电网的无功补偿与电压调整
供用电系统教案——供配电系统的无功补偿和电压调整

第五章 供配电系统的无功补偿和电压调整5-1 供配电系统的电压偏移与无功平衡一、 电压偏移影响1.电力系统的负荷:电动机、照明设备、电热器具、家用电器、冲击性负荷(电弧炉、轧钢机等)2.所有的用电设备都是以额定电压为条件制造的,最理想的工作电压是额定电压。
3.电压偏移的影响:<1> 对用电设备的影响a . 异步电动机(电力系统负荷中占较大比重,如起重机、磨煤机、碎石机)转矩与端电压平方成正比。
① 端电压降低太多,使带额定负荷的电动机可能停止,重载电机可能无法起动。
且带负载的电动机电流增大,使绕组温升,加速绝缘老化。
② 电压过高,对绝缘不利。
b . 白炽灯端电压低于额定电压,会使发光效率和光通量下降。
端电压高于额定电压5%,则寿命会减少一半,但发光效率会提高。
c . 电热器具 (阻抗值不随电压变化的负荷)电压变化会影响其出力;d . 精密仪器加工业如电子元件加工业,电压大幅波动会产生大量不合格产品。
综上所述,电压偏移越小越好。
但由于电力系统节点多,结构复杂,负荷分布不均又经常变动,故保证所有节点电压都是额定电压是不可能的。
<2> 对电力系统本身电压降低,使网络中功率损耗和电能损耗加大,可能危及电力系统稳定性;电压过高,电气设备绝缘易受损。
二、电压偏移标准正常情况下:35Kv 及以上 %5± ;10Kv 及以下 %7± ;低压照明 +5%,-10% ;低压照明与动力混合使用 +5%,-7%事故情况下:电压偏移允许值比正常值多5%,但电压的正偏移不大于10%。
三、 负荷的电压静态特性 static voltage characteristic of load—系统频率一定时,负荷功率随电压变化的关系。
<一> 有功负荷的电压静态特性static voltage characteristic of active load取决于负荷性质及各类负荷所占的比重。
电力系统无功功率和电压调整

3
二、无功补偿与调压配置技术要求
• 500千伏电网应分散、优化配置高压、低压并联电抗器, 千伏电网应分散、优化配置高压、低压并联电抗器, 千伏电网应分散 原则上要求高、低压并联电抗器总容量与500千伏线路 原则上要求高、低压并联电抗器总容量与 千伏线路 充电功率基本补偿。接入500千伏系统电厂升压站可考 充电功率基本补偿。接入 千伏系统电厂升压站可考 虑装设一定容量、通过开关投退的高压电抗器。 虑装设一定容量、通过开关投退的高压电抗器。500 千伏降压变容性无功补偿容量应按主变容量10%— 千伏降压变容性无功补偿容量应按主变容量 25%配置或经计算分析确定。 配置或经计算分析确定。 配置或经计算分析确定 • 220 千伏变电站无功补偿容量一般按 220 千伏主变容 配置, 千伏主变最大负荷时, 量 10%—25%配置,并满足 配置 并满足220千伏主变最大负荷时, 千伏主变最大负荷时 其高压侧功率因素不低于0.95。当220千伏变电站 千伏变电站110 其高压侧功率因素不低于 。 千伏变电站 千伏及以下出线以电缆为主或较大容量地区电源接入 该变电站110千伏系统时,容性无功补偿容量可按下限 千伏系统时, 该变电站 千伏系统时 配置。一般情况下无功补偿装置的单组容量, 配置。一般情况下无功补偿装置的单组容量,接入 35 千伏电压等级不宜大于12Mvar,接于 千伏电压等级 千伏电压等级不宜大于 ,接于10千伏电压等级 不宜大于8Mvar。 不宜大于 。
7
三、电压的监视与调整
• 各地区加强各地关口无功电压的调度管理及网 供力率的考核, 供力率的考核,协助用电管理部门对用户电容 器的运行管理,充分调用地区电源机组的无功 器的运行管理, 调节能力, 调节能力,加强对调度管辖内电厂的无功电压 运行管理及考核。 运行管理及考核。地区无功电压调整应遵循如 下原则: 下原则: 1、正常情况下地区网供力率应满足省调下达的 、 网供力率考核指标,同时按逆调压原则调节, 网供力率考核指标,同时按逆调压原则调节, 即地区网供力率高峰时段调高、低谷时段调低 即地区网供力率高峰时段调高、 运行。当地区电压考核点电压越限时, 运行。当地区电压考核点电压越限时,应就地 采取控制措施。 采取控制措施。 2、地区电网无功电压的调整应与220千伏电压协 、地区电网无功电压的调整应与 千伏电压协 8 调控制。 调控制。
