够解决结构的位移问题,也能解决静不定问题。(√) 25、若杆件横断面对于两个主对称轴的惯性矩不同,则杆在失稳时总是在刚度最大的平面中弯曲。(×) 26、在造船界,通常把杆件在弹性范围外失稳的力叫做临界力,以区别弹性范围内失稳的欧拉力。(√) 27、对于高强度钢与普通钢,虽然具有相同的弹性模量,但具有不同的屈服极限,因此用这两种材料做成的杆件,尽管其断面形式相同、跨度相同、固定情况相同,他们的欧拉力是不同的。(×) 28、对于任意多跨连续梁,只要其每个跨度是等距、等断面的,并且两端是自由支持的,这时不论跨度有多少,其欧拉力都等于每跨单独时的欧拉力。(√)

我国先进制造技术发展概述

我国先进制造技术发展概述 摘要:简要介绍了先进制造技术的结构体系、分类、特点,以及我国先进制造技术的概况,详细阐述了先进制造技术的发展趋势,指出了我国先进制造技术与先进国家相比所存在的差距,并提出了相应的解决措施。 关键词:先进制造技术;发展趋势;概述 Abstract:Briefly introduced the structure system,the classification, and the characteristic of Advanced Manufacturing Technology and the survey of our country,elaborated the trend of development in detail.And pointed out the disparity between our country and the advanced countries,and proposed the corresponding solution measure. Key words:Advanced manufacturing technology;Trend of development;Survey; 1.引言 制造业是现代国民经济和综合国力的重要支柱,其创造了国民生产总值1/3,工业生产总值的4/5,提供了国家财政收入的1/3。由此可见,制造技术的水平将对一个国家的经济实力和科技发展的水平产生重要的影响。制造技术尤其是先进制造技术将主宰一个国家的命运,因而,各国政府都非常重视先进制造技术的研究和发展。先进制造技术AMT(advanced manufacturing technology)是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高对动态多变的产品市场的适应能力和竟争能力的制造技术的总称。先进制造技术源于20世纪80年代的美国,是为提高制造业的竞争力和促进国家经济增长而提出。同时,以计算机为中心的新一代信息技术的发展,推动了制造技术的飞跃发展,逐步形成了先进制造技术的概念。近年来,随着科学技术的不断发展和学科间的相互融合,先进制造技术迅速发展,不断涌现出新技术、新概念。例如:成组技术(GT)、精益生产(LP)、并行工程(CE)、敏捷制造(AM)、快速成型技术(RPM)、虚拟制造技术(VMT)等。先进制造技术是发展国民经济的重要基础技术之一,对我国的制造业发展有着举足轻重的作用。尤其在经济全球化条件下,随着国际分工的深化,出现国际产业大转移、制造业布局大调整的趋势。其中广泛采用先进制造技术和先进制造模式,是当今国际制造业发展的突出现象。以制造业快速发展为标志的工业化阶段,是经济发展的必经阶段。把握先进制造业的发展趋势,借鉴有益的国际经验对于我国实施“十二五”发展战略,推动制造业转型升级,具有重要的现实意义。 2.先进制造技术概述 2.1先进制造技术的体系结构及分类 先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。 三个层次:一是优质、高效、低耗、清洁的基础制造技术。这一层次的技术是先进制造技术的核心,主要由生产中大量采用的铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺优化而成。二是新型的制造单元技术。这是制造技术与高技术结合而成的崭新制造技术。如制造业自动化单元技术、极限加工技术、质量与可靠性技术、新材料成型与加工技术、激光与高密度能源加工技术、清洁生产技术等。三是先进制造的集成技术。这是运用信息技术和系统管理技术,对上述两个层次进行技术集成的结果,系统驾驭生产过程中的物质流、能量流和信息流。如成组技术(CT)、系统集成技术(SIT)、独立制造岛(AMI)、计算机集成制造系统(CIMS)等。 四个大类:一是现代设计技术,是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术等;二是先进制造

船体强度与结构设计 复习精选.

