湖南省长沙市长郡中学2018-2019学年高一下学期入学考试数学试题(带答案解析)

合集下载

2018-2019学年湖南省长沙市长郡中学高一(下)期中数学试卷(解析版)

2018-2019学年湖南省长沙市长郡中学高一(下)期中数学试卷(解析版)

2018-2019学年湖南省长沙市长郡中学高一(下)期中数学试卷一、选择题(本大题共15小题,共45.0分)1.下列四条直线,其倾斜角最大的是()A. B. C. D.2.若一个等腰三角形采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A. 倍B. 2倍C. 倍D. 倍3.在正方体ABCD-A1B1C1D1中,AD1与BD所成角的大小为()A.B.C.D.4.已知两条直线l,m与两个平面α,β,下列命题正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则5.圆C1:x2+(y-1)2=1与圆C2:(x+4)2+(y-1)2=4的公切线的条数为()A. 4B. 3C. 2D. 16.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为$()A. B. C. D.7.两条平行直线3x-4y-3=0和mx-8y+5=0之间的距离是()A. B. C. D.8.方程(a-1)x-y+2a+1=0(a∈R)所表示的直线()A. 恒过定点B. 恒过定点C. 恒过点和D. 都是平行直线9.在平面直角坐标系xOy中,点A(1,1),点B在圆x2+y2=4上,则的最大值为()A. 3B.C.D. 410.在△ABC中,若a2=b2+c2-bc,bc=4,则△ABC的面积为()A. B. 1 C. D. 211.在△ABC中,内角A、B满足sin2A=sin2B,则△ABC的形状是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形12.已知方程表示圆,则实数k的取值范围是()A. B. C. D. 或13.若曲线与直线y=x+b始终有交点,则b的取值范围是()A. B. C. D.14.一个几何体的三视图如图所示,其中三个三角形均是直角三角形,图形给出的数据均是直角边的长度,则该几何体的外接球的体积为()A.B.C.D. 15.如图,设圆C1:(x-5)2+(y+2)2=4,圆C2:(x-7)2+(y+1)2=25,点A、B分别是圆C1,C2上的动点,P为直线y=x上的动点,则|PA|+|PB|的最小值为()A.B.C.D.二、填空题(本大题共5小题,共15.0分)16.过点P(2,3)且在两坐标轴上的截距相等的直线方程为______.17.若圆锥的表面积为27π,且它的侧面展开图是一个半圆,则这个圆锥的底面圆的直径为______18.设点P(3,2)是圆(x-2)2+(y-1)2=4内部一点,则以P为中点的弦所在的直线方程是有______.19.已知长方体ABCD-A1B1C I D1Φ,AB=2AA1=2AD,则直线CB[与平面A1BCD1所成角的正弦值是______20.圆锥底面半径为1,高为,点P是底面圆周上一点,则一动点从点P出发,绕圆锥侧面一圈之后回到点P,则绕行的最短距离是______.三、解答题(本大题共5小题,共40.0分)21.已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,求:(1)若l1l2,求m的值;(2)若l1∥l2,求m的值.22.如图,在直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,D是A1B1的中点.(1)求证:平面BC1D平面ABB1A1;(4)若异面直线A1B1和BC1所成的角为60°,求直三棱柱ABC-A1B1C1的体积.23.已知圆C过A(-2,2),B(2,6)两点,且圆心C在直线3x+y=0上.(Ⅰ)求圆C的方程;(Ⅱ)若直线l过点P(0,5)且被圆C截得的线段长为4,求l的方程.24.在△ABC中,角A,B,C的三条对边分别为a,b,c,b cos C+b sin C=a.(1)求B;(2)点D在边BC上,AB=4,CD=,cos∠ADC=,求AC.25.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM∥平面BDE;(Ⅱ)求二面角A-DF-B的大小.答案和解析1.【答案】A【解析】解:根据题意,依次分析选项:对于A、x+2y+3=0,其斜率k1=-,倾斜角θ1为钝角,对于B、2x-y+1=0,其斜率k2=2,倾斜角θ2为锐角,对于C、x+y+1=0,其斜率k3=-1,倾斜角θ3为135°,对于D、x+1=0,倾斜角θ4为90°,而k1>k3,故θ1>θ3,故选:A.根据题意,依次分析选项,求出所给直线的斜率,比较其倾斜角的大小,即可得答案.本题考查直线斜率与倾斜角的关系,关键是掌握直线的斜率与倾斜角的关系.2.【答案】C【解析】解:以等腰三角形的底边所在的直线为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的sin45°=,所以直观图中三角形的面积是原三角形面积的倍.故选:C.以等腰三角形的底边所在的直线为x轴,高所在的直线为y轴,由斜二测画法得出三角形底边长和高的变化情况,即可得出答案.本题考查了斜二测画法中直观图的面积和原来图形面积之间的关系,是基础知识的考查.3.【答案】C【解析】解:连结BC1,则BC1∥AD1,所以BD与BC1所成的角,即是AD1与BD所成角.连结DC1,则三角形BDC1是正三角形,所以∠DBC1=60°,即AD1与BD所成角的大小为60°.故选:C.寻找与AD1平行的直线BC1,则直线BD与BC1所成的角,即是AD1与BD所成角.本题主要考查了空间两异面直线及其所成的角的求法,根据异面直线所成角的定义,寻找平行线是解决本题的关键.4.【答案】B【解析】解:A如图可否定A;B如图∵l∥β,l⊂γ,γ∩β=m,∴l∥m,∵lα,∴mα,∴βα.故选:B.结合图形易否定A;利用线面平行的性质和面面垂直的判定可证B正确.此题考查了直线、平面的各种位置关系,难度不大.5.【答案】A【解析】解:∵|C1C2|==4,r1=1,r2=2,r1+r2=1+2=3,∴|C1C2|>r1+r2,所以圆C1与圆C2相离,有4条公切线.故选:A.先根据圆心距与两圆半径的关系判断出两圆相离,所以有4条公切线.本题考查了两圆的公切线的条数,属中档题.6.【答案】C【解析】解:如图,由题意可知,O′A=3,OO′=4,∴R=OA=5,∴=,故选:C.根据题意作出图形,利用直角三角形直接得半径,求体积.此题考查了球体积公式,属容易题.7.【答案】A【解析】解:由已知两条平行直线3x-4y-3=0和mx-8y+5=0,所以m=6,所以两条平行线的距离为;故选:A.首先求出m的值,然后利用平行线之间的距离公式解答.本题考查了两条平行线的距离;注意x,y的系数要化为相同,才能运用公式.8.【答案】A【解析】解:∵(a-1)x-y+2a+1=0(a∈R),∴(x+2)a-x-y+1=0,∴,解得:x=-2,y=3.即方程(a-1)x-y+2a+1=0(a∈R)所表示的直线恒过定点(-2,3).故选:A.可将(a-1)x-y+2a+1=0(a∈R)转化为(x+2)a-x-y+1=0,令a的系数为0,-x-y+1=0即可.本题考查恒过定点的直线,方法较灵活,可转化为关于a的函数,令a的系数为0,-x-y+1=0即可,也可以令x、y取两组值,解得交点坐标即为所求,属于中档题.9.【答案】C【解析】解:∵|-|=||≤|OB|+|OA|=2+=2+,故选:C.根据向量减法的三角形法则转化为求||,再根据两边之和大于等于第三边可得最大值.本题考查了直线与圆的位置关系,属中档题.10.【答案】C【解析】解:∵△ABC中,a2=b2+c2-bc,即b2+c2-a2=bc,∴cosA==,∴A=60°,∵bc=4,∴S△ABC =bcsinA=,故选:C.利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,确定出A的度数,再由bc 的值,利用三角形面积公式求出三角形ABC面积即可.此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键,属于基础题.11.【答案】D【解析】解:法1:∵sin2A=sin2B,∴sin2A-sin2B=cos(A+B)sin(A-B)=0,∴cos(A+B)=0或sin(A-B)=0,∴A+B=90°或A=B,则△ABC一定是直角三角形或等腰三角形.法2:∵sin2A=sin2B,且A和B为三角形的内角,∴2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC一定是等腰或直角三角形.故选:D.解法1:利用题设等式,根据和差化积公式整理求得cos(A+B)=0或sin(A-B)=0,推断出A+B=90°或A=B,即可判断出三角形的形状.解法2:由两角的正弦值相等及A和B为三角形的内角,得到两角2A和2B相等或互补,即A 与B相等或互余,进而确定出三角形的形状.此题考查了三角形形状的判断,涉及的知识有:正弦、余弦函数的图象与性质,积化和差公式,以及等腰三角形的判定,解题的关键是挖掘题设信息,借助三角函数的基本公式和基本性质找到边与边或角与角之间的关系.12.【答案】D【解析】解:∵方程表示圆,∴>0,即2k2-2k-12>0,k2-k-6>0,解得k>3或k<-2.故选:D.由D2+E2-4F>0的关于k的一元二次不等式求解.本题考查圆的一般方程,是基础题.13.【答案】A【解析】解:作出函数y=与y=x+b图象,由图可知:-1故选:A.数形结合:作出两个函数的图象,观察图象可得本题考查了直线与圆的位置关系,属中档题.14.【答案】D【解析】解:根据几何体得三视图转换为几何体为:所以:该几何体的外接球半径(2r)2=12+22+12=6,解得:,所以:V==故选:D.