第六章电力系统的无功功率和电压调整

统电压为UN,但电源提供
的无功功率下降为ΣQGC
时 . 无功也能平衡,但电 压要下降。 ■ 调节变压器分接头可以改 善局部电压,但电源提供 的无功不足时,电压不能 全面改善,而且有可能发 生电压崩溃的危险。
第二节电力系统中无功功率的 最优分布
一、负荷功率因数的提高
■ 异步电动机的无功功率:
二、无功功率的平衡
■ 负荷无功功率的静态电压特性
jXΣ
Q
无
功
负
1’
荷
1
U
二、无功功率的平衡
■ 发电机的静态电压特性
■ 近似二次曲线,E ↑ , 曲 线 ↑
Ф
δ
Ф
U
Q 2’
2 E
U
二、无功功率的平衡
Q
2’ 2
1’ 1
U
二、无功功率的平衡
■ 图中所示的无功电源静态 电压特性和无功负荷静态 电压特性,当电源提供的
■ 静止补偿器和静止调相机是分别与电容器和调相 机相对应而又同属“灵活交流输电系统”范 畴 的两种无功功率电源。前者出现在70年代初,是 这一“家族”的最早成员,日前已为人们所 熟 知;后者则尚待扩大试运行的规模。静止补 偿 器的全称为静止无功功率补偿器(svc)。
■ 并联电抗器
■ 就感性无功功率而言,并联电抗器显然不是电 源而是负荷,但在某些电力系统中的确装有这 种设施,用以吸取轻载或空载线路过剩的感性 无功功率。而对高压远距离输电线路而言,它 还有提高输送能力,降低过电压等作用。
■ 最优网损微增率准则
■ 无疑,系统的无功资源越丰富,就可能节约越多 的网损,但也可能会使电网的建设投资增大。
■ 在进行电网规划时,希望以较小的投资,节约 较多的网损,所以无功规划的目标函数不能只 考虑网损,也不能只考虑投资,需要考虑将来 一个时间段内电网的综合效益最好。
电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案1.引言电力系统中,电能质量是评价电力系统运行性能优劣的重要指标,而电压又是衡量电能质量的一个重要指标,因此,电压的稳定性对电力系统运行性能来说显得尤为重要。
电压稳定与否主要取决于系统中无功功率的平衡,如果用电负荷的无功需求波动较大,而电网的无功功率来源及其分布不能及时调控,就会导致线路电压超出允许极限;另外,对于负荷一侧,电力系统多由输配电线、变压器、发电机等构成,其内阻抗主要呈感性,使得负载无功功率的变化对电网电压的稳定性带来极为不利的影响。
无功功率补偿是涉及电力电子技术、电力系统、电气自动化技术、理论电工等领域的重大课题。
由于电力电子技术装置的应用日益普及生产、生活各个领域,无功补偿问题引起人们越来越多的关注。
据有关科学统计,如果全国都通过优化配置计算来安装无功补偿装置,在总投资不变的条件下,估计每年可以节省电量大约3亿千瓦时。
因此,电力系统的无功补偿和电压调整是保证电网安全、优质、经济运行的重要措施。
目前,由于电力电子技术的飞速进步,无功功率补偿方面也取得了突破性的进展。
2.连续无功补偿装置发展历史、现状和发展前景工程上应用的无功补偿器主要包括旋转无功补偿器和静止无功补偿器,其具体分类见图1。
电力系统的无功补偿和电压调整的解决方案2.1 连续无功补偿装置的发展历史旋转无功补偿器以同步调相机为代表,同步调相机实际上就是在过励或欠励状态下运行的同步电机,它既能发出容性无功,也能发出感性无功,因而同步调相机能对变化的无功功率进行动态补偿。
由于其存在诸多缺点(见表1),70年代以来逐渐被静止无功补偿器取代。
