减速器斜齿圆柱齿轮传动的设计计算
圆柱斜齿轮传动的设计计算

1.1.1 圆柱斜齿轮传动的设计计算已知输入功率1 1.5kWP =(略大于小齿轮的实际功率),小齿轮的转速为:12800rpm n =,大齿轮的转速为2560rpm n =,传动比5i =。
1.选定齿轮类型、精度等级、材料及齿数(1)由于第二级为圆锥齿轮传递,为了平衡锥齿轮传动对第二轴产生的轴向力,第一级传动设计为斜齿轮传动。
(2)叉车车速不高,为一般机械,故选用8级精度。
(3)材料选择,小齿轮材料为40Cr (正火),硬度为280HBW ,大齿轮材料为45钢(调质),硬度为240HBW ,二者材料硬度相差40HBW ,在30~50HBW 范围内。
(4)选小齿轮齿数12117,51785z z u z ==⋅=⨯=则,为了延长齿轮工作寿命,1z 和2z 尽量互质,所以校正2z 值,取284z =, 4.94u =。
2.按齿面接触疲劳强度设计因为是软齿面传动,故按齿面接触疲劳强度进行设计。
公式如下:1d ≥(5-1) 式中各参数为: (1)小齿轮传递的转矩 ()66111 1.5/N mm 9.55109.55105116.12800P T n ⋅=⨯=⨯⋅= (5-2) (2)设计时,因为v 值未知,v K 不能确定,故可初选载荷系数 1.1~1.8t K =,本设计中初选 1.4t K =。
(3)选取齿宽系数 1d φ=。
(4)查得材料弹性影响系数E Z =(5)初选螺旋角12β=︒,由机械手册查得节点区域系数 2.46H Z =。
(6)由选定齿数及齿数比,得端面重合度:121111=1.88 3.2cos 1.88 3.2cos12 1.631784z z αεβ⎡⎤⎛⎫⎡⎤⎛⎫-+=-+︒=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎣⎦ (5-3) 得轴面重合度:10.318tan 0.318117tan12 1.53d z βεφβ==⨯⨯⨯︒= (5-4)由机械手册查得重合度系数0.768Z ε=。
减速器斜齿圆柱齿轮传动的设计计算

减速器斜齿圆柱齿轮传动的设计计算设计和计算减速器斜齿圆柱齿轮传动的步骤如下:1.确定传动比:减速器的传动比是由齿轮的齿数确定的。
假设需要的传动比为n,即输入齿轮的齿数与输出齿轮的齿数之比,可根据应用需求确定。
2.确定输入齿轮和输出齿轮的模数:模数是齿轮齿数与齿轮直径的比值,一般用m表示。
通过传动比和齿轮的齿数可以计算出输入齿轮和输出齿轮的模数。
3.确定输入齿轮和输出齿轮的分度圆直径:分度圆直径是齿轮齿顶和齿底的圆周上的直径。
分度圆直径可通过模数和齿数计算得出。
4.确定输入齿轮和输出齿轮的齿宽:齿宽是齿轮齿廓的宽度,也是齿轮传动中齿轮接触面积的重要参数。
齿宽一般需根据应用负载、传动功率、齿轮材料等因素进行估算和确定。
5.确定输入齿轮和输出齿轮的齿数:通过传动比和齿轮的模数计算出输入齿轮和输出齿轮的齿数。
6.计算输入齿轮和输出齿轮的齿廓曲线:齿轮的齿廓曲线决定了齿轮的传动性能。
常见的齿廓曲线有直线齿廓、渐开线齿廓等,齿轮选择时根据应用需要进行选择。
7.计算输入齿轮和输出齿轮的轴向模数:轴向模数是齿轮齿厚度的参数,可通过齿宽和齿轮的齿数计算得出。
8.校核输入齿轮和输出齿轮的强度:校核齿轮的强度是确保减速器传动可靠性和寿命的重要步骤。
校核齿轮的强度包括弯曲强度校核、接触疲劳强度校核等。
根据应用条件和齿轮材料可进行强度校核。
9.计算输入齿轮和输出齿轮的啮合效率:啮合效率是齿轮传动中能量的转换效率。
齿轮传动的效率取决于齿轮材料、润滑状况、齿轮齿型等因素。
通过计算可确定齿轮传动的啮合效率。
10.校核输入齿轮和输出齿轮的动态性能:校核齿轮的动态性能是确保减速器传动平稳性和减振性的重要步骤。
动态性能校核包括齿轮的动载荷分析、振动分析等。
以上是减速器斜齿圆柱齿轮传动设计计算的基本步骤和内容。
根据具体应用情况,还可进行其他设计计算,例如齿轮材料的选择、润滑方式的选择等。
