(完整版)高中物理机械能守恒定律典例解题技巧
高中物理实验【验证机械能守恒定律】内容+典例

图1图2实验:验证机械能守恒定律一、实验目的通过实验验证机械能守恒定律.二、实验原理如图1所示,质量为m 的物体从O 点自由下落,以地面作为零重力势能面,如果忽略空气阻力,下落过程中任意两点A 和B 的机械能守恒即12mv 2A +mgh A =12mv 2B +mgh B 上式亦可写成12mv 2B -12mv 2A =mgh A -mgh B . 等式说明,物体重力势能的减少等于动能的增加.为了方便,可以直接从开始下落的O 点至任意一点(如图1中A 点)来进行研究,这时应有:12mv 2A =mgh ,即为本实验要验证的表达式,式中h 是物体从O 点下落至A 点的高度,v A 是物体在A点的瞬时速度.三、实验器材打点计时器,低压交流电源,带有铁夹的铁架台,纸带,复写纸,带夹子的重物,刻度尺,导线两根.四、实验步骤1.安装置:按图2将检查、调整好的打点计时器竖直固定在铁架台上,接好电路.2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔用手提着纸带使重物静止在靠近打点计时器的地方.先接通电源,后松开纸带,让重物带着纸带自由下落.更换纸带重复做3~5次实验.3.选纸带:分两种情况说明(1)用12mv 2n =mgh n 验证时,应选点迹清晰,且1、2两点间距离略小于或接近2 mm 的纸带.(2)用12mv 2B -12mv 2A =mg Δh 验证时,由于重力势能的相对性,处理纸带时,选择适当的点为基准点,只要后面的点迹清晰就可选用.五、数据处理方法一:利用起始点和第n 点计算代入mgh n 和12mv 2n ,如果在实验误差允许的条件下,mgh n 和12mv 2n 相等,则验证了机械能守恒定律.方法二:任取两点计算(1)任取两点A、B测出h AB,算出mgh AB.(2)算出12mv2B-12mv2A的值.(3)在实验误差允许的条件下,若mgh AB=12mv2B-12mv2A,则验证了机械能守恒定律.方法三:图象法从纸带上选取多个点,测量从第一点到其余各点的下落高度h,并计算各点速度的平方v2,然后以12v2为纵轴,以h为横轴,根据实验数据作出12v2-h图线.若在误差允许的范围内图线是一条过原点且斜率为g的直线,则验证了机械能守恒定律.六、误差分析1.本实验中因重物和纸带在下落过程中要克服各种阻力(如空气阻力、打点计时器阻力)做功,故动能的增加量ΔE k稍小于重力势能的减少量ΔE p,即ΔE k<ΔE p,这属于系统误差.改进的办法是调整器材的安装,尽可能地减小阻力.2.本实验的另一个误差来源于长度的测量,属偶然误差.减小误差的办法是测下落距离时都从0点量起,一次将各打点对应的下落高度测量完,或者多次测量取平均值来减小误差.七、注意事项1.打点计时器要稳定的固定在铁架台上,打点计时器平面与纸带限位孔调整在竖直方向,以减小摩擦阻力.2.应选用质量和密度较大的重物,增大重力可使阻力的影响相对减小,增大密度可以减小体积,可使空气阻力减小.3.实验中,需保持提纸带的手不动,且保证纸带竖直,待接通电源,打点计时器工作稳定后,再松开纸带.4.测下落高度时,要从第一个打点测起,并且各点对应的下落高度要一次测量完.5.速度不能用v n=gt n或v n=2gh n计算,因为只要认为加速度为g,机械能当然守恒,即相当于用机械能守恒定律验证机械能守恒定律,况且用v n=gt n计算出的速度比实际值大,会得出机械能增加的结论,而因为摩擦阻力的影响,机械能应该减小,所以速度应从纸带上直接测量计算.同样的道理,重物下落的高度h,也只能用刻度尺直接测量,而不能用h n=12gt2n或h n=v2n2g计算得到.记忆口诀自由落体验守恒,阻力减小机械能.仪器固定竖直向,先开电源物后放.开头两点两毫米,从头验证式容易.不管开头看清晰,任取两点就可以.图象验证也很好,关键记住两坐标.例1某实验小组在做“验证机械能守恒定律”实验中,提出了如图3所示的甲、乙两种方案:甲方案为用自由落体运动进行实验,乙方案为用小车在斜面上下滑进行实验.图1(1)组内同学对两种方案进行了深入的讨论分析,最终确定了一个大家认为误差相对较小的方案,你认为该小组选择的方案是__________,理由是_______________________________。