首先把三视图转换为几何体,进一步利用几何体的体积公式的应用求出结果.本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.15.【答案】C【解析】解:依题意可知圆C1的圆心(5,-2),r=2,圆C2的圆心(7,-1),R=5,如图所示:对于直线y=x上的任一点P,由图象可知,要使|PA|+|PB|的得最小值,则问题可转化为求|PC1|+|PC2|-R-r=|PC1|+|PC2|-7的最小值,即可看作直线y=x上一点到两定点距离之和的最小值减去7,由平面几何的知识易知当C1关于直线y=x对称的点为 C1′(-2,5),与P、C2共线时,|PC1|+|PC2|的最小值,取得最小值,即直线y=x上一点到两定点距离之和取得最小值为|CC2|=∴|PA|+|PB|的最小值为=|PC1|+|PC2|-7=.故选:C.利用对称的性质,结合两点之间的距离最短,即可求解.本题考查了圆关于直线的对称的圆的求法,动点的最值问题,考查了点与点的距离公式的运用,是中档题题.16.【答案】x+y-5=0,或3x-2y=0【解析】解:若直线的截距不为0,可设为,把P(2,3)代入,得,,a=5,直线方程为x+y-5=0若直线的截距为0,可设为y=kx,把P(2,3)代入,得3=2k,k=,直线方程为3x-2y=0 ∴所求直线方程为x+y-5=0,或3x-2y=0故答案为x+y-5=0,或3x-2y=0分直线的截距不为0和为0两种情况,用待定系数法求直线方程即可.本题考查了直线方程的求法,属于直线方程中的基础题,应当掌握.17.【答案】6【解析】解:设圆锥母线长R,底面圆半径为r,∵侧面展开图是一个半圆,此半圆半径为R,半圆弧长为2πr,∴πR=2πr,∴R=2r,∵表面积是侧面积与底面积的和,∴S表=πR2+πr2,∵R=2r,∴S表=3πr2=27π,解得r=3,∴圆锥的底面直径为2r=6.故答案为:6.设圆锥母线长为R,底面圆半径为r,根据侧面展开图得到R=2r,再求表面积与底面半径和直径.本题考查了圆锥的结构特征与表面积公式计算问题,是基础题.18.【答案】x+y-5=0【解析】解:圆(x-2)2+(y-1)2=4的圆心(2,1),点P(3,2)是圆(x-2)2+(y-1)2=4内部一点,以点P为中点的弦所在的直线的斜率为:-=-1.以点P为中点的弦所在的直线方程为:y-2=-(x-3).即x+y-5=0.故答案为:x+y-5=0.求出圆的圆心与半径,求出所求直线的斜率,然后求解以点P为中点的弦所在的直线方程.本题考查直线与圆的位置关系,直线方程的求法,考查计算能力.19.【答案】【解析】解:以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,设AB=2AA1=2AD=2,则C(0,2,0),B1(1,2,1),A1(1,0,1),C(0,2,0),B(1,2,0),=(1,0,1),=(0,-2,1),=(-1,0,0),设平面A1BCD1的法向量=(x,y,z),则,取y=1,得=(0,1,2),设直线CB[与平面A1BCD1所成角为θ,则sinθ===.∴直线CB[与平面A1BCD1所成角的正弦值为.故答案为:.以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线CB[与平面A1BCD1所成角的正弦值.本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.【答案】3【解析】解:圆锥的侧面展开图为扇形,其弧长为底面圆的周长,即2π∵圆锥的母线长为3.扇形的圆心角,∴一动点从点P出发,绕圆锥侧面一圈之后回到点P,则绕行的最短距离是:=3.故答案为:3.利用圆锥的侧面展开图,确定扇形的圆心角,即可求得结论.本题考查旋转体表面上的最短距离,考查学生的计算能力,属于基础题.21.【答案】解:(1)m=0时,两条直线不垂直,舍去.m≠0时,∵l1l2,∴-×=-1,解得m=.综上可得:m=.(2)由m(m-2)-3=0,解得:m=3或-1.经过验证m=3时两条直线重合,舍去.∴m=-1时,l1∥l2.【解析】(1)对m分类讨论,利用两条直线相互垂直的充要条件即可得出.(2)由m(m-2)-3=0,解得:m=3或-1.经过验证m=3时两条直线重合,舍去.本题考查了直线平行与垂直的充要条件、分类讨论方法,考查了推理能力与计算能力,属于基础题.22.【答案】(1)证明:∵三棱柱ABC-A1B1C1是直三棱柱,∴AA1平面A1B1C1,则AA1C1D,∵A1C1=B1C1,D为A1B1的中点,∴C1D A1B1,又AA1∩A1B1=A1,∴C1D平面AA1B1B,而C1D⊂平面BC1D,∴平面BC1D平面ABB1A1;(2)解:连接AC1,由AC=BC,C1C平面ABC,∴AC1=BC1,∵异面直线A1B1和BC1所成的角为60°,∴△ABC1为等腰三角形,取AB中点O,连接CO,C1O,∵AC=BC=1,∠ACB=90°,∴,.∴.故直三棱柱ABC-A1B1C1的体积V=.【解析】(1)由三棱柱ABC-A1B1C1是直三棱柱,得AA1平面A1B1C1,则AA1C1D,再由已知得C1D A1B1,利用线面垂直的判定可得C1D平面AA1B1B,从而得到平面BC1D平面ABB1A1;(2)连接AC1,由AC=BC,C1C平面ABC,得AC1=BC1,进一步得到△ABC1为等腰三角形,求出三棱柱的高,代入棱柱体积公式求解.本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.23.【答案】解:(Ⅰ)根据题意,设圆C的圆心为(a,b),半径为r,则圆C方程为(x-a)2+(y-b)2=r2,又由圆C过A(-2,2),B(2,6)两点,且圆心C在直线3x+y=0上,则有,解可得a=-2,b=6,r2=16,则圆C的方程为(x+2)2+(y-6)2=16;(Ⅱ)根据题意,设直线l与圆C交与MN两点,则|MN|=4,设D是线段MN的中点,则有CD MN,则|MD|=2,|MC|=4.在Rt△ACD中,可得|CD|=2.当直线l的斜率不存在时,此时直线l的方程为x=0,满足题意,当直线l的斜率存在时,设所求直线l的斜率为k,则直线l的方程为:y-5=kx,即kx-y+5=0.由点C到直线MN的距离公式:=2,解可得k=,此时直线l的方程为3x-4y+20=0.故所求直线l的方程为x=0或3x-4y+20=0.【解析】(Ⅰ)根据题意,设圆C的圆心为(a,b),半径为r,结合题意可得,解出a、b、r的值,将其值代入圆的方程即可得答案;(Ⅱ)根据题意,分类讨论,斜率存在和斜率不存在两种情况:①当直线l的斜率不存在时,满足题意,②当直线l的斜率存在时,设所求直线l的斜率为k,则直线l的方程为:y-5=kx,由点到直线的距离公式求得k的值,即可得直线的方程,综合2种情况即可得答案.本题考查直线与圆的位置关系,涉及两点间的距离公式,点到直线的距离公式,圆的标准方程,属于中档题.24.【答案】解:(1)由b cos C+b sin C=a,利用正弦定理得:sin B cos C+sin B sin C=sin A,即sin B cos C+sin B sin C=sin B cos C+cos B sin C,得sin B sin C=cos B sin C,又C∈(0,π),所以sin C≠0,所以sin B=cos B,得tan B=,又B∈(0,π),所以B=;(2)如图所示,由cos∠ADC=,∠ADC∈(0,π),所以sin∠ADC==,由因为∠ADB=π-∠ADC,所以sin∠ADB=sin∠ADC=;在△ABD中,由正弦定理得,=,且AB=4,B=,所以AD===;在△ACD中,由余弦定理得,AC2=AD2+DC2-2AD•DC•cos∠ADC=+-2×××=4,解得AC=2.【解析】(1)由题意利用正弦定理与三角恒等变换求出sinB与cosB的关系,得出tanB的值,从而求出B 的值;(2)根据互补的两角正弦值相等,得到sin∠ADB=sin∠ADC的值,再利用正弦、余弦定理求得AD、AC的值.本题考查了解三角形的应用问题,也考查了三角恒等变换应用问题,是中档题.25.【答案】解:方法一(Ⅰ)记AC与BD的交点为O,连接OE,∵O、M分别是AC、EF的中点,ACEF是矩形,∴四边形AOEM是平行四边形,∴AM∥OE∵OE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE(Ⅱ)在平面AFD中过A作AS DF于S,连接BS,∵AB AF,AB AD,AD∩AF=A,∴AB平面ADF,∴AS是BS在平面ADF上的射影,由三垂线定理得BS DF∴∠BSA是二面角A-DF-B的平面角在Rt△ASB中,AS==,AB=,∴, ,∴二面角A-DF-B的大小为60°方法二(Ⅰ)建立如图所示的空间直角坐标系设AC∩BD=N,连接NE,则点N、E的坐标分别是(,,、(0,0,1),∴=(,,,又点A、M的坐标分别是(,,)、(,,∴=(,,∴=且NE与AM不共线,∴NE∥AM又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDF(Ⅱ)∵AF AB,AB AD,AF∩AD=A,∴AB平面ADF∴,,为平面DAF的法向量∵=(,,•,,=0,∴=(,,•,,=0得,∴NE为平面BDF的法向量∴cos<,>=∴,的夹角是60°即所求二面角A-DF-B的大小是60°【解析】(Ⅰ)要证AM∥平面BDE,直线证明直线AM平行平面BDE内的直线OE即可,也可以利用空间直角坐标系,求出向量,在平面BDE内求出向量,证明二者共线,说明AM∥平面BDE,(Ⅱ)在平面AFD中过A作AS DF于S,连接BS,说明∠BSA是二面角A-DF-B的平面角,然后求二面角A-DF-B的大小;也可以建立空间直角坐标系,求出,说明是平面DFB的法向量,求出平面DAF 的法向量,然后利用数量积求解即可.本题考查直线与平面平行,二面角的知识,考查空间想象能力,逻辑思维能力,是中档题。