设计计算的准确性和合理性对减速器的使用寿命和可靠性有重要影响,因此需要在设计过程中严格按照相关规范和标准进行。
斜齿圆柱齿轮的参数及几何尺寸计算

斜齿圆柱齿轮的参数及⼏何尺⼨计算9.9.2 ◆斜齿圆柱齿轮的参数及⼏何尺⼨计算◆ 斜齿轮的轮齿为螺旋形,在垂直于齿轮轴线的端⾯(下标以t 表⽰)和垂直于齿廓螺旋⾯的法⾯(下标以n 表⽰)上有不同的参数。
斜齿轮的端⾯是标准的渐开线,但从斜齿轮的加⼯和受⼒⾓度看,斜齿轮的法⾯参数应为标准值。
1.螺旋⾓β 右图所⽰为斜齿轮分度圆柱⾯展开图,螺旋线展开成⼀直线,该直线与轴线的夹⾓β称为斜齿轮在分度圆柱上的螺旋⾓,简称斜齿轮的螺旋⾓。
tan β=πd/ps对于基圆柱同理可得其螺旋⾓βb 为:所以有: ...(9-9-01) 通常⽤分度圆上的螺旋⾓β斜进⾏⼏何尺⼨的计算。
螺旋⾓β越⼤,轮齿就越倾斜,传动的平稳性也越好,但轴向⼒也越⼤。
通常在设计时取 。
对于⼈⼦齿轮,其轴向⼒可以抵消,常取 ,但加⼯较为困难,⼀般⽤于重型机械的齿轮传动中。
齿轮按其齿廓渐开螺旋⾯的旋向,可分为右旋和左旋两种。
如何判断左右旋呢? 测试⼀下? 2.模数如图所⽰,pt 为端⾯齿距,⽽pn 为法⾯齿距,pn = pt·cos β,因为p=πm, πmn =πmt·cos β,故斜齿轮法⾯模数与端⾯模数的关系为: mn =mt·cos β。
3.压⼒⾓因斜齿圆柱齿轮和斜齿条啮合时,它们的法⾯压⼒⾓和端⾯压⼒⾓应分别相等,所以斜齿圆柱齿轮法⾯压⼒⾓αn 和端⾯压⼒⾓αt 的关系可通过斜齿条得到。
在右图所⽰的斜齿条中,平⾯ABD 在端⾯上,平⾯ACE 在法⾯S 上,∠ACB=90°。
在直⾓△ABD 、△ACEJ 及△ABC 中,、、、BD=CE ,所以有: ... (9-9-03) >>法⾯压⼒⾓和端⾯压⼒⾓的关系<< 4.齿顶⾼系数及顶隙系数齿顶⾼系数及顶隙系数:⽆论从法向或从端⾯来看,轮齿的齿顶⾼都是相同的,顶隙也是相同的,即 5.斜齿轮的⼏何尺⼨计算斜齿轮的⼏何尺⼨计算:只要将直齿圆柱齿轮的⼏何尺⼨计算公式中的各参数看作端⾯参数,就完全适⽤于平⾏轴标准斜齿轮的⼏何尺⼨计算,具体计算公式如下表所⽰: 名 称 符 号 公 式 分度圆直径d d=m z =(m n /cos β)z 基圆直径d b d b =dcos αt 齿顶⾼h a h a =h*an m n 齿根⾼h f h f =(h*an +c*n )m n 全齿⾼h h=ha+h f (2h*an +c*n )m n 齿顶圆直径d a d a =d+2ha 中⼼距a a=(d 1+d 2)/2=m n (z 1+z 2)/2cos β从表中可以看出,斜齿轮传动的中⼼距与螺旋⾓β有关。
斜齿圆柱齿轮计算公式大全

斜齿圆柱齿轮计算公式大全斜齿圆柱齿轮是一种常见的传动元件,广泛应用于机械设备中。
在齿轮计算中,需要掌握一些重要的公式,以下为大家介绍一些常用的斜齿圆柱齿轮计算公式。
一、基本参数计算公式1.齿比(传动比):i=z2/z1,其中z1为小齿轮的齿数,z2为大齿轮的齿数。
2.传动比误差:δi=(i1-i2)/i1×100%,其中i1为理论传动比,i2为实际传动比。
3.中心距:a=(m1+m2)/2×cosα,其中m1、m2为两轮齿距离,α为齿轮锥角。
4.渐开线长度:L=π(m1+m2)/2×(z1+z2)/(2×cosα)。
5.公法线长度:LG=π(m1+m2)/2×(z1+z2)/(2×cosα×cosβ),其中β为齿轮斜角。
二、齿形参数计算公式1.齿顶高:h1=m1+α×(1+εα)×(z1/2+1),其中εα为齿顶圆偏差系数。
2.齿根高:h2=m1+α×(1+εα)×(z1/2-1),其中εα为齿根圆偏差系数。
3.齿顶圆直径:d1=m1×z1/cosα,其中m1为模数。
4.齿根圆直径:d2=d1-2×h1,其中h1为齿顶高。
5.安全系数:K=Ys/ZE,其中Ys为击穿强度,ZE为齿展强度。