机械能守恒定律的判定方法和解题思路

机械能守恒定律的判断方法和解题思路机械能守恒定律是高中物理中一个重要规律,也是历年高考的要点和热门。
应用时,要点是守恒的判断和解题的思路,本文对这两个问题赐予分析。
一、机械能守恒的判断方法(1)用做功来判断:分析物系统统的受力状况(包括内力和外力),明确各力做功状况,若对物系统统只有重力做功或弹力做功,没有其余力做功或其余力做功的代数和为零,则机械能守恒;(2)用能量转变来判断:若物系统统中只有动能和势能之间的互相转变,而无机械能与其余形式能的转变,则机械能守恒;(3)关于绳索忽然绷紧,除非题目特别说明,机械能必然不守恒。
二、机械能守恒的解题思路应用机械能守恒解题时,互相作用的物体间的力能够是变力,也能够是恒力,只需切合守恒定律,机械能就守恒,并且机械能守恒定律,只波及物系统初、末状态的物理量,而不需分析中间过程的复杂变化,使物理问题获得简化。
应用的基本思路以下: 1. 选用研究对象 �� 物系统或物体; 2. 依据研究对象所经历的物理过程,进行受力、做功分析,判断机械能能否守恒; 3. 恰当的选用参照面,确立研究对象在过程的初、末态时的机械能;4.用机械能守恒定律成立方程,求解并考证结果。
三、典例分析1.单个物体的守恒问题例 1 如图 1 所示,某人以 3m/s 的速度斜向上抛出一个小球,小球落地时速度为 7m/s,不计空气阻力,求小球抛出时离地面的高度h。
( g=10m/s2)分析选小球为研究对象,以抛出时和落地时为初、末状态,速度大小分别为和,在小球运动过程中,只有重力做功,故小球的机械能守恒。
我们用机械能守恒定律的两种表达式来求解:解法 1 用求解。
取地面为零势能参照面,则有:,由机械能守恒定律可得:,代入数据解得: h=2m。
解法 2 应用。
不用再选零势能参照面。
小球减少的重力势能,小球增添的动能为,由可得:,代入数据可得:h=2m。
评论同学们可比较两种解法,谁优谁劣?2.物系统的守恒问题例 2 如图 2 所示,物块M和 m用一不行伸长的轻绳经过定滑轮连结, m放在倾角为的固定的圆滑斜面上,而穿过竖直杆PQ的物块M可沿杆无摩擦地下滑,M=3m,开始将M抬高到A 点,使细绳水平,此时 OA段的绳长为 L=,现让 M由静止开始下滑,求 M 下滑到 B 点时的速度?( g=10m/s2)?分析 M 下滑过程中, M、 m构成的系统只有重力做功,并且无摩擦力和介质阻力做功,所以M、m构成的系统机械能守恒,设M由 A 至 B 着落了 h,M落至 B 点时, M、m的速度分别为、,此过程中 m在斜面上挪动的距离为 s:依据机械能守恒,系统重力势能的减少等于动能的增添,可列方程由几何关系可得,由 M、m运动的关系及速度分解可得,代入数据可解得:,。
高中物理必修二第七章-机械能守恒定律知识点总结

机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
高中物理学习细节(人教版)之机械能守恒定律:机械能守恒定律的应用之连接体问题(含解析)

一、机械能守恒定律在连接体问题中的应用
机械能守恒定律的研究对象是几个相互作用的物体组成的系统时,在应用机械能守恒定律解决系统的运动状态的变化及能量的变化时,经常出现下面三种情况:
1.系统内两个物体直接接触或通过弹簧连接。
这类连接体问题应注意各物体间不同能
量形式的转化关系。
2.系统内两个物体通过轻绳连接。
如果和外界不存在摩擦力做功等问题时,只有机械
能在两物体之间相互转移,两物体组成的系统机械能守恒。
解决此类问题的关键是在绳的方
向上两物体速度大小相等。
3.系统内两个物体通过轻杆连接。
轻杆连接的两物体绕固定转轴转动时,两物体的角
速度相等。
【典例1】如图所示,质量均为m的物体A和B,通过轻绳跨过定滑轮相连.斜面光滑,倾角为θ,不计绳子和滑轮之间的摩擦.开始时A物体离地的高度为h,B物体位于斜面的底端,用手托住A物体,使A、B两物体均静止。
现将手撤去。
(1) 求A 物体将要落地时的速度为多大?