2018-2019学年湖南省长沙市长郡中学2018级高一下学期期末考试数学试卷及解析

2018-2019学年湖南省长沙市长郡中学2018级高一下学期期末考试数学试卷及解析

2018-2019学年长郡中学2018级高一下学期期末考试数学试卷★祝考试顺利★一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.11的等比中项是( )A. 1B. -1C. ±1D. 12 【答案】C【解析】试题分析:设两数的等比中项为)21111x x x ∴==∴=±,等比中项为-1或12.如果0b a <<,那么下列不等式错误的是( )A. 22a b >B. 0a b ->C. 0a b +<D. b a >【答案】A【解析】【分析】利用不等式的性质或比较法对各选项中不等式的正误进行判断.【详解】0b a <<Q ,0a b ∴->,0a b +<,则()()220a b a b a b -=-+<,22a b ∴<,可得出b a >,因此,A 选项错误,故选:A.3.袋中有9个大小相同的小球,其中4个白球,3个红球,2个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为( ) A. 79 B. 49 C. 23 D. 59【答案】D【解析】【分析】利用古典概型的概率公式可计算出所求事件的概率.【详解】从袋中9个球中任取一个球,取出的球恰好是一个红色或黑色小球的基本事件数为5,因此,取出的球恰好是红色或者黑色小球的概率为59,故选: D. 4.若经过两点()4,21A y +、()2,3B -的直线的倾斜角为34π,则y 等于( ) A. 1-B. 2C. 0D. 3- 【答案】D【解析】【分析】 由直线AB 的倾斜角得知直线AB 的斜率为1-,再利用斜率公式可求出y 的值.【详解】由于直线AB 的倾斜角为34π,则该直线的斜率为3tan 14π=-, 由斜率公式得()2132142y y ++=+=--,解得3y =-,故选:D. 5.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是( ).A. B.C. D.。

湖南省长郡中学2018-2019学年高一数学下学期期末考试试题

湖南省长郡中学2018-2019学年高一数学下学期期末考试试题

长郡中学2018-2019学年度高一第二学期期末考试数学时量:120分钟满分:100分一、选择题(本大题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.21+与21-两数的等比中项是A. 1B. 1-C. 1±D. 122.如果b <a <0,那么下列不等式错误的是A. a 2>b 2B. a 一b >0C. a +b <0D. b a >3.袋中有9个大小相同的小球,其中4个白球,3个红球,2个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为A.79 B. 49 C. 23 D. 594.若经过两点A (4,2y +1),B(2,—3)的直线的倾斜角为 34π,则y 等于A.一1B.2C. 0D.一35.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是6.在等差数列{}n a 中,a 3+a 9=24一a 5一a 7,则a 6=A. 3B.6C. 9D. 12 7.半径为R 的半圆卷成一个圆锥,它的体积是 33R 33R 36R 36R 8.不等式230x x -<的解集为A. {}03x x <<B. {}3003x x x -<<<<或 C. {}30x x -<< D. {}33x x -<<9.在各项均为正数的数列{}n a 中.对任意m ,n N *∈,都有m n m n a a a +=⋅。

若664a =,则a 9等于A. 256B. 510C. 512D. 1024 10.同时投掷两枚股子,所得点数之和为5的概率是 A.14 B. 19 C. 16 D. 11211.在正四面体ABCD 中。

E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为 A.16B. 3C. 13D. 612.已知直线l 1: 2213(1)20,:(1)03x a y l x a y a +--=+--=,若l 1//l 2, 则a 的值为A. a =1或a =2B. a =1C. a =2D. 2a =- 13.在数列{}n a 中,若121212111,,()2n n n a a n N a a a *++===+∈,设数列{}n b 满足21log ()nb nn N a *=∈,则n b 的前n 项和S n 为 A. 2n一1 B. 2n一2 C. 2n+1一1 D. 2n+1一214.若满足条件60C ︒=a 的△ABC 有两个,那么a 的取值范围是A.B.C. 2)D.(1.2)15.曲线13y -=与过原点的直线l 没有交点,则l 的倾斜角α的取值范围是 A. 2[0,][,)33πππ B. [,]33ππ- C. 2[,)3ππ D. [0,)3π二、填空题(本大题共5小题,每小题3分,共15分.)★16.设x ,y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =+的最大值为_______。

2018-2019学年湖南省长沙市长郡中学高一下学期入学考试数学试题(解析版)

2018-2019学年湖南省长沙市长郡中学高一下学期入学考试数学试题(解析版)