静止无功补偿技术经历了图1所示的3代发展:第Ⅰ代属于慢速无功补偿装置,在电力系统中应用较早,目前也仍在应用;第Ⅱ代属无源、快速动态无功补偿装置,出现于 20 世纪 70 年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少,SVC 可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。
浅析电力系统中电容器无功补偿与电压调整的问题及处理措施

水电工程Һ㊀浅析电力系统中电容器无功补偿与电压调整的问题及处理措施丁向利摘㊀要:就目前我国电力系统而言,电压是我国衡量电力系统质量的重要指标和参数,电力系统当中的设备,在进行设计制造时,均是按照国家标准的额定电压进行设计的,从而保证设备电压和额定电压的偏移值在可控范围内㊂文章针对电力系统中电容器无功补偿与电压调整的问题及处理措施展开探究,并提出一些参考建议,为电力系统行业的发展提供一些技术和理论的支持㊂关键词:电力系统;电容器;无功补偿;电压调整一㊁引言在电力系统的正常运行过程中,电压损耗是十分常见,也是无法避免的问题,存在电压损耗的主要因素,还是由于电力系统当中无功功率在电压当中出现压降,而有功功率在电阻当中存在压降现象㊂通常来说,我国电力系统当中的电阻值通常要比电压数值低很多,也就导致无功功率对于电压损耗的影响较大,而有功功率所产生的电压损耗相对较小㊂在进行电压调整过程中,系统中会存在数量极多的母线或节点,主要是由于本身电压值均不相同,所以电力系统的电压和无功功率以及系统本身有着直接且紧密的联系,如果无功功率的损耗远高于有功功率的损耗,需要对无功功率的电源设置位置进行调整,并安排无功功率补偿措施㊂二㊁无功功率平衡探讨(一)无功平衡关系探究想要达到无功平衡的目的,这需要电力系统无功电源所形成的,电话系统网络无功损耗和对应的无功负荷保持平衡,而无功平衡存在也会产出无功功率的损耗㊂(二)电力系统无功电源对于电力系统中存在的无功电源,不仅包含了同步电机的,还涵盖了静电状态下的无功补偿器㊁电容器和无功发生器等设备㊂上述设备均属于无功电源的一部分,在电力系统当中起着无功补偿的重要作用㊂(三)电力系统当中的无功负荷电力系统在进行无功负荷时,所涉及的设备主要是异步电动机,该电动机具有功率因数较小的优点,同时,在我国电力系统网络负荷工作中,发挥着比重较大的作用㊂三㊁电容器无功补偿措施(一)低压个别补偿这种补偿措施,具体内容是根据每个通电设备的无功需求量进行补偿的,把多台或某一台设备电容器分开,并和用电设备并联,长安形成一套断路器,再通过保护装置㊁控制和电机同时投切活动㊂这种方法的优点,它可以满足设备正常运行时,就可以进行无功补偿的投入,而设备停止工作时,补偿设备也会自动停止并退出,可以有效解决无功倒送的问题㊂同时,还具有占地面积小㊁安装方便㊁配置更换方便㊁投资资金较低㊁维护简单㊁事故率低的优点㊂(二)低压集中补偿这种补偿措施,主要是通过将低压电容和对应的开关与配电变压器进行连接,连接方向和低压母线相同,然后通过无功补偿投切装置,来对这一系统进行控制和保护,在运行过程中,可以依照低压母线无功负荷来进行控制,还能针对电容器开展投切处理㊂这种投切的方式是针对整组设备进行的,整体共同工作和停止,无法针对某一设备进行针对性的工作㊂这种方式的优点在于运行维护工作量小㊁接线简单㊁无功就地处理平衡,能够显著提高配电变压器的利用效率,降低电网在工作过程中所形成的损失,同时,也具有较高的经济价值,是我国当前采取的最常规的无功补偿手段㊂(三)高压集中补偿这种方式是通过并联电容器组,从而直接对变电所6 