(2) A 物体落地后, B 物体由于惯性将继续沿斜面向上运动,则 B 物体在斜面上到达的最高点离地的高度为多大?。
高中物理复习:机械能守恒定律和能量守恒定律

高中物理复习:机械能守恒定律和能量守恒定律【知识点的认识】1.机械能:势能和动能统称为机械能,即E=E k+E p,其中势能包括重力势能和弹性势能.2.机械能守恒定律(1)内容:在只有重力(或弹簧弹力)做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.(2)表达式:观点表达式守恒观点 E1=E2,E k1+E p1=E k2+E p2(要选零势能参考平面)转化观点△E K=﹣△E P(不用选零势能参考平面)转移观点△E A=﹣△E B(不用选零势能参考平面)【命题方向】题型一:机械能是否守恒的判断例1:关于机械能是否守恒的叙述中正确的是()A.只要重力对物体做了功,物体的机械能一定守恒B.做匀速直线运动的物体,机械能一定守恒C.外力对物体做的功为零时,物体的机械能一定守恒D.只有重力对物体做功时,物体的机械能一定守恒分析:机械能守恒的条件:只有重力或弹力做功的物体系统,其他力不做功,理解如下:①只受重力作用,例如各种抛体运动.②受到其它外力,但是这些力是不做功的.例如:绳子的一端固定在天花板上,另一端系一个小球,让它从某一高度静止释放,下摆过程中受到绳子的拉力,但是拉力的方向始终与速度方向垂直,拉力不做功,只有重力做功,小球的机械能是守恒的.③受到其它外力,且都在做功,但是它们的代数和为0,此时只有重力做功,机械能也是守恒的.解:A、机械能守恒条件是只有重力做功,故A错误;B、匀速运动,动能不变,但重力势能可能变化,故B错误;C、外力对物体做的功为零时,不一定只有重力做功,当其它力与重力做的功的和为0时,机械能不守恒,故C错误;D、机械能守恒的条件是只有重力或弹力做功,故D正确.故选:D.点评:本题关键是如何判断机械能守恒,可以看能量的转化情况,也可以看是否只有重力做功.题型二:机械能守恒定律的应用例2:如图,竖直放置的斜面下端与光滑的圆弧轨道BCD的B端相切,圆弧半径为R,∠COB =θ,斜面倾角也为θ,现有一质量为m的小物体从斜面上的A点无初速滑下,且恰能通过光滑圆形轨道的最高点D.已知小物体与斜面间的动摩擦因数为μ,求:(1)AB长度l应该多大.(2)小物体第一次通过C点时对轨道的压力多大.分析:(1)根据牛顿第二定律列出重力提供向心力的表达式,再由动能定理结合几何关系即可求解;(2)由机械能守恒定律与牛顿第二定律联合即可求解.解:(1)因恰能过最高点D,则有又因f=μN=μmgcosθ,物体从A运动到D全程,由动能定理可得:mg(lsinθ﹣R﹣Rcosθ)﹣fl=联立求得:(2)物体从C运动到D的过程,设C点速度为v c,由机械能守恒定律:物体在C点时:联合求得:N=6mg答:(1)AB长度得:.(2)小物体第一次通过C点时对轨道的压力6mg.点评:本题是动能定理与牛顿运动定律的综合应用,关键是分析物体的运动过程,抓住滑动摩擦力做功与路程有关这一特点.题型三:多物体组成的系统机械能守恒问题例3:如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是()A.斜面倾角α=30°B.A获得最大速度为2gC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒分析:C球刚离开地面时,弹簧的弹力等于C的重力,根据牛顿第二定律知B的加速度为零,B、C加速度相同,分别对B、A受力分析,列出平衡方程,求出斜面的倾角.A、B、C组成的系统机械能守恒,初始位置弹簧处于压缩状态,当B具有最大速度时,弹簧处于伸长状态,根据受力知,压缩量与伸长量相等.在整个过程中弹性势能变化为零,根据系统机械能守恒求出B的最大速度,A的最大速度与B相等;解:A、C刚离开地面时,对C有:kx2=mg此时B有最大速度,即a B=a C=0则对B有:T﹣kx2﹣mg=0对A有:4mgsinα﹣T=0以上方程联立可解得:sinα=,α=30°,故A正确;B、初始系统静止,且线上无拉力,对B有:kx1=mg由上问知x1=x2=,则从释放至C刚离开地面过程中,弹性势能变化量为零;此过程中A、B、C组成的系统机械能守恒,即:4mg(x1+x2)sinα=mg(x1+x2)+(4m+m)v Bm2以上方程联立可解得:v Bm=2g所以A获得最大速度为2g,故B正确;C、对B球进行受力分析可知,C刚离开地面时,B的速度最大,加速度为零.故C错误;D、从释放A到C刚离开地面的过程中,A、B、C及弹簧组成的系统机械能守恒,故D错误.故选:AB.点评:本题关键是对三个小球进行受力分析,确定出它们的运动状态,再结合平衡条件和系统的机械能守恒进行分析.【解题方法点拨】1.判断机械能是否守恒的方法(1)利用机械能的定义判断:分析动能与势能的和是否变化.如:匀速下落的物体动能不变,重力势能减少,物体的机械能必减少.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,机械能守恒.(3)用能量转化来判断:若系统中只有动能和势能的相互转化,而无机械能与其他形式的能的转化,则系统的机械能守恒.(4)对一些绳子突然绷紧、物体间非弹性碰撞等问题机械能一般不守恒,除非题中有特别说明或暗示.2.应用机械能守恒定律解题的基本思路(1)选取研究对象﹣﹣物体或系统.