三、载荷参数计算公式1.齿面载荷:Ft=[2×T/(d1+d2)]×cosα,其中T为扭矩。
2.弯曲应力:σH=Ft×K1/b,其中K1为载荷分配系数。
3.接触应力:σZ=Ft×K2/(b×cosα),其中K2为接触系数,b为齿宽。
以上为斜齿圆柱齿轮常用的计算公式,掌握这些公式能够更好地进行齿轮设计及计算。
在实际应用中,需要根据具体的情况灵活运用这些公式,以确保齿轮的可靠性和安全性。
二级斜齿圆柱齿轮减速器(课程设计说明书)

机械设计基础课程设计名称:二级斜齿轮减速器学院:机械工程学院专业班级:过控071学生姓名:乔国岳学号:2007112036指导老师:成绩:2009年12月27日目录机械设计课程设计任务书 (1)1绪论 (2)1.1 选题的目的和意义 (2)2确定传动方案 (4)3机械传动装置的总体设计 (4)3.1 选择电动机 (4)3.1.1 选择电动机类型 (4)3.1.2 电动机容量的选择 (4)3.1.3 电动机转速的选择 (5)3.2 传动比的分配 (6)3.3计算传动装置的运动和动力参数 (7)3.3.1各轴的转速: (7)3.3.2各轴的输入功率: (7)3.3.3各轴的输入转矩: (7)3.3.4整理列表 (8)4 V带传动的设计 (8)4.1 V带的基本参数 (8)4.2 带轮结构的设计 (11)5齿轮的设计 (12)5.1齿轮传动设计(1、2轮的设计) (12)5.1.1 齿轮的类型 (12)5.1.2尺面接触强度较合 (13)5.1.3按轮齿弯曲强度设计计算 (14)5.1.4 验算齿面接触强度 (16)5.1.5验算齿面弯曲强度 (17)5.2 齿轮传动设计(3、4齿轮的设计) (17)5.2.1 齿轮的类型 (17)5.2.2按尺面接触强度较合 (18)5.2.3按轮齿弯曲强度设计计算 (19)5.2.4 验算齿面接触强度 (22)5.2.5验算齿面弯曲强度 (23)6轴的设计(中速轴) (23)6.1求作用在齿轮上的力 (23)6.2选取材料 (24)6.2.1轴最小直径的确定 (24)6.2.2根据轴向定位的要求,确定轴的各段直径和长度 (24)6.3键的选择 (25)6.4求两轴所受的垂直支反力和水平支反力 (25)6.4.1受力图分析 (25)6.4.2垂直支反力求解 (26)6.4.3水平支反力求解 (27)6.5剪力图和弯矩图 (27)6.5.1垂直方向剪力图 (27)6.5.2垂直方向弯矩图 (27)6.5.3水平方向剪力图 (29)6.5.4水平方向弯矩图 (29)6.6扭矩图 (30)6.7剪力、弯矩总表: (31)6.8 按弯扭合成应力校核轴的强度 (32)7减速器附件的选择及简要说明 (32)7.1.检查孔与检查孔盖 (32)7.2.通气器 (32)7.3.油塞 (33)7.4.油标 (33)7.5吊环螺钉的选择 (33)7.6定位销 (33)7.7启盖螺钉 (33)8减速器润滑与密封 (34)8.1 润滑方式 (34)8.1.1 齿轮润滑方式 (34)8.1.2 齿轮润滑方式 (34)8.2 润滑方式 (34)8.2.1齿轮润滑油牌号及用量 (34)8.2.2轴承润滑油牌号及用量 (34)8.3密封方式 (34)9机座箱体结构尺寸 (35)9.1箱体的结构设计 (35)10设计总结 (37)11参考文献 (39)机械设计课程设计任务书一、设计题目:设计一用于带式输送机传动用的二级斜齿圆柱齿轮展开式减速器给定数据及要求:设计一用于带式运输机上的展开式两级圆柱斜齿轮减速器。
二级斜齿圆柱齿轮减速器中间轴设计

二级斜齿圆柱齿轮减速器中间轴设计一、引言二级斜齿圆柱齿轮减速器是一种常用的机械传动装置,广泛应用于各种机械设备中。
其中的中间轴起到了支撑和传递动力的作用,因此中间轴的设计对于减速器的性能和可靠性至关重要。
本文旨在设计一根合适的中间轴,以实现减速器的正常工作。
二、中间轴的选材中间轴承受着较大的转矩和弯曲应力,因此选材要求较高。
常见的中间轴材料有45钢、40Cr等。
根据实际工作条件和要求,本文选用40Cr 作为中间轴材料。