10kV高压母线进行作用,从而达到无功补偿㊂这种方式通常应用于变电站㊁用户离变电站较远㊁地理位置偏僻,在供电线路的末端部位的时候进行应用㊂与此同时,如果使用者本身有一部分高压负荷时,这种方法可以有效降低电力系统自身形成的无功损耗,一定程度上还能起到补偿作用㊂这种方法的优点就在于可以根据复核进行自动投切活动,有较高的补偿效益㊂四㊁电力系统电压调整电压和电力的质量息息相关,也直接反映着电力系统分布状态和无功功率,通过对电力系统的电压进行调整,可以有效保证电力系统的安全稳定运行,并保障电压质量,具体方式可以通过以下几种方式进行调整㊂电压的调整方式有横调压㊁逆调压㊁顺调压这三种,横调压更适合电负荷浮动小的企业,如三班倒类企业;你一条也可以用,用于电网负荷高的阶段电压上线和下线的运行;顺调压是通过对电力系统在电压额定范围内进行调整,从而降低高峰时段的电压值㊂电压调整具体可以通过,对发动机电压进行调压㊁调整变压器的变化㊁对补偿设备进行调压和适当加大导线的横截面积,通过这几种方法也可以有效对电力系统的电压进行调整,保障电力系统安全稳定运行㊂五㊁结语对于电力系统,电容器无功补偿和电压调整措施,可以有效提高电力系统电力输送的质量,保证电压的稳定性,更显著降低了我国在电力资源损耗当中所浪费的成本,极大程度地提高了社会的经济效益㊂参考文献:[1]刘阳.基于电力系统电容器无功补偿与电压调整问题的探讨[J].现代国企研究,2018(4):122.[2]李艳芸.煤矿电力系统电压无功补偿自动调节探究[J].自动化应用,2019(2):99-100,105.[3]王振河,陈天,咸日常,等.电力电容器常见故障分析及预防措施[J].电力电容器与无功补偿,2020,v.41;No.188(2):48-52.[4]康童.新颖元启发式智能优化算法及其在电力系统中的应用研究[D].长沙:湖南大学,2019.作者简介:丁向利,国网河北省电力有限公司邢台供电分公司㊂571。
电力系统无功功率平衡和电压调整

无功补偿装置的应用场景和效果
高峰负荷时段
提高电压稳定性,减少电压波动和闪变现象。
电网故障时
快速响应无功功率变化,维持系统电压稳定。
风电、光伏等新能源接入
平滑新能源发电的功率输出波动,提高并网性能。
工业园区和大型建筑物
降低能耗,提高供电质量。
电力系统无功功率平衡和电 压调整
目 录
• 电力系统无功功率平衡 • 电压调整的原理和方法 • 电力系统无功补偿装置 • 电力系统无功管理和优化 • 电力系统电压稳定性和控制 • 电力系统无功功率平衡和电压调整的未来发展
01
电力系统无功功率平衡
无功功率的产生和影响
无功功率的产生
在电力系统中,电动机、变压器等感 性负载需要消耗无功功率来建立磁场 ,以实现能量的转换和传输。
Байду номын сангаас谢您的观看
THANKS
06
电力系统无功功率平衡和 电压调整的未来发展
新能源并网对无功功率平衡和电压调整的影响
01
新能源并网将增加电力系统的复杂性和不确定性,对无功功率 平衡和电压调整带来挑战。
02
新能源并网将促进无功功率平衡和电压调整技术的发展,推动
电力系统向更加智能化、高效化的方向发展。
新能源并网将促进电力系统的优化配置,提高电力系统的可靠
电压波动可能导致电力设备过载或欠载,影响 其正常运行和寿命。
对用户设备的影响
电压波动可能导致用户设备工作异常,影响生 产和生活。
对系统稳定性的影响
电压波动可能导致电力系统不稳定,甚至引发系统崩溃。
电压调整的原理
根据电力系统的无功功率平衡原理, 电压水平取决于无功功率的分布和平 衡情况。
浅谈电网的无功补偿与电压调整

浅谈电网的无功补偿与电压调整电网的无功补偿与电压调整在电力系统中起着非常重要的作用。
无功功率是指在交流电路中,既不做功也不产生热量的电能。
它是一种必须存在于交流电路中的功率,它的存在使得交流电路的电压和电流存在相位差。
而无功功率补偿则是通过无功功率补偿装置对电网中的无功功率进行调整,以维持电网的稳定运行。
对于电能系统来说,为了使系统能够正常稳定运行,需要保持电网中的功率平衡,即有功功率和无功功率的平衡。
而无功功率的产生和补偿在电网中具有重要的地位。
无功功率主要是由感性负载和容性负载所引起的,感性负载使得电网中存在导致电压下降的无功功率,而容性负载则使得电网中存在导致电压升高的无功功率。
对于电网来说需要通过无功功率补偿来对电网中的无功功率进行控制,以保持电网的电压稳定和功率平衡。
无功功率在电力系统中的作用非常重要,它直接关系到电力系统的供电质量和稳定性。
在电力系统中,无功功率补偿主要有两种方式,即静态无功功率补偿和动态无功功率补偿。