(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.(3)恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能.(4)选取方便的机械能守恒定律的方程形式(E k1+E p1=E k2+E p2、△E k=﹣△E p或△E A=﹣△E B)进行求解.注:机械能守恒定律的应用往往与曲线运动综合起来,其联系点主要在初末状态的速度与圆周运动的动力学问题有关、与平抛运动的初速度有关.3.对于系统机械能守恒问题,应抓住以下几个关键:(1)分析清楚运动过程中各物体的能量变化;(2)哪几个物体构成的系统机械能守恒;(3)各物体的速度之间的联系.13.能量守恒定律【知识点的认识】能量守恒定律1.内容:能量即不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变,叫能量守恒定律.2.公式:E=恒量;△E增=△E减;E初=E末;3.说明:①能量形式是多种的;②各种形式的能都可以相互转化.4.第一类永动机不可制成①定义:不消耗能量的机器,叫第一类永动机.②原因:违背了能量守恒定律.。
高中物理学习细节(人教版)之机械能守恒定律:动能定理的六种应用(含解析)

【方法技巧】
1.动能定理的应用技巧
(1) 一个物体的动能变化ΔE k与合外力对物体所做的功W具有等量关系。
①若ΔE k>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功。
②若ΔE k<0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值。
③若ΔE k=0,表示物体的动能没有变化,合外力对物体所做的功等于零,反之亦然。
以上等量关系提供了求变力做功的一种简便方法。
(2) 动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的力学
问题时,往往优先考虑使用动能定理。
动能定理可以由牛顿第二定律导出,但由于动能定理不涉及物体运动过程中的细节,只需要考虑整个过程中外力做的功和始末两个状态动能的变
化,并且动能和功都是标量,无方向性,故无论是直线运动还是曲线运动,也无论是恒力还
是变力,用动能定理求解都会特别方便。
2. 应用动能定理解题的基本思路
【题型应用】
一、应用动能定理判断动能的变化或做功的情况
合外力做的功等于物体动能的变化,合外力做正功,动能增加;合外力做负功,动能减
少;合外力不做功,动能不变。
反之亦然。
因此,可利用动能定理判断动能的变化或做功的
情况。
【典例1】有一质量为m的木块,从半径为r的圆弧曲面上的a点滑向b点,如图所示。
若由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )。
高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。
它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。
下面,我们就来一起探讨一些机械能守恒定律的典型例题。
例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。
解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。
初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。
因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。
这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。
例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。
解析:物体竖直上抛时,动能逐渐转化为重力势能。
在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。
由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。
这个例题与自由落体运动相反,是动能转化为重力势能的过程。
例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。
解析:物体在斜面上运动时,重力势能转化为动能。
初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。
因为斜面光滑,没有摩擦力做功,机械能守恒。
根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。
所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。
这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。
验证机械能守恒定律-2024年高考物理一轮复习热点重点难点(解析版)