三、中间轴的尺寸计算1.中间轴的直径:中间轴的直径要满足以下两个条件:a.弯曲极限:根据中间轴所承受的弯曲力矩可以计算出中间轴的最大弯曲应力,然后通过材料弯曲强度即可得到合适的中间轴直径。
可以使用以下公式计算中间轴的最大弯曲应力:σb=M/((π/32)*d^3)其中,σb为最大弯曲应力,M为弯曲力矩,d为中间轴的直径。
b.米式刚度:中间轴的直径还要满足根据传递的扭矩计算出的最小直径要求。
可以使用以下公式计算中间轴的最小直径:d=K*(T/τa)^((1/3)*(1/β))其中,d为中间轴的直径,K为系数,取决于传动轴的受力情况,T 为传递的扭矩,τa为中间轴的允许集中应力,β为中间轴的长径比。
根据以上两个条件计算中间轴的直径,取其中较大的值作为中间轴的直径。
2.中间轴的长度:中间轴的长度主要由传动部件的支撑范围和装配空间来确定。
一般情况下,中间轴的长度应略大于传动部件的总宽度。
四、中间轴的轴段设计中间轴一般由若干个轴段组成,每个轴段之间通过轴肩连接。
轴段之间的轴肩主要用于传递力矩,其设计需要满足以下约束条件:1.强度约束:轴肩的直径要满足传递的最大扭矩和材料的剪切强度要求。
可以使用以下公式计算轴肩的直径:d=((16*T)/(π*τs))^0.25其中,d为轴肩的直径,T为传递的扭矩,τs为材料的剪切强度。
2.轴肩长度:轴肩的长度需要满足传递的力矩和材料的剪切约束。
可以使用以下公式计算轴肩的长度:l=(16*T)/(π*τs*d^3)其中,l为轴肩的长度,T为传递的扭矩,τs为材料的剪切强度,d 为轴肩的直径。
二级展开式斜齿圆柱齿轮减速器设计说明书(表格式)

(一)电机的选择(2)计算传动装置总传动比ⅰ∑,分配传动比(3)计算传动各轴的运动和动态参数(4) 高速斜圆柱齿轮传动的设计计算(5) 低速斜圆柱齿轮传动的设计计算(6)齿轮的主要参数(7) 中间轴的设计(8) 高速轴设计(9) 低速轴设计(10)箱体结构及减速机附件设计箱体配件设计1)窥视孔和窥视孔盖窥视孔用于观察运动部件的啮合情况和润滑状态,也可通过其注入润滑油。
为了方便查看和注油,一般在接合区的盖子顶部开一个窥视孔。
窥视孔通常用盖子覆盖,称为窥视孔盖。
窥视孔盖底部有防油橡胶垫缓冲,防止漏油2) 呼吸由于传动部件在运行过程中会产生热量,使箱体温度升高,压力增大,所以必须使用通风机来连通箱外的气流,以平衡外部压力,保证减速箱的密封性.呼吸器设置在箱盖上3) 起重装置起重装置用于减速机的拆卸和搬运。
盖子使用耳环,底座使用挂钩。
4) 油标油标用于指示油位的高度,应设置在易于检查且油位稳定的地方。
5) 油塞和放油孔为了排出箱体的废油,在箱体座面的最低处应设置排油孔,箱体座底面也做成一个向排油方向倾斜的平面洞。
通常,放油孔用油塞和密封圈密封。
.油塞直径为12mm。
6) 定位销为保证箱体轴承座孔的镗孔精度和装配精度,在箱体连接法兰上距离较远的地方放置了两个定位销,并尽量不对称放置,以方便定位准确。
针A8×327) 提起盖板螺丝为了方便掀盖,在箱盖侧面的法兰上安装一个盖螺丝。
掀盖时,先转动盖螺丝将箱盖掀起。
(11) 参考文献1.《机械设计》(第八版),高等教育部濮良贵主编;2.《机械设计课程设计图集》,巩立毅主编,高等教育;3.《机械设计课程设计指南》宋宝玉,高等教育学主编;4.《机械设计课程设计手册》吴零盛国主编高等教育;。
单级斜齿圆柱齿轮减速器的设计计算说明书

课程设计指导课程名称:机械零件课程设计标题:带式输送机齿轮减速器班级:X班,XXXX,XXXX专业姓氏:XXXX编号:XXXXX讲师:XXXXX评估结果:老师的评语:讲师签名:目录一、设计任务书二。
设计目的三。
运动参数的计算、原动机的选择四。
链传动的设计和计算齿轮传动的设计和计算不及物动词轴的设计与计算低速轴的设计高速轴的设计和检查七。
检查滚动轴承的选择八。
键的选择和检查九。
联轴器的选择和计算XI。
润滑方式、润滑油品牌和密封装置的选择十二。
设计总结十三。