静态无功功率补偿是通过静止补偿设备(如无功功率补偿电容器、电感器等)来对电网中的无功功率进行补偿,从而改善电网的功率因数和电压质量。
而动态无功功率补偿则是通过动态稳态补偿设备(如静止无功功率补偿装置、电力电子器件等)来对电网中的无功功率进行动态调节,从而对电网中的无功功率进行精确调节,以保持电网的稳定运行。
对于电力系统来说,电压的稳定性是电力系统正常运行的关键指标之一。
当电网中出现大的无功功率波动或负载变化时,往往会导致电网中的电压下降或者电压上升,从而引起电网中的电压质量下降,甚至导致电力系统的不稳定运行。
由于大部分电力负载是动态变化的,在电力系统中不可避免地会出现无功功率的变化,因此需要通过无功功率补偿来对电网中的无功功率进行调节,以保持电网中的电压稳定。
电网的无功补偿与电压调整在电力系统中具有非常重要的作用。
通过对电网中的无功功率进行补偿,可以有效地提高电网的电压稳定性和功率平衡,保障电力系统的正常运行。
浅谈电网的无功补偿与电压调整

浅谈电网的无功补偿与电压调整电网是指由输电线路、变电设备和配电设备等组成的供电系统,其主要功能是将发电厂产生的电能传输到用户所在地。
电网的稳定运行对于保障电力系统的安全、可靠、经济运行具有重要意义。
而无功补偿和电压调整则是电网中一个重要的问题,它们对于电网的稳定运行起着至关重要的作用。
一、电网无功补偿的作用在电网中,无功功率是指交流电路中发生的能量的来回转移,并不执行有用功。
它是一种虚拟功率,对电网的稳定性和效率产生重要影响。
为了保证电网的稳定运行,需要对无功功率进行补偿,以提高电网的功率因数。
无功功率的产生主要有两种情况:一是由于电感负载产生的感性无功功率,二是由于电容补偿设备的损耗产生的容性无功功率。
感性负载导致电压的下降和线路的过热,降低了电网的输电效率;而容性负载会使电网电压升高,在负载端压降过大,影响电网的电压稳定性。
通过增加或减少无功功率的产生,可以有效地提高电网的稳定性和效率,减小输电损耗。
为了进行无功功率的补偿,通常采用无功功率补偿装置,如静态无功补偿装置(如无功电容器、无功电感器)、静止无功发生器(STATCOM)等。
这些装置能够快速调整电网的无功功率,提高电网的功率因数,减小电网运行中的不稳定因素。
从而保证电网的正常运行,提高电网的运行效率和经济性。
二、电网电压调整的重要性在电网运行中,电压的稳定性是保障电网正常运行的重要指标之一。
电网的电压稳定性受多种因素影响,如负荷变化、发电量变化、故障短路等。
为了保持电网的电压稳定,需要对电网进行电压调整。
电压调整主要是通过调节电压的大小和波形来保持电网的电压稳定。
电网中,通常采用自动电压调整装置和无功功率控制装置来进行电压调整。
自动电压调整装置通过控制变压器的绕组变化,使其变比按需调整,来调节电压的大小;而无功功率控制装置则通过控制无功功率的产生,来调节电网的电压。
这些装置可以根据电网的负载变化和故障情况,快速地进行电压调节,以保证电网的电压稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电网的无功补偿与电压调整
、输电网的无功补偿与电压调整
输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。
参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。
电压支撑则多用于与地区受电网络连接的输电网的中枢点。
1.1电抗器补偿
电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。
电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。
电抗器一般常设置在线路两端,且不设断路器。
1.2串连电容补偿
串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。