验证机械能守恒定律特训目标特训内容目标1利用打点计时器验证机械能守恒定律(1T -4T )目标2利用光电门验证机械能守恒定律(5T -8T )目标3利用单摆验证机械能守恒定律(9T -12T )目标4利用竖直面内圆周运动验证机械能守恒定律(13T -16T )【特训典例】一、利用打点计时器验证机械能守恒定律1某物理兴趣小组利用如图1所示装置验证机械能守恒定律,该小组让重物带动纸带从静止开始自由下落,按正确操作得到了一条完整的纸带如图2所示(在误差允许范围内,认为释放重锤的同时打出O 点)。
(1)下列关于该实验说法正确的是。
A.实验时应先释放重锤,后接通电源B.实验时应选择体积和密度较小、下端有胶垫的重锤C.安装实验器材时,必须使打点计时器的两个限位孔在同一竖直线上D.为准确测量打点计时器打下某点时重锤的速度v ,可测量该点到O 点的距离h ,利用v =2gh 计算(2)在纸带上选取三个连续打出的点A 、B 、C ,测得它们到起始点O 的距离分别为h A 、h B 、h C 。
已知当地重力加速度为g ,打点计时器所用交流电源的频率为f ,重物的质量为m 。
从打O 点到打B 点的过程中,重物动能变化量DE k =。
(3)该小组通过多次实验发现重力势能的减少量总是略大于动能的增加量,出现这种现象的原因可能是。
A.工作电压偏高B.由于有空气和摩擦阻力的存在C.重物质量测量得不准确D.重物释放时距打点计时器太远【答案】 C m (h C -h A )2f 28B【详解】(1)[1]A .为充分利用纸带,实验时应先接通电源,后释放重锤,故A 错误;B .为减小空气阻力的影响,实验时应选择体积小,密度较大、下端有胶垫的重锤,故B 错误;C.安装实验器材时,必须使打点计时器的两个限位孔在同一竖直线上,故C正确;D.为准确测量打点计时器打下某点时重锤的速度v,不能利用v=2gh计算,应用速度的定义式计算,故D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。
(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。
所涉及到的题型有四类:(1)阻力不计的抛体类。
(2)固定的光滑斜面类。
(3)固定的光滑圆弧类。
(4)悬点固定的摆动类。
(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。
那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s =(3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。
由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。
因此只有重力做功,物体的机械能守恒。
例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为θ,然后从静止释放,求小球运动到最低点小球对悬线的拉力分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等221)cos 1(t mv mgL =-θ 得:)cos 1(22θ-=gL v t 由向心力的公式知:L mv mg T t 2=-可知θcos 23mg mg T -=作题方法:一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。
注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。
这在计算中是要特别注意的。
习题:1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a >L b >L c ,则悬线摆至竖直位置时,细线中张力大小的关系是( )A T c >T b >T aB T a >T b >T cC T b >T c >T aD T a =T b =T c2、一根长为l 的轻质杆,下端固定一质量为m 的小球,欲使它以上端o 为转轴刚好能在竖直平面内作圆周运动(如图),球在最低点A 的速度至少多大?如将杆换成长为L 的细线,则又如何?3、如图,一质量为m 的木块以初速V 0从A 点滑上半径为R 的光滑圆弧轨道,它通过最高点B 时对轨道的压力FN 为多少?4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:(1)小球滑至圆环顶点时对环的压力;(2)小球至少要从多高处静止滑下才能越过圆环最高点;(3)小球从h 0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。
二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面 (1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。
不做功,系统的机械能就不变。
(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。
系统内物体的重力所做的功不会改变系统的机械能系统间的相互作用力分为三类:1) 刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2) 弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。