参考文献一.程序1.设计题目:带式输送机齿轮减速器2.传动装置示意图1.马达2。
耦合3。
单级螺旋圆柱形减速器4。
链传动5。
驱动辊6。
移动带3.使用条件1)使用寿命10年,两班倒(每年300天);2)负荷有轻微冲击;3)运输物品和货物;4)传输不可逆。
4.原始条件1)工作机输入功率为3.5KW2)工作机的输入速度为160转/分。
二。
设计目标(1)培养理论联系实际的设计思想,分析解决机械设计、选型、验算的知识。
(2)培养学生的机械设计技能,使其能够独立分析和解决问题。
树立正确的设计思想,重点学习典型齿轮减速器的工作原理和动态计算特点,为以后的实际工作打下基础。
(3)基本设计技能的培训,如查阅设计资料(手册、标准和法规等。
),计算、应用和使用经验数据,进行经验估计和处理数据。
进一步培养学生的CAD制图能力和撰写设计说明书等基本技能。
完成工程技术人员在机械设计方面所必需的设计能力的培训。
3.运动参数的计算和原动机的选择。
一、电机的选择1.运动参数的计算和电机的选择。
(1)查表可知各传动机构的传动效率如下表所示:效率因此,机构的总传动效率由上表计算得出。
总计= 0.992×0.99×0.97×0.96×0.97×0.96 = 0.84计算电机功率电力=3.5/0.84=4.17(千瓦)(2)选择电机a)根据电机转速、电机所需工作功率Pd,考虑传动装置尺寸、重量传动比、价格等因素,根据《机械设计手册》第167页表12-1,电机型号为Y132S1-2,额定功率5.5KW,满载转速2900 r/min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减速器斜齿圆柱齿轮传动的设计计算一、高速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。
(2)运输装置为一般工作机器,速度不高,故选用7级精度。
(3)材料选择:查表可选择小齿轮材料为40Cr (调质),硬度为280HBS ;大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。
(4)选小齿轮齿数120Z =,大齿轮齿数2 4.2432085Z =⨯=,取285Z = (5)选取螺旋角,初选螺旋角14β=2、按齿面接触强度设计,按计算式试算即1t d ≥(1)确定公式内的各计算数值①试选 1.6t k =,由图10-2610.740αε=,20.820αε=则有12 1.560αααεεε=+= ②小齿轮传递转矩187.542T N m=③查图10-30可选取区域系数 2.433H Z = 查表10-7可选取齿宽系数1d Φ= ④查表10-6可得材料的弹性影响系数12189.8E Z MP =。
⑤查图10-21d 得按齿面硬度选取小齿轮的接触疲劳强度极限lim1600H a MP σ=,大齿轮的接触疲劳强度极限lim 2550H a MP σ=。
⑥按计算式计算应力循环次数()811606057612830058.29410h N n jL ==⨯⨯⨯⨯⨯⨯=⨯8828.29410 1.95104.243N ⨯==⨯⑦查图可选取接触疲劳寿命系数1 1.02HN k =,2 1.12HN k =。
⑧计算接触疲劳许用应力取失效概率为1%,安全系数1S =,按计算式(10-12)得[]1lim11 1.02600612HN H H a k MP Sσσ==⨯= []2lim22 1.12550616HN H H a k MP Sσσ==⨯=(2)计算相关数值①试算小齿轮分度圆直径1t d ,由计算公式得150.07t d mm ≥=②计算圆周速度1150.075761.509601000601000t d n v m s ππ⨯⨯===⨯⨯③计算齿宽b 及模数nt m1150.0750.07d t b d mm =Φ=⨯=11cos 50.07cos14 2.42920t nt d m mm Z β⨯=== 2.25 