串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。
串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。
输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。
日本在110kV环网中就使用了串联电容补偿。
1.3中间同步或静止补偿
在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些
装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。
中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。
输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。
电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。
并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。
大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。
采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。
近年来,国内外均注重静止补偿装置的应用。
2、配电网的无功补偿与电压调整
以相位补偿和保证用户用电电压质量为主。
2.1相位补偿亦称功率因数补偿
用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。
励磁功率滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户
电压降低。
相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,改善电压质量。
中国对大电力用户要求安装无功补偿装置,补偿后的功率因数不得低于0.9。
2.2电压调整
为保证用电电器有良好的工作电压,避免受配电网电压波动的影响,配电网需要进行电压调整。
配电网电压调整的措施包括:中心调压、调压变压器调压和无功补偿调压。
2.2.1利用地区发电厂或枢纽变电所进行中心调压
这种措施简单而经济方便,但它只能改变整个供电地区的电压水平,不能改善电压分布。
当供电地区的地域比较广阔、供电距离长短悬殊时,中心调压措施往往不能兼顾全区,有顾此失彼的缺点。
2.2.2调压变压器调压
可弥补中心调压方式的不足,进行局部调压。
调压变压器有有载调压变压器、串联升压器和感应调压器三种。
有载调压变压器与感应调压器一般用于特定负荷点,串联升压器则用于供电线路。
调压变压器的调压作用是靠改变电力网的无功潮流来实现的。
它本身不仅不产生无功功率,而且还因本身励磁的需要而消耗无功功率。
当电网的无功电源不足时,调压变压器的调压效果不显著。
相反地,若调压变压器装设过多,将加重配电网的无功功率消耗,拉低全网电压水平,增大网损,降低并联电容器的无功出力,严重时有可能造成恶性循环的趋向。
2.2.3无功补偿调压
由于增加了电力网的无功电源,能起到改善电网电压的作用。
装设于变电所内的无功补偿装置,还可采用分组投切的办法,对供电地区实行中心调压。
串联电容补偿,可用于配电网中进行局部调压。
距离较长的重载线路,使用串联电容补偿,效果较好。
因其调压作用是由线路滞相电流流过串联电容而产生的电压升高来实现的。
故线路负载愈重,功率因数愈低,串联电容补偿调压的作用愈显著。
这种调压作用随线路负载的变化而变化,具有自行调节的功能。
串联电容器所产生的无功功率,也增加了电力网的无功电源,可改善电力网的电压水平。
串联电容能使线路受端的电动机产生自励磁现象,在设计、使用时,需采取预防措施。