3) 其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。
在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。
虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。
但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。
归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类(3)在水平面上可以自由移动的光滑圆弧类。
(4)悬点在水平面上可以自由移动的摆动类。
(1)轻绳连体类这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
例:如图,倾角为θ的光滑斜面上有一质量为M 的物体,通过一根跨过定滑轮的细绳与质量为m 的物体相连,开始时两物体均处于静止状态,且m 离地面的高度为h ,求它们开始运动后m 着地时的速度?分析:对M 、m 和细绳所构成的系统,受到外界四个力的作用。
它们分别是:M所受的重力Mg ,m 所受的重力mg ,斜面对M 的支持力N ,滑轮对细绳的作用力F 。
M 、m 的重力做功不会改变系统的机械能,支持力N 垂直于M 的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在能量转化中,m 的重力势能减小,动能增加,M 的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键222121sin mv Mv Mgh mgh ++=θ 可得m M M m gh v +-=)sin (2θ需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的速度关系例:如图,光滑斜面的倾角为θ,竖直的光滑细杆到定滑轮的距离为a ,斜面上的物体M 和穿过细杆的m 通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m 的轻绳处于水平状态,放手后两物体从静止开始运动,求m 下降b 时两物体的速度大小?(2)轻杆连体类这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
例:如图,质量均为m 的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L 、2L ,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小分析:由轻杆和两个小球所构成的系统受到外界三个力的作用,即A 球受到的重力、B 球受到的重力、轴对杆的作用力。
两球受到的重力做功不会改变系统的机械能,轴对杆的作用力由于作用点没有位移而对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是轻杆的弹力,弹力对A 球做负功,对B 球做正功,但这种做功只是使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在整个机械能当中,只有A 的重力势能减小,A 球的动能以及B 球的动能和重力势能都增加,我们让减少的机械能等于增加的机械能。
有:2221212B A mv mv mgL L mg ++= 根据同轴转动,角速度相等可知B A v v 2=所以:⎩⎨⎧==gL v gL v B A 52522 需要强调的是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系(3)在水平面上可以自由移动的光滑圆弧类。
光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:四分之一圆弧轨道的半径为R ,质量为M ,放在光滑的水平地面上,一质量为m 的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?分析:由圆弧和小球构成的系统受到三个力作用,分别是M 、m 受到的重力和地面的支持力。
m 的重力做正功,但不改变系统的机械能,支持力的作用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是圆弧和球之间的弹力,弹力对m 做负功,对M 做正功,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在整个机械能当中,只有m 的重力势能减小,m 的动能以及M 球的动能都增加,我们让减少的机械能等于增加的机械能。
有:222121m M mv Mv mgR += 根据动量守恒定律知 M m Mv mv -=0 所以:⎩⎨⎧+=+=)(2)(2m M M gR M v m M M gR m v M m(4)悬点在水平面上可以自由移动的摆动类。
悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:质量为M 的小车放在光滑的天轨上,长为L 的轻绳一端系在小车上另一端拴一质量为m 的金属球,将小球拉开至轻绳处于水平状态由静止释放。