2018-2019学年湖南省长沙市长郡中学高一下学期入学考试数学试题一、单选题1.已知}3{1A =,,5{}34B =,,,则集合A B =I ( ) A .{}3 B .{4}5,C .15}2{4,,,D .{345},, 【答案】A【解析】由交集的定义直接求解即可. 【详解】Q }3{1A =,,5{}34B =,,,∴{}3A B ⋂=.故选:A. 【点睛】本题考查交集的求法,属于基础题.2.已知函数31(0)()2(0)x a x f x x x -⎧+≤=⎨+>⎩,若((1))18f f -=,那么实数a 的值是( )A .4B .1C .2D .3【答案】C【解析】先求出(1)4f -=,((1))18f f -=变成(4)18f =,可得到4218a +=,解方程即可得解. 【详解】(1)4f -=,((1))18f f -=变成(4)18f =,即4218a +=,解之得:2a =.故选:C. 【点睛】本题考查已知函数值求参数的问题,考查分段函数的知识,考查计算能力,属于常考题. 3.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5 B .7C .9D .11【答案】B【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.4.设α是第三象限角,且cos cos22αα=-,则2α所在象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B【解析】先由α是第三象限角,得出2α可能在第二、四象限,进一步由cos cos 22αα=-再判断出2α所在的象限. 【详解】αQ 是第三象限角, ∴3222k k πππαπ+<<+,k Z ∈, 3224k k παπππ∴+<<+,k Z ∈, ∴2α在第二、四象限, 又coscos22αα=-,∴cos02α<,∴2α在第二象限. 故选:B. 【点睛】本题考查由三角函数式的符号判断角所在象限的问题,考查逻辑思维能力和分析能力,属于常考题.5的是( )A .00sin15cos15 B .22cos sin 1212ππ- C .01tan151tan15+- D 【答案】B【解析】A.00011sin15cos15sin 3024==B .223cos sin cos.121262πππ-==C .001tan151tan15+-0tan 752 3.==+ D .001cos306-2cos15=24+= 故答案为B.6.已知AD ,BE 分别为ABC ∆的边BC ,AC 上的中线,且AD a =u u u r r ,BE b =u u u r r,则BC uuu r为( )A .4233a b +r rB .2433a b +rrC .2233a b -rrD .2433b a -r r【答案】B【解析】易得22AB AC AD a +==u u u r u u u r u u u r r ,22BA BC BE b +==u u u r u u u r u u u r r ,再由AC BC BA =-u u u r u u u r u u u r,可得222BC BA a BC BA b⎧-=⎨+=⎩u u u v u u u v v u u u v u u u v v ,解出BC uuu r即可. 【详解】 如图:因为AD ,BE 分别为ABC ∆的边BC ,AC 上的中线,所以有:22AB AC AD a +==u u u r u u u r u u u r r ,22BA BC BE b +==u u u r u u u r u u u r r ,AC BC BA =-u u u r u u u r u u u r ,整理得:222BC BA a BC BA b⎧-=⎨+=⎩u u u v u u u v v u u uv u u u v v ,解得:2433BC a b =+u u u r r r . 故选:B. 【点睛】本题主要考查平面向量的基本定理和加减法的几何意义,考查逻辑思维能力和运算能力,属于常考题.7.函数()f x 是定义在R 上的奇函数,当0x ≥时,()f x 为减函数,且()11f -=,若(2)1f x -≥-,则x 的取值范围是( )A .(,3]-∞B .(,1]-∞C .[3,)+∞D .[1,)+∞【答案】A【解析】函数()f x 是定义在R 上的奇函数,当0x ≥时,()f x 为减函数,,故函数()f x 在R 上单调递减,又()11f -=,因此()21f x -≥-(2)(1)213f x f x x ⇔-≥⇔-≤⇔≤.故选A.点睛:本题属于对函数单调性应用的考察,若函数()f x 在区间上单调递增,则1212,,()()x x D f x f x 且∈>时,有12x x >,事实上,若12x x ≤,则12()()f x f x ≤,这与12()()f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当1212,,()()x x D f x f x 且∈>时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.8.已知点(0,1)A ,(1,2)B ,(2,1)C --,(3,4)D ,则向量AB u u u v 在CD uuuv 方向上的投影为( ) A .322B .2C .322-D .3152-【答案】B【解析】()()1,1.5,5AB CD u u u v u u u v==则向量AB u u u v 在CD uuu v方向上的投影为cos ,252AB CD AB AB CD AB AB CD ⋅=⋅==u u u v u u u vu u u v u u u v u u u v u u u v u u u v u u u v 故选B 9.函数ln |1|xy ex =--的图像大致是( )A .B .C .D .【答案】D【解析】根据函数的形式和图象,分1x ≥和01x <<两种情况去绝对值,判断选项. 【详解】 当1x ≥时,()ln 111xy ex x x =--=--=,当01x <<时,()ln ln 1111xx y e x e x x x-=--=--=+- 只有D 满足条件. 故选:D 【点睛】本题考查含绝对值图象的识别,属于基础题型. 一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.10.正方形ABCD 边长为2,中心为O ,直线l 经过中心O ,交AB 于M ,交CD于N ,P 为平面上一点,且2(1),OP OB OC u u u r u u u r u u u r λλ=+-则PM PN ⋅u u u u r u u u r的最小值是( )A .34-B .1-C .74-D .2- 【答案】C【解析】由题意可得:()()()222222114444PM PN PM PNPM PN PO NO PO NO ⎡⎤⋅=+-+=-=-⎢⎥⎣⎦u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r ,设2OP OQ =u u u r u u u r,则()()1,11,,,OQ OB OC Q B C λλλλ=+-+-=∴u u u r u u u r u Q u u r 三点共线.当MN 与BD 重合时,NO u u u r 最大,且2max2NO =u u u r ,据此:()min17244PM PN⋅=-=-u u u u r u u u r本题选择C 选项.11.2cos10tan 20cos 20︒︒︒-=( ) A .1 BCD【答案】C【解析】将所求关系式中的“切”化“弦”,再利用两角差的余弦化cos10cos(3020)︒︒︒=-,整理运算即可.【详解】2cos10tan 20cos 20︒︒︒- 2cos10sin 20cos 20cos 20︒︒︒︒=- 2cos(3020)sin 20cos 20cos 20︒︒︒︒︒-=- 2(cos30cos 20sin 30sin 20)sin 20cos 20cos 20︒︒︒︒︒︒︒+-=sin 20cos 20︒︒=-sin 20sin 20cos 20cos 20︒︒︒︒-==故选:C. 【点睛】本题考查三角函数的化简求值,切”化“弦”是关键,考查分析与运算能力,属于中档题. 12.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且(](]22log (1)10()173122x x f x x x x ⎧--∈-⎪=⎨---∈-∞-⎪⎩,,,,,若关于x 的方程()f x t =(t R ∈)恰有5个不同的实数根1x ,2x ,3x ,4x ,5x ,则12345x x x x x ++++的取值范围是( ) A .(2,1)-- B .(1,1)-C .(1,2)D .(2,3)【答案】B【解析】由分段函数的解析式作出(,0)-∞的图象,由题意得出()f x 为奇函数,根据函数关于原点对称作出(0,)+∞的图象,由数形结合得出答案. 【详解】由分段函数的解析式作出(,0)-∞的图象,由题意得出()f x 为奇函数,根据函数关于原点对称作出(0,)+∞的图象,所以其图象如图:由图可知,若关于x 的方程()f x t =(t R ∈)恰有5个不同的实数根,则(1,1)t ∈-, 设12345x x x x x <<<<,则126x x +=-,456x x +=, 由图可知,3(1,1)x ∈-,所以123453(1,1)x x x x x x ++++=∈-. 故选:B. 【点睛】本题考查奇偶函数图象的对称性,考查函数的零点,考查分析能力和数形结合思想,属于中档题.13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=()212⨯+弦矢矢,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为23π,半径等于4米的弧田.下列说法不.正确的是( )A .“弦” 3AB =“矢”2CD =米B .按照经验公式计算所得弧田面积(432)平方米C .按照弓形的面积计算实际面积为(16233π-D .按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据3 1.73≈, 3.14π≈) 【答案】C【解析】运用解直角三角形可得AD ,DO ,可得弦、矢的值,以及弧田面积,运用扇形的面积公式和三角形的面积公式,可得实际面积,计算可得结论. 【详解】解:如图,由题意可得∠AOB 23π=,OA =4, 在Rt △AOD 中,可得∠AOD 3π=,∠DAO 6π=,OD 12=AO 1422=⨯=,可得矢=4﹣2=2,由AD =AO sin3π=432⨯=23, 可得弦=2AD =43,所以弧田面积12=(弦×矢+矢2)12=(43⨯2+22)=432+平方米. 实际面积2121164432432323ππ=⋅⋅-⋅⋅=-, 168320.9070.93π--=≈. 可得A ,B ,D 正确;C 错误. 故选C .【点睛】本题考查扇形的弧长公式和面积公式的运用,考查三角函数的定义以及运算能力、推理能力,属于基础题.14.已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=( ) A .16 B .16-C .2216a a --D .2216a a +-【答案】B【解析】试题分析:设()()()()228h x f x g x x a =-=--,由()0h x =得2x a =±,此时()()f x g x =;由()0h x >得22x a x a >+<-或,此时()()f x g x >;由()0h x <得22a x a -<<+,此时()()f x g x <;综上可知2x a ≤-时()()()()12,H x f x H x g x ==,当22a x a -≤≤+时()()()()12,H x g x H x f x ==,当2x a ≥+时()()()()12,H x f x H x g x ==,所以()()244,2412A g a a B g a a =+=--=-=-+16A B ∴-=-【考点】1.二次函数值域;2.分情况讨论15.定义一种新运算:,(){,()b a b a b a a b ≥⊗=<,已知函数24()(1)log f x x x=+⊗,若函数()()g x f x k =-恰有两个零点,则k 的取值范围为( ) A .(]1,2 B .(1,2)C .(0,2)D .(0,1)【答案】B【解析】试题分析:这类问题,首先要正确理解新运算,能通过新运算的定义把新运算转化为我们已经学过的知识,然后解决问题.