绪论 一.填空 1. 作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷和局部性载荷。 2. 作用在船休结构上的载荷,按载荷随时间变化的性质,可分为;不变载荷、静变载荷、动变载荷和冲击载荷。 二.概念题: 1. 静变载荷等等 三.简答题: 1.船体强度研究的内容有哪些?2.作用在船体结构上的载荷如何进行分类?试说明。3.为什么要对作用在船体结构上的载荷进行分类? 4.结构设计的基本任务和内容是什么? 第一章: 一、填空题 1. 船体重量按分布情况来分可以分为:总体性重量、局部性重量。 2. 对于计算船体总纵强度的计算状态,我国《钢质海船入级和建造规范》中规定,选取满载:出港、到港;压载:出港、到港;以及装载手册中所规定的各种工况作为计算状态。 3. 计算波浪弯矩的传统标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4. 计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种,直接法又称为麦卡尔法。 5. 计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对浮力曲线所作的修正,称为波浪浮力修正,或称史密斯修正。 二、概念题: 1. 船体梁 2. 总纵弯曲 3. 总纵弯曲强度 4. 重量曲线 5. 浮力曲线 6. 荷载曲线 7. 静水浮力曲线8. 静水剪力、弯矩曲线9. 波浪附加浮力10. 波浪剪力11. 波浪弯矩 12. 静波浪剪力13. 静波浪弯矩14. 静置法15. 静力等效原则16. 史密斯修正 二、简答题: 1. 在船体总纵弯曲计算中,计算总纵剪力及弯矩的步骤和基本公式是什么? 2. 在船体总纵弯曲计算中重量的分类及分布原则是什么? 3. 试推导在两个及三个站距内如何分布局部重量。 4. 空船重量曲线有哪几种计算绘制方法?试推导梯形重量分布的计算公式。 5. 教材中,静水剪力、静水弯矩的计算采用的是什么方法?静波浪剪力、静波浪弯矩的计算采用的是什么方法?两种方法可以通用吗(计算方法唯一吗)? 6. 波浪浮力曲线需要史密斯修正吗?为什么? 第二章: 一、填空题 1. 纵向连续并能有效传递总纵弯曲应力的构件称为纵向强力构件。 2. 构成船体梁上冀板的最上层连续甲板通常称为强力甲板。 3. 在确定板的临界应力时,通常不考虑材料不服从虎克定律对稳定性的影响。 4. 在船体构件的稳定性检验和总纵弯曲应力的第二次近似计算中,需要对失稳的船体板进行剖面面积折减,折减时首先需要将纵向强力构件分为刚性构件和柔性构件两类。 5. 外板同时承受总纵弯曲、板架弯曲、纵骨弯曲及板的弯曲的纵向强力构件称为第四类构件。 6. 船体总纵弯曲时的挠度,可分为弯曲挠度和剪切挠度两部分来计算。 7. 为了按极限弯矩检验船体强度,须将所得的极限弯矩Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M≥n,n称为强度储备系数。

先进制造技术文献综述详解

摘要:介绍了电火花加工控制涉及的主要问题及放电状态检测方法。详细论述了近20年来自适应控制、模糊控制、神经网络控制、遗传算法、专家系统、混合智能控制等在电火花加工中的研究状况。对电火花加工过程中控制变量的优化及过程监测与控制等进行了讨论,就控制技术在电火花加工中的发展趋势进行了展望。 关键词: 电火花加工;自适应控制;模糊控制;人工神经网络控制;混合智能控制 一、前言 经过半个多世纪的研究和开发,电火花加工已成为制造业中一种重要的加工手段,在机械、宇航、电子、仪器、轻工、汽车等领域获得了广泛的应用。然而,电火花加工过程是一个典型的非线性过程[1],影响加工过程的因素很多,其中主要是电源参数和伺服运动参数。电源参数主要包括开路电压、电流、脉冲宽度、脉冲间隔、间隙平均电压、电极放电时间周期等;伺服运动参数包括电极抬刀周期、电极抬刀高度和抬刀速度等;还有其他因素如:工件材料、放电点分布情况、加工深度、电介质浓度、有无冲油等。这些因素相互影响、相互制约,造成了电火花加工过程控制的复杂性。 二、正文 本文将介绍电火花加工涉及的主要控制问题和目前的状态检测技术,然后分别叙述6种控制方式(自适应控制、模糊控制、神经网络控制、遗传算法、专家系统、混合智能控制)在电火花加工过程中的应用情况。 1 电火花加工控制技术 1.1 电火花加工中的主要控制问题 控制对电火花加工质量的优劣一直起着举足轻重的作用,电火花加工过程需解决的主要控制问题有[2]: (1)为了形成有效的放电脉冲,工具电极和工件被加工表面之间必须保持一定的放电间隙,故需控制极间间隙的伺服运动。 (2)要形成稳定、高效的电火花加工,火花放电必须为瞬时的脉冲性放电,故电火花加工必须采用脉冲电源。而脉冲电源的各参数(如:极性、脉宽、脉间、电流幅度)与加工状态及加工

船体主要构件结构图

船舶各部位名称如图所示。船的前端叫船首(stem);后端叫船尾(stern);船首两侧船壳板弯曲处叫首舷(bow);船尾两侧船壳板弯曲处叫尾舷(quarter);船两边叫船舷(ships side);船舷与船底交接的弯曲部叫舭部(bilge)。 连接船首和船尾的直线叫首尾线(fore and aft line center line,centre line)。首尾线把船体分为左右两半,从船尾向前看,在首尾线右边的叫右舷(starboard side);在首尾线左边的叫左舷(port side)。与首尾线中点相垂直的方向叫正横(abeam),在左舷的叫左正横;在右舷的叫右正横。

船体水平方向布置的钢板称为甲板,船体被甲板分为上下若干层。最上一层船首尾的统长甲板称上甲板(upper deck)。这层甲板如果所有开口都能封密并保证水密,则这层甲板又可称主甲板(main deck),在丈量时又称为量吨甲板。 少数远洋船舶在主甲板上还有一层贯通船首尾的上甲板,由于其开口不能保证水密,所以只能叫遮蔽甲板(shelter deck)。 主甲板把船分为上下两部分,在主甲板以上的部分统称为上层建筑;主甲板以下部分叫主船体。 在主甲板以下的各层统长甲板,从上到下依次叫二层甲板、三层甲板等等。在主甲板以上均为短段甲板,习惯上是按照该层甲板的舱室名称或用途来命名的。如驾驶台甲板(bridge deck)、救生艇甲板(life-boat deck)、等等 。 在主船体内,根据需要用横向舱壁分隔成很多大小不同的舱室,这些舱室都按照各自的用途或所在部位而命名,如图1-18所示,从首到尾分别叫首尖舱、锚链舱、货舱、机舱、尾尖舱和压载舱等。在

相关文档
最新文档