2.25 2.429 5.466nt h m mm mm ==⨯=50.079.165.466b h == ④计算总相重合度βε10.318tan 0.318120tan14 1.586d Z βεβ=Φ=⨯⨯⨯=⑤计算载荷系数k查表可得使用系数1A k =,根据 1.509v m s =,7级精度,查表10-8可得动载系数 1.07V k =,由表10-4查得H K β的值与直齿轮的相同,为 1.4191.350F k β=, 1.4H F k k αα==[][][]1261261661422H H H aMP σσσ++===故载荷系数1 1.07 1.4 1.419 2.126A V H H k k k k k αβ==⨯⨯⨯= ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得1145.81455.046td d mm ==⨯= ⑦计算模数n m11cos 55.046cos142.67120n d m mm Z β⨯=== 3、按齿根弯曲强度设计,按计算式(10-17)试算即n m ≥(1)确定公式内的各计算数值 ①、计算载荷系数1 1.07 1.4 1.35 2.022A V F F k k k k k αβ==⨯⨯⨯=②根据纵向重合度 1.586βε=,查图10-28可得螺旋角影响系数0.88Y β=。
③查图可选取区域系数 2.433H Z =,30.795αε=,40.875αε=则有34' 1.67αααεεε=+=④查表取应力校正系数1 1.569Sa Y =,2 1.783Sa Y =。
⑤查表取齿形系数1 2.724Fa Y =,2 2.194Fa Y =。
(线性插值法)⑥查图10-20C 可得小齿轮的弯曲疲劳强度极限1500FE a MP σ=,大齿轮的弯曲疲劳强度极限2380FE a MP σ=。
⑦查图可取弯曲疲劳寿命系数10.87FN k =,20.90FN k =。
⑧计算弯曲疲劳许用应力 ,取弯曲疲劳安全系数 1.4S =,按计算式(10-22)计算得[]1110.87500310.7141.4FN FE F a k MP S σσ⨯=== []2220.90380244.2861.4FN FE F a k MP S σσ⨯===⑨计算大、小齿轮的[]Fa SaF Y Y σ并加以计算[]1112.724 1.5690.014310.714Fa Sa F Y Y σ⨯==[]2222.194 1.7830.016244.286Fa Sa F Y Y σ⨯==大齿轮的数值较大。
(2)设计计算140.016 1.979n m mm ≥⨯=对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取2n m mm =,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径155.046d mm =来计算应有的齿数,于是有11cos 55.046cos1426.7052n d Z m β⨯=== 取127Z =,则211 4.24327115Z i Z ==⨯≈ 4、几何尺寸计算 (1)计算中心距()()12271152146.3472cos 2cos14n Z Z m a mmβ++⨯===⨯将中心距圆整为147a mm =。
(2)按圆整后的中心距修正螺旋角()()12271152arccosarccos14.98622147nZ Z m aβ++⨯===⨯。
因β值改变不多,故参数αε、k β、H Z 等不必修正。
(3)计算大、小齿轮的分度圆直径1127255.901cos cos14.986n Z m d mm β⨯===。
221152238.099cos cos14.986n Z m d mm β⨯===。
(4)计算齿轮宽度1155.90155.901d b d mm =Φ=⨯=圆整后取155B mm =,260B mm =。