本题中a b ⊗实质上就是取,a b 中的最小值,因此()f x 就是41x +与2log x 中的最小值,函数41y x=+在(0,)+∞上是减函数,函数2log y x =在(0,)+∞上是增函数,且241log 44+=,因此当(0,4)x ∈时,24log 1x x <+,(4,)x ∈+∞时,241log x x+<,因此2log ,04,(){41,4x x f x x x<≤=+>,由函数的单调性知4x =时()f x 取得最大值(4)2f =,又(0,4)x ∈时,()f x 是增函数,且200lim ()limlog x x f x x →→==-∞,,又(4,)x ∈+∞时,()f x 是减函数,且04lim ()lim (1)1x x f x x→→+∞=+=.函数()()g x f x k =-恰有两个零点,说明函数()y f x =的图象与直线y k =有两个交点,从函数()f x 的性质知12k <<.选B. 【考点】函数的图象与性质.二、填空题16.已知函数()sin()f x x ωϕ=+的图象如图所示,则(2)f =_____.【答案】2【解析】根据周期求出ω,再根据五点法作图求得ϕ,可得函数的解析式,从而求得(2)f 的值.【详解】根据函数()sin()f x x ωϕ=+的图象可得:3323144T πω=⋅=-,34πω=, 再根据五点法作图可得3142ππϕ⨯+=, ∴4πϕ=-,∴3sin 44()x f x ππ=-⎛⎫⎪⎝⎭,∴352(2)sin sin sin 24442f ππππ⎛⎫⎪⎝==⎭=--=. 故答案为:22-. 【点睛】本题考查由sin()y A x ωϕ=+的部分图象确定其解析式并求值的问题,考查识图能力和计算能力,属于常考题.17.若()(0)xf x a a =>的图象过点()2,4,则a =______.【答案】2【解析】把已知点代入函数,即可解得a 值. 【详解】解:函数f (x )的图象过点(2,4),可得4=a 2,又a >0,解得a =2. 故答案为2 【点睛】本题考查了指数函数的图象和性质,属于基础题.18.cos18cos 42cos72sin 42⋅-⋅=o o o o _____. 【答案】12【解析】利用诱导公式变形,再由两角和的余弦求解. 【详解】 解:11842724218421842602cos cos cos sin cos cos sin sin cos ︒⋅︒-︒⋅︒=︒⋅︒-︒⋅︒=︒=, 故答案为12. 【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题.19.已知函数()f x 的定义域是(0)+∞,,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >,则不等式()(3)2f x f x -+-≥-的解集为_____. 【答案】[)1,0-【解析】由已知令1x y ==,求得(1)0f =,再求(2)1f =-,即有(4)2f =-,原不等式()(3)2f x f x -+-≥-即为(3)[])(4f x x f --≥,再由单调性即可得到不等式组,解出它们即可. 【详解】由于()()()f xy f x f y =+,令1x y ==,则(1)2(1)f f =,即(1)0f =, 则11(1)(2)(2)()022f f f f =⨯=+=, 由1()12f =,则(2)1f =-, 即有(4)2(2)2f f ==-,不等式()(3)2f x f x -+-≥-即为(3)[])(4f x x f --≥, 由于对于0x y <<,都有()()f x f y >,则()f x 在(0)+∞,上递减,则原不等式即为030(3)4x x x x ->⎧⎪->⎨⎪--≤⎩,即有0314x x x <⎧⎪<⎨⎪-≤≤⎩,即有10x -≤<,即解集为[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查抽象函数及其应用,考查由函数的单调性解不等式,考查逻辑思维能力和运算能力,属于中档题.20.如图,Rt ABC ∆中,AB AC =,4BC =,O 为BC 的中点,以O 为圆心,1为半径的半圆与BC 交于点D ,P 为半圆上任意一点,则BP AD ⋅u u u r u u u r的最小值为_____.【答案】25-【解析】建立空间直角坐标系,利用向量数量积的定义结合三角函数的性质进行求解即可. 【详解】如图,以O 为坐标原点,BC 所在直线为x 轴建立直角坐标系,所以(2,0)B -,(1,0)D ,(0,2)A , 设(,)P x y (0y ≥),且221x y +=,所以(2,)(1,2)22x y BP AD x y =+⋅-=⋅+-u u u r u u u r,令cos x α=,sin y α=,[]0,απ∈,则2sin 25cos (o )s 2BP AD αααϕ⋅+=+=-+u u u r u u u r ,其中:tan 2,(0,)2πϕϕ=∈,所以当απϕ=-时,BP AD ⋅u u u r u u u r有最小值,最小值为:2-.故答案为:2【点睛】本题考查利用坐标法解决数量积的问题,考查平面向量数量积的运算,考查逻辑思维能力和运算能力,属于中档题.三、解答题21.已知向量()1,2a =r,向量()3,2b =-r . (1)求向量2a b -r r 的坐标;(2)当k 为何值时,向量ka b +rr与向量2a b -rr共线. 【答案】(1)()7,2-(2)12k =-【解析】试题分析:(1)根据向量坐标运算公式计算;(2)求出ka b +rr的坐标,根据向量共线与坐标的关系列方程解出k; 试题解析:(1)()()()21,223,27,2a b -=--=-r r(2)()()()1,23,23,22ka b k k k +=+-=-+rr , ()()()21,223,27,2a b -=--=-r r∵ka b +rr与2a b -rr共线, ∴()()72223k k +=-- ∴12k =-22.(1)计算:2222lg 6(log 3)log 3log 6lg 2-⋅+. (2)若1tan 3α=-,求sin 2cos 5cos sin αααα+-. 【答案】(1)1 (2) 516【解析】(1)直接利用对数的运算性质化简求值; (2)利用同角三角函数基本关系式化弦为切求解. 【详解】(1)()2222lg6log 3log 3log 6lg2-⋅+ ()22222log 3log 3log 6log 6=-⋅+()2222log 3log 3log 6log 6=-+,22log 3log 61=-+=,(2) 〖解法1〗由题知cos 0α≠∴sin 2cos sin 2cos cos 5cos sin 5cos sin cos αααααααααα++=--. tan 25tan αα+=-, 516=, 〖解法2〗1tan 3sin cos 3ααα=-⇒-=∴()()sin 23sin sin 2cos 5cos sin 53sin sin αααααααα+-+=---. 516=, 【点睛】本题考查对数的运算性质,考查三角函数的化简求值,是基础题. 23.已知函数2()cos cos f x x x x a =++. (1)求函数()f x 的最小正周期及单调递增区间;(2)当63ππx ⎡⎤∈-⎢⎥⎣⎦,时,函数()f x 的最大值与最小值的和为32,求实数a 的值.【答案】(1)最小正周期为π,单调递增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)0a =.【解析】(1)利用二倍角公式和两角和的正弦公式进行化简为正弦型函数,进而求得最小正周期和单调递增区间;(2)当63ππx ⎡⎤∈-⎢⎥⎣⎦,时,52666x πππ⎡⎤+∈-⎢⎥⎣⎦,,再求出()f x 的最大值与最小值,然后列出方程求得a 的值. 【详解】(1)函数2()cos cos f x x x x a =++12(1cos 2)22x x a =+++ 1sin(2)62x a π=+++,∴函数()f x 的最小正周期为:22T ππ==, 令222262k x k πππππ-+≤+≤+,k Z ∈,解得:36k x k ππππ-+≤≤+,k Z ∈,∴函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)当63ππx ⎡⎤∈-⎢⎥⎣⎦,时, 52666x πππ⎡⎤+∈-⎢⎥⎣⎦,, 令ππ266x +=-,解得:6x π=-,此时函数()f x 取得最小值为:min 11()22f x a a =-++=, 令262x ππ+=,解得:6x π=,此时函数()f x 取得最大值为:max 13(221)f a a x =++=+, 又()f x 的最大值与最小值的和为32,所以有: 33()22a a ++=,解之得:0a =.【点睛】本题考查三角恒等变换,考查正弦型函数的性质,考查运算求解能力,考查逻辑思维能力,属于中档题.24.已知函数f(x)=log 4(4x +1)+kx(k ∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23xa a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a 的取值范围. 【答案】(1)k =-12.(2){-3}∪(1,+∞). 【解析】(1)由函数f(x)是偶函数,可知f(x)=f(-x), ∴log 4(4x +1)+kx =log 4(4-x +1)-kx.log 44141x x -++=-2kx ,即x =-2kx 对一切x ∈R 恒成立,∴k =-12.(2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log 4(4x +1)-12x =log 44•23xa a ⎡⎤⎢⎥⎣⎦-有且只有一个实根,化简得方程2x +12x=a·2x-43a 有且只有一个实根.令t =2x >0,则方程(a -1)t 2-43at -1=0有且只有一个正根. ①a =1t =-34,不合题意;②a≠1时,Δ=0a =34或-3.若a =34t =-2,不合题意,若a =-3t =12;③a≠1时,Δ>0,一个正根与一个负根,即11a --<0a>1. 综上,实数a 的取值范围是{-3}∪(1,+∞).25.设函数21()?(01)x xa f x a a a-=>≠且是定义域为R 的奇函数. (1)若(1)0f >,求使不等式2()(1)0f kx x f x -+-<对一切x ∈R 恒成立的实数k的取值范围;(2)若函数()f x 的图象过点3(1,)2P ,是否存在正数(1)m m ≠,使函数22()log [()]x x m g x a a mf x -=+-在2[1,log 3]上的最大值为0?若存在,求出m 的值;若不存在,请说明理由.【答案】(1)()3,1- (2)见解析 【解析】(1)由f (1)>0得a 1a-又a >0,求出a >1,判断函数的单调性f (x )=a x ﹣a ﹣x 为R 上的增函数,不等式整理为x 2﹣(k +1)x +1>0对一切x ∈R 恒成立,利用判别式法求解即可;(2)把点代入求出a =2,假设存在正数m ,构造函数设s =2x ﹣2﹣x 则(2x ﹣2﹣x )2﹣m(2x ﹣2﹣x )+2=s 2﹣ms +2,对底数m 进行分类讨论,判断m 的值.【详解】(1) ()xxf x a a -=-,由()10f > 得 10a a->,又 0a > ∴ 1a >. ∵ ()()210f kx xf x -+-<,函数()f x 是奇函数,∴()()21f kx x f x -<-∵ ()1,xxa f x a a ->=-在R 上为增函数,即 21kx x x -<-对一切x 恒成立,即()2110x k x -++> 在R 恒成立,有0∆<,∴()2140k +-<得 31k -<<,所以k 的取值范围是()3,1-(2)假设存在正数()1m m ≠符合,∵ ()f x 过31,)2( ∴ 2a = ()()()2log 22222x xx x m g x m --⎡⎤=---+⎢⎥⎣⎦,设22x x s -=-, ()22h s s ms =-+(i) 若01m <<,则函数()22h s s ms =-+在38,23⎡⎤⎢⎥⎣⎦上最小值为1∵ 对称轴 122m s =<,()min 31731312426h s h m m ⎛⎫==-=⇒= ⎪⎝⎭(舍)(ii) 若1m >,则()220h s s ms =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大为1,最小值大于①()12522127382413maxm m h s h n ⎧<≤⎪⎪=⎨⎛⎫⎪== ⎪⎪⎝⎭⎩此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,()min 73048h s h ⎛⎫=< ⎪⎝⎭故不合题意 ②()25252126313136maxm m m h s h m ⎧⎧>>⎪⎪⎪⎪⎨⎨⎛⎫⎪⎪===⎪⎪⎪⎩⎝⎭⎩n n 无解 综上所述,不存在正数()1m m ≠满足条件. 【点睛】本题考查了奇函数的性质,利用奇函数的性质整理不等式,利用构造函数,用分类讨论的方法解决实际问题.。

湖南省长沙市长郡中学2018_2019学年高一数学下学期期末考试试题(含解析)

湖南省长沙市长郡中学2018_2019学年高一数学下学期期末考试试题(含解析)

湖南省长沙市长郡中学2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.11的等比中项是( ) A. 1 B. -1 C. ±1 D.12【答案】C 【解析】试题分析:设两数的等比中项为)21111x x x ∴==∴=±,等比中项为-1或1考点:等比中项2.如果0b a <<,那么下列不等式错误的是( ) A. 22a b > B. 0a b -> C. 0a b +< D. b a >【答案】A 【解析】 【分析】利用不等式的性质或比较法对各选项中不等式的正误进行判断.【详解】0b a <<Q ,0a b ∴->,0a b +<,则()()220a b a b a b -=-+<,22a b ∴<,可得出b a >,因此,A 选项错误,故选:A.【点睛】本题考查判断不等式的正误,常利用不等式的性质或比较法来进行判断,考查推理能力,属于基础题.3.袋中有9个大小相同的小球,其中4个白球,3个红球,2个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为( ) A.79B.49C.23D.59【答案】D 【解析】 【分析】利用古典概型的概率公式可计算出所求事件的概率.【详解】从袋中9个球中任取一个球,取出的球恰好是一个红色或黑色小球的基本事件数为5,因此,取出的球恰好是红色或者黑色小球的概率为59,故选:D. 【点睛】本题考查古典概型概率的计算,解题时要确定出全部基本事件数和所求事件所包含的基本事件数,并利用古典概型的概率公式进行计算,考查计算能力,属于基础题.4.若经过两点()4,21A y +、()2,3B -的直线的倾斜角为34π,则y 等于( ) A. 1- B. 2C. 0D. 3-【答案】D 【解析】 【分析】由直线AB 的倾斜角得知直线AB 的斜率为1-,再利用斜率公式可求出y 的值. 【详解】由于直线AB 的倾斜角为34π,则该直线的斜率为3tan 14π=-, 由斜率公式得()2132142y y ++=+=--,解得3y =-,故选:D.【点睛】本题考查利用斜率公式求参数,同时也涉及了直线倾斜角与斜率之间的关系,考查计算能力,属于基础题.5.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是( ).A. B.C. D.【答案】A 【解析】试题分析:由斜二测画法的规则知与x'轴平行或重合的线段与x ’轴平行或重合,其长度不变,与y 轴平行或重合的线段与x ’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y 轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A 选项符合题意.故应选A .考点:斜二测画法。