二、低速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。
(2)运输装置为一般工作机器,速度不高,故选用7级精度。
(3)材料选择,在同一减速器各级小齿轮(或大齿轮)的材料,没有特殊情况,应选用相同牌号,以减少材料品种和工艺要求,故查表可选择小齿轮材料为40Cr (调质),硬度为52HRC ;大齿轮材料为45钢(调质),硬度为45HRC.(4)选小齿轮齿数323Z =,大齿轮齿数423 3.03170.92470Z =⨯=≈(5)选取螺旋角,初选螺旋角14β=2、按齿面接触强度设计,按计算式试算即3t d ≥(1)确定公式内的各计算数值 ①试选 1.6t k =②小齿轮传递转矩2356.695T N m =③查表10-7可选取齿宽系数1d Φ=, 查图10-26可选取区域系数 2.433H Z =,30.765αε=,40.870αε=则有341.635ααεεε=+=④查表可得材料的弹性影响系数12189.8E Z MP =。
⑤查图得按齿面硬度选取小齿轮的接触疲劳强度极限lim3600H a MP σ=,大齿轮的接触疲劳强度极限lim 4550H a MP σ=。
⑥按计算式计算应力循环次数()8326060135.7531283005 1.95510h N n jL ==⨯⨯⨯⨯⨯⨯=⨯874 1.95510 6.450103.031N ⨯==⨯⑦查图可选取接触疲劳寿命系数3 1.12HN k =,4 1.18HN k =。
⑧计算接触疲劳许用应力取失效概率为1%,安全系数1S =,于是得[]3lim33 1.12600672HN H H a k MP S σσ==⨯= []4lim441.18550649HN H H a k MP Sσσ==⨯=[][][]34672649'660.522H H H a MP σσσ++=== (2)计算相关数值①试算小齿轮分度圆直径1t d ,由计算公式得376.848t d mm ≥=②计算圆周速度3276.848135.753'0.546601*********t d n v m s ππ⨯⨯===⨯⨯③计算齿宽'b 及模数'nt m3'176.84876.848d t b d mm =Φ=⨯=33cos 76.848cos14' 3.24023t nt d m mm Z β⨯=== ' 2.25' 2.25 3.2407.29nt h m mm ==⨯='76.84810.54'7.29b h == ④计算总相重合度'βε3'0.318tan 0.318123tan14 1.824d Z βεβ=Φ=⨯⨯⨯=⑤计算载荷系数k查表可得使用系数1A k =,根据'0.546v m s =,7级精度,查表可得动载系数' 1.04V k =,' 1.425H k β=,' 1.36F k β=,'' 1.4H F k k αα==故载荷系数''''1 1.04 1.4 1.424 2.075A V H H k k k k k αβ==⨯⨯⨯= ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得3376.84883.804td d mm ==⨯= ⑦计算模数'n m33cos 83.804cos14' 3.53523n d m mm Z β⨯=== 3、按齿根弯曲强度设计,按计算式试算即'n m ≥(1)确定公式内的各计算数值 ①计算载荷系数''''1 1.04 1.1 1.36 1.556A V F F k k k k k αβ==⨯⨯⨯=②根据纵向重合度' 1.824βε=,查图可得螺旋角影响系数'0.88Y β=。
③计算当量齿数33332325.178cos cos 14V Z Z β=== 44337076.628cos cos 14V Z Z β=== ④查表可取齿形系数3 2.616Fa Y =,4 2.227Fa Y =。
⑤查表可取应力校正系数3 1.591Sa Y =,4 1.763Sa Y =。