湖南省长郡市2018-2019学年高考模拟试卷数学(文)试题Word版含答案

湖南省长郡市2018-2019学年高考模拟试卷数学(文)试题Word版含答案

湖南省长郡市2018-2019学年高考模拟试卷数学(文)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}|12,|14,A x x B x x x Z =-≤≤=-<<∈,则AB =( )A . {}0,1,2B .[]0,2C .{}0,2D .()0,2 2.已知复数21z i=-+,则( ) A .z 的模为2 B .z 的虚部为-1 C .z 的实部为1 D .z 的共轭复数为1i +3.已知命题()1:0,,sin p x x x x∀∈+∞=+,命题:,1x q x R π∃∈<,则下列为真命题的是( )A . ()p q ∧⌝B .()()p q ⌝∧⌝C . ()p q ⌝∧D .p q ∧4.一个焦点为()0,6,且与双曲线2212x y -=有相同的渐近线的双曲线的方程是( )A .2211224x y -=B .2211224y x -= C. 2212412y x -= D .2212412x y -=5.若()()sin cos cos sin m αβααβα---=,且β为第三象限角,则cos β的值为( )A .. .6.已知函数()f x 的导函数为()f x ',且满足()()21ln f x xf x '=+,则()1f '= ( ) A .e -B .-1 C. 1 D . e7.已知简单组合体的三视图如图所示,则此简单组合体的体积为( )A .1043π- B . 1083π- C. 1643π- D .1683π- 8.已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若()3cos 13cos b C c B =-,则sin :sin C A =( )A .2:3B .4:3 C. 3:1 D .3:29.当4n =时,执行如图所示的程序框图,输出的S 值为( )A .6B . 8 C. 14 D .30 10.如图,将绘有函数()()506f x x πωω⎛⎫=+> ⎪⎝⎭部分图象的纸片沿x 轴折成直二面角,若AB ()1f -=( )A .-1B .1 C.11.已知定义在R 上的函数()f x 为增函数,当121x x +=时,不等式()()()()1201f x f f x f +>+恒成立,则实数1x 的取值范围是( )A .(),0-∞B .10,2⎛⎫ ⎪⎝⎭C. 1,12⎛⎫⎪⎝⎭D .()1,+∞12.已知正方体1111ABCD A BC D -,点,,E F G 分别是线段1,DC D D 和1D B 上的动点,给出下列结论:①对于任意给定的点E ,存在点F ,使得1AF A E ⊥; ②对于任意给定的点F ,存在点E ,使得1AF A E ⊥; ③对于任意给定的点G ,存在点F ,使得1AF B G ⊥; ④对于任意给定的点F ,存在点G ,使得1AF B G ⊥. 其中正确结论的个数是( )A .0B .1 C. 2 D .3第Ⅱ卷二、填空题:本题共4小题 ,每小题5分.13.已知向量()()2,1,3,a b x =-=,若3a b =,则x = .14.向面积为S 的平行四边形ABCD 内任投一点M ,则MCD ∆的面积小于3S的概率为 .15.若无论实数a 取何值时,直线10ax y a +++=与圆22220x y x y b +--+=都相交,则实数b 的取值范围是 .16.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中4115.16寸表示115寸416分(1寸=10分).已知《易知》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为 寸.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知数列{}n a 中,131,9a a ==,且()112n n a a n n λ-=+-≥.(1)求λ的值及数列{}n a 的通项公式;(2)设()()1n n n b a n =-+,且数列{}n b 的前2n 项和为2n S ,求2n S .18. 如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若0120,ABC AE EC ∠=⊥,三棱锥E ACD -面积(平面ACD 为底面).19.在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:(1)在散点图中16号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为 6.5y x a =+,求a ,并估计y 的预报值;(2)现准备勘探新井()71,25,若通过1、3、5、7号井计算出的ˆˆ,ba 的值(ˆˆ,b a 精确到0.01)相比于(1)中,b a 的值之差(即:ˆˆ,bb a a b a--)不超过10%,则使用位置最接近的已有旧井()61,y ,否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果:442121212122111ˆˆˆ,,94,945ni ii i i i ni i i i x y nx yba y bx x x y x nx=---===-==-==-∑∑∑∑) (3)设出油量与钻探深度的比值k 不低于20的勘探井称为优质井,在原有井号26的井中任意勘探3口井,求恰好2口是优质井的概率.20.已知椭圆()2222:10x y E a b a b+=>>的左焦点1F 与抛物线24y x =-的焦点重合,椭圆E 的离心率为2,过点(),0M m 作斜率存在且不为0的直线l ,交椭圆E 于,A C 两点,点5,04P ⎛⎫⎪⎝⎭,且PA PC 为定值.(1)求椭圆E 的方程; (2)求m 的值. 21. 已知函数()()31,ln 4f x x axg x x =++=-. (1)当a 为何值时,x 轴为曲线()y f x =的切线;(2)用{}min ,m n 表示,m n 中的最小值,设函数()()(){}()min ,0h x f x g x x =>,讨论()h x 零点的个数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知直线l的参数方程为112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos21ρθ=,直线l 与曲线C 交于,A B 两点.(1)求AB 的长;(2)若点P 的极坐标为1,2π⎛⎫⎪⎝⎭,求AB 中点M 到P 的距离.23.选修4-5:不等式选讲已知0,0a b >>,函数()2f x x a x b =++-的最小值为1. (1)求2a b +的值;(2)若2a b tab +≥,求实数t 的最大值.湖南省长郡市2018-2019学年高考模拟试卷数学(文)试题答案一、选择题1-5: ABCBB 6-10: BCCDD 11、12:DC 二、填空题13. 3 14. 2315. (,6)-∞- 16. 82 三、解答题17.【解析】(1)∵131,9a a ==,且()112n n a a n n λ-=+-≥, ∴232,519a a λλ==-=,解得2λ=, ∴()1212n n a a n n --=-≥,∴()()()22112123312n n n a n n n -+=-+-+++==; (2)()()()()211n n n n b a n n n =-+=-+,()()()222122121224n n b b n n n n n -⎡⎤⎡⎤+=--+-++=⎣⎦⎣⎦, ()2214222n n n S n n +=⨯=+. 18.【解析】(1)因为四边形ABCD 的菱形,所以AC BD ⊥, 因为BE ⊥平面ABCD ,所以AC BE ⊥,故AC ⊥平面BED , 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED ;(2)设AB x =,在菱形ABCD 中,由0120ABC ∠=,可得,22xAG GC x GB GD ====.因为AE EC ⊥,所以在Rt AEC ∆中,可得2EG x =.由BE ⊥平面ABCD ,知EBG ∆为直角三角形,可得 2BE x =,由已知得,三棱锥E ACD -的体积311632E ACD V AC GD BE x -=⨯==,故2x =,从而可得AE EC ED ===所以EAC ∆的面积为3,EAD ∆的面积与ECD ∆故三棱锥E ACD -的侧面积为3+19.【解析】(1)因为5,50x y ==,回归直线必过样本中心点(),x y ,则50 6.5517.5a y bx =-=-⨯=,故回归直线方程为 6.517.5y x =+,当1x =时, 6.517.524y =+=,即y 的预报值为24; (2)因为442212121114,46.25,94,945i i i i i x y xx y ---======∑∑,所以421211422221149454446.25ˆ 6.8394444i i i i i xy x ybx x--=-=--⨯⨯==≈-⨯-∑∑, ˆˆ46.25 6.83418.93ay bx =-=-⨯=,即ˆˆ6.83,18.93, 6.5,17.5b a b a ====, ˆˆ5%,8%b b a a b a--≈≈,均不超过10%,因此可以使用位置最接近的已有旧井()61,24;(3)由题可知:3,5,6这3口井是优质井,2,4这2口井为非优质井,由题意从这5口井中随机选取3口井的可能情况有:()()()()()()()()()()2,3,4,2,3,5,2,3,6,2,4,5,2,4,6,2,5,6,3,4,5,3,4,6,3,5,6,4,5,6,共有10种,其中恰有2口是优质井的有()()()()()()2,3,5,2,3,6,2,5,6,3,4,5,3,4,6,4,5,6,6种, 所以所求恰有2口是优质井的概率是63105P ==. 20.【解析】(1)∵24y x =-的焦点为()1,0-,∴1c =,又∵2e =,∴1a b ==,∴椭圆E 的方程为2212x y +=;(2)由题意,k 存在且不为零,设直线l 方程为()()()1122,,,,y k x m A x y C x y =-,联立方程组()2212x y y k x m ⎧+=⎪⎨⎪=-⎩,消元得()22222124220k x mk x k m +-+-=,∴222121222422,1212mk m k x x x x k k -+==++, ∴222121222422,1212mk m k x x x x k k -+==++, ∴()()21212121255554444PA PC x x y y x x k x m x m ⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭∴()()()2222221212235225252514161216m m k k x x mk x x k m k ---⎛⎫=+-++++=+ ⎪+⎝⎭, ∵PA PC 为定值,∴23524m m --=-,即23520m m -+=,∴1221,3m m ==,∴m 的值为1或23.21.【解析】(1)设曲线()y f x =与x 轴相切于点()0,0x ,则()()000,0f x f x '==,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩, 解得:013,24x a ==-, 因此,当34a =-时,x 轴是曲线()y f x =的切线;(2)当()1,x ∈+∞时,()ln 0g x x =-<,从而()()(){}()min ,0h x f x g x g x =≤<, ∴()h x 在()1,+∞无零点, 当1x =时,若54a ≥-,则()5104f a =+≥,()()(){}()1min 1,110h fg g ===,故1x =是()h x 的零点;若54a <-,则()5104f a =+<,()()(){}()1min 1,110h fg f ==<,故1x =不是()h x 的零点,当()0,1x ∈时,()ln 0g x x =->,所以只需考虑()f x 在()0,1的零点个数,(Ⅰ)若3a ≤-或0a ≥,则()23f x x a '=+在()0,1无零点,故()f x 在()0,1单调,而()()150,144f f a ==+, 所以当3a ≤-时,()f x 在()0,1有一个零点; 当0a ≥时,()f x 在()0,1无零点; (Ⅱ)若30a -<<,则()f x在⎛ ⎝单调递减,在⎫⎪⎪⎭单调递增,故当x =()f x取的最小值,最小值为14f =. ①若0f >,即304a -<<,()f x 在()0,1无零点; ②若0f =,即34a =-,则()f x 在()0,1有唯一零点;③若0f <,即334a -<<-,由于()()150,144f f a ==+,所以当5344a -<<-时,()f x 在()0,1有两个零点;当334a -<≤-时,()f x 在()0,1有一个零点. 综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点; 当5344a -<<-时,()h x 有三个零点. 22.【解析】(1)曲线2:cos 21C ρθ=的直角坐标方程为221x y -=,将2112x y t ⎧=⎪⎪⎨⎪=+⎪⎩代入曲线22:1C x y -=,得:2240t t --=, 设A 点、B 点所对应的参数分别为12t t 、,则12122,4t t t t +==-,AB =;(2)点1,2P π⎛⎫ ⎪⎝⎭对应的直角坐标为()0,1在直线l 上,AB 中点M 对应的参数为1212t t +=,所以M点坐标为32⎫⎪⎪⎝⎭,点M 到点P 的距离为1d =.23.【解析】(1)法一:()222b b f x x a x b x a x x =++-=++-+-, ∵()222b b b x a x x a x a ⎛⎫++-≥+--=+ ⎪⎝⎭且02b x -≥, ∴()2bf x a ≥+,当2b x =时取等号,即()f x 的最小值为2b a +, ∴1,222b a a b +=+=; 法二:∵2ba -<, ∴()3,2,23,2x ab x a b f x x a x b x a b a x b x a b x ⎧⎪--+<-⎪⎪=++-=-++-≤<⎨⎪⎪+-≥⎪⎩, 显然()f x 在,2b ⎛⎤-∞ ⎥⎝⎦上单调递减,()f x 在,2b ⎡⎫+∞⎪⎢⎣⎭上单调递增, ∴()f x 的最小值为22b b f a ⎛⎫=+ ⎪⎝⎭, ∴1,222b a a b +=+=; (2)法一:∵2a b tab +≥恒成立,∴2a b t ab+≥恒成立, ()21212112212292141422222a b a b a b a b ab b a b a b c b a ⎛⎫+⎛⎫⎛⎫=+=++=+++≥++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当23a b ==时,2a b ab +取得最小值92, ∴92t ≥,即实数t 的最大值为92; 法二:∵2a b tab +≥恒成立, ∴2a b t ab +≥恒成立,212a b t ab b a +≤=+恒成立,()21212149222b a b a b a ++=+≥=+, ∴92t ≥,即实数t 的最大值为92.。

湖南省长郡中学2018_2019学年高一数学下学期期末考试试题

湖南省长郡中学2018_2019学年高一数学下学期期末考试试题

长郡中学2018-2019学年度高一第二学期期末考试数学时量:120分钟满分:100分一、选择题(本大题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的)11-两数的等比中项是A. 1B. 1-C. 1±D. 122.如果b <a <0,那么下列不等式错误的是A. a 2>b 2B. a 一b >0C. a +b <0D. b a >3.袋中有9个大小相同的小球,其中4个白球,3个红球,2个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为A.79 B. 49 C. 23 D. 594.若经过两点A (4,2y +1),B(2,—3)的直线的倾斜角为 34π,则y 等于A.一1B.2C. 0D.一35.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是6.在等差数列{}n a 中,a 3+a 9=24一a 5一a 7,则a 6=A. 3B.6C. 9D. 12 7.半径为R 的半圆卷成一个圆锥,它的体积是A.324R B. 38R C. 324R D. 38R 8.不等式230x x -<的解集为A. {}03x x <<B. {}3003x x x -<<<<或 C. {}30x x -<< D. {}33x x -<<9.在各项均为正数的数列{}n a 中.对任意m ,n N *∈,都有m n m n a a a +=⋅。

若664a =,则a 9等于A. 256B. 510C. 512D. 1024 10.同时投掷两枚股子,所得点数之和为5的概率是 A.14 B. 19 C. 16 D. 11211.在正四面体ABCD 中。

E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为 A.16B. 3C. 13D. 612.已知直线l 1: 2213(1)20,:(1)03x a y l x a y a +--=+--=,若l 1//l 2, 则a 的值为A. a =1或a =2B. a =1C. a =2D. 2a =- 13.在数列{}n a 中,若121212111,,()2n n n a a n N a a a *++===+∈,设数列{}n b 满足21l o g ()nb nn N a *=∈,则n b 的前n 项和S n 为 A. 2n一1 B. 2n一2 C. 2n+1一1 D. 2n+1一214.若满足条件60C ︒=a 的△ABC 有两个,那么a 的取值范围是A.B.C. 2)D.(1.2)15.曲线13y -=与过原点的直线l 没有交点,则l 的倾斜角α的取值范围是 A. 2[0,][,)33πππ B. [,]33ππ- C. 2[,)3ππ D. [0,)3π二、填空题(本大题共5小题,每小题3分,共15分.)★16.设x ,y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =+的最大值为_______。

【全国百强校首发】湖南省长郡中学2017-2018学年高一下学期开学考试数学试题

【全国百强校首发】湖南省长郡中学2017-2018学年高一下学期开学考试数学试题

!"
.! !(
在 ++ 角 +% % 若 ('2 , - 中% ,% - 对应的 边 分 别 为(% .% / .% /' 槡 " (% -' " "! % 则( 为 8 $ < *! 2 ,! ; -! " # .! 2槡 " (
已知函数 '! 正实 数 0% 且 '! % 若 #! $" '$ / 0 $ 1 满 足 0 ,1% 0" ''! 1" #" $% 1 # 在区间 ) 上的最大值为 #% 则 0% $" 0# % 1( 1 的值分别为 '! " *! % # # " ,! % 2 #
$ % $% #( $" '# !" 则 '! ;( " ' !!!! ! 当 $& ! '!
#
#
2
%
8
=
" $
" "
" #
" (
" 2
" %
得分
!
"
数学 ! 长郡版 " !! (
3
2 0 3# 则 7 已知 7 " ;! 0 3 ! ' % ' !!!! ! & $% % 2 % 2 3 4 5 ) 2
已知函数 '! 设 关 于 $ 的 不 等 式 '! 的解 " %! $" '$! ")( $ ! $)(" $" $ $" ,'! " 集为 +% 若 !"% 则实数 ( 的取值范围是 /+% # #
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积= ,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为 ,半径等于4米的弧田.下列说法不正确的是( )
A.“弦” 米,“矢” 米
(2)当 时,函数 的最大值与最小值的和为 ,求实数 的值.
24.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设g(x)=log4 ,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
25.设函数 是定义域为 的奇函数.
(1)若 ,求使不等式 对一切 恒成立的实数 的取值范围;
B.按照经验公式计算所得弧田面积( )平方米
C.按照弓形的面积计算实际面积为( )平方米
D.按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据 )
14.已知函数 设 表示 中的较大值, 表示 中的较小值,记 得最小值为种新运算: ,已知函数 ,若函数
恰有两个零点,则 的取值范围为()
A. B. C. D.
第II卷(非选择题)
评卷人
得分
二、填空题
16.已知函数 的图象如图所示,则 _____.
17.若 的图象过点 ,则 ______.
18. _____.
19.已知函数 的定义域是 ,且满足 , ,如果对于 ,都有 ,则不等式 的解集为_____.
12.B
【解析】
【分析】
由分段函数的解析式作出 的图象,由题意得出 为奇函数,根据函数关于原点对称作出 的图象,由数形结合得出答案.
【详解】
由分段函数的解析式作出 的图象,由题意得出 为奇函数,根据函数关于原点对称作出 的图象,所以其图象如图:
由图可知,若关于 的方程 ( )恰有5个不同的实数根,则 ,
湖南省长沙市长郡中学2018-2019学年高一下学期
入学考试-数学试题
第I卷(选择题)
评卷人
得分
一、单选题
1.已知 , ,则集合 ()
A. B. C. D.
2.已知函数 ,若 ,那么实数 的值是()
A.4B.1C.2D.3
3.已知 = ,若 ,则 等于
A.5B.7C.9D.11
4.设 是第三象限角,且 ,则 所在象限是()
是第三象限角,
, ,
, ,
在第二、四象限,
又 , ,
在第二象限.
故选:B.
【点睛】
本题考查由三角函数式的符号判断角所在象限的问题,考查逻辑思维能力和分析能力,属于常考题.
5.B
【解析】
A.
B.
C.
D.
故答案为B.
6.B
【解析】
【分析】
易得 , ,再由 ,可得 ,解出 即可.
【详解】
如图:
因为 , 分别为 的边 , 上的中线,所以有:
20.如图, 中, , ,O为BC的中点,以O为圆心,1为半径的半圆与BC交于点D,P为半圆上任意一点,则 的最小值为_____.
评卷人
得分
三、解答题
21.已知向量 ,向量 .
(1)求向量 的坐标;
(2)当 为何值时,向量 与向量 共线.
22.(1)计算: .
(2)若 ,求 .
23.已知函数 .
(1)求函数 的最小正周期及单调递增区间;
(2)若函数 的图象过点 ,是否存在正数 ,使函数 在 上的最大值为0?若存在,求出 的值;若不存在,请说明理由.
参考答案
1.A
【解析】
【分析】
由交集的定义直接求解即可.
【详解】
, ,
.
故选:A.
【点睛】
本题考查交集的求法,属于基础题.
2.C
【解析】
【分析】
先求出 , 变成 ,可得到 ,解方程即可得解.
A.第一象限B.第二象限C.第三象限D.第四象限
5.下列各式中,值为 的是()
A. B. C. D.
6.已知 , 分别为 的边 , 上的中线,且 , ,则 为()
A. B. C. D.
7.函数 是定义在 上的奇函数,当 时, 为减函数,且 ,若 ,则 的取值范围是( )
A. B. C. D.
8.已知点 , , , ,则向量 在 方向上的投影为( )
10.C
【解析】
由题意可得:
,
设 ,则 三点共线.
当MN与BD重合时, 最大,且 ,
据此:
本题选择C选项.
11.C
【解析】
【分析】
将所求关系式中的“切”化“弦”,再利用两角差的余弦化 ,整理运算即可.
【详解】
.
故选:C.
【点睛】
本题考查三角函数的化简求值,切”化“弦”是关键,考查分析与运算能力,属于中档题.
【详解】
, 变成 ,即 ,解之得: .
故选:C.
【点睛】
本题考查已知函数值求参数的问题,考查分段函数的知识,考查计算能力,属于常考题.
3.B
【解析】
因为 = ,所以 = ,则 = = = .
选B.
4.B
【解析】
【分析】
先由 是第三象限角,得出 可能在第二、四象限,进一步由 再判断出 所在的象限.
【详解】
, , ,
整理得: ,解得: .
故选:B.
【点睛】
本题主要考查平面向量的基本定理和加减法的几何意义,考查逻辑思维能力和运算能力,属于常考题.
7.A
【解析】
函数 是定义在 上的奇函数,当 时, 为减函数,,故函数 在 上单调递减,又 ,因此 .
故选A.
点睛:本题属于对函数单调性应用的考察,若函数 在区间上单调递增,则 时,有 ,事实上,若 ,则 ,这与 矛盾,类似地,若 在区间上单调递减,则当 时有 ;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.
A. B. C. D.
9.函数 的图像大致是()
A. B.
C. D.
10.正方形 边长为 ,中心为 ,直线 经过中心 ,交 于 ,交 于 , 为平面上一点,且 则 的最小值是( )
A. B. C. D.
11. ()
A.1B. C. D.
12.已知定义在 上的函数 满足 ,且 ,若关于 的方程 ( )恰有5个不同的实数根 , , , , ,则 的取值范围是()
8.B
【解析】
则向量 在 方向上的投影为
故选B
9.D
【解析】
【分析】
根据函数的形式和图象,分 和 两种情况去绝对值,判断选项.
【详解】
当 时, ,
当 时,
只有D满足条件.
故选:D
【点睛】
本题考查含绝对值图象的识别,属于基础题型.一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.
相关文档
最新文档