控制科学与工程系知识讲解
控制科学与工程学科构成

控制科学与工程学科构成
控制科学与工程学科是一个涵盖面广泛、跨学科的领域,其构成包括多个分支学科。
以下是控制科学与工程学科的主要构成及其简要介绍:
控制理论:控制理论是控制科学与工程学科的核心,主要研究如何通过反馈和优化方法来控制动态系统。
它包括线性控制、非线性控制、最优控制、自适应控制、鲁棒控制等领域。
控制系统工程:控制系统工程是控制科学与工程学科的重要分支,主要研究各种工业控制系统和复杂系统的建模、分析、优化和实现。
它包括过程控制、制造系统控制、网络控制系统等领域。
智能控制:智能控制是控制科学与工程学科的一个重要分支,主要研究如何利用智能技术实现自动化和智能化控制。
它包括模糊控制、神经网络控制、专家系统等领域。
模式识别与图像处理:模式识别与图像处理是控制科学与工程学科的另一个分支,主要研究如何从图像或信号中提取有用的信息并进行分类和识别。
它包括图像处理、计算机视觉、机器学习等领域。
系统工程:系统工程是控制科学与工程学科的另一个重要分支,主要研究如何对复杂系统进行建模、分析和优化。
它包括系统分析、系统设计、系统管理等领域。
生物信息学与医学信息学:生物信息学与医学信息学是控制科学与工程学科在生命科学和医学领域的应用分支,主要研究生物和医学信息的获取、处理和管理。
它包括基因组学、蛋白质组学、医学影像技术等领域。
这些分支学科相互交叉、相互渗透,形成了控制科学与工程学科的完整体系。
通过深入研究各个分支学科的理论和实践,可以为解决实际问题和推动相关领域的发展做出重要贡献。
中国科学院大学控制科学与工程专业考研必知知识点

中国科学院大学控制科学与工程专业考研必知知识点1中国科学院大学控制科学与工程专业考研科目根据提供的信息,中国科学院大学控制科学与工程专业的考研科目包括101思想政治理论、201英语一、301数学一和857自动控制理论。
以下是关于中国科学院大学控制科学与工程专业考研科目的文章:中国科学院大学是我国最高级别的研究生教育机构之一,其控制科学与工程专业备受研究生考生的关注。
作为控制科学与工程专业的考研科目,101思想政治理论、201英语一、301数学一和857自动控制理论是不可或缺的。
101思想政治理论101思想政治理论是中国科学院大学控制科学与工程专业考研科目中的一门重要课程。
该课程旨在培养学生的思想政治素质,加强对马克思主义基本原理、中国特色社会主义理论体系等内容的学习和理解。
通过学习这门课程,考生将更好地了解我国的政治制度、国家发展战略和社会主义核心价值观,为未来的科研工作提供坚实的思想基础。
201英语一201英语一是中国科学院大学控制科学与工程专业考研科目中的一门外语课程。
英语在国际学术交流中占据重要地位,掌握良好的英语能力对于科研工作者来说至关重要。
通过学习201英语一,考生将提高听、说、读、写、译等方面的英语能力,为今后参与国际合作、阅读英文文献和撰写学术论文打下坚实的基础。
301数学一301数学一是中国科学院大学控制科学与工程专业考研科目中的一门数学课程。
数学作为科学的基础和工具,对于控制科学与工程专业的学生来说尤为重要。
通过学习301数学一,考生将深入学习数学分析、线性代数等数学知识,培养数学建模和问题求解的能力,为控制科学与工程领域的研究提供数学支撑。
857自动控制理论857自动控制理论是中国科学院大学控制科学与工程专业考研科目中的一门专业课程。
自动控制理论是控制科学与工程专业的核心内容,涉及到系统建模、控制方法、优化算法等方面的知识。
通过学习857自动控制理论,考生将掌握自动控制系统的基本原理和方法,为今后在控制科学与工程领域的研究和应用奠定基础。
控制科学与工程学科概况控制科学与工程是研究系统与控制

0811控制科学与工程一、学科概况控制科学与工程是研究系统与控制的理论、方法、技术及其工程应用的学科。
控制科学与工程学科在我国具有悠久光荣的历史,是由钱学森等老一辈科学家创建的。
在半个多世纪的历史沿革中,本学科以综合性强、覆盖面宽、培养人才的基础厚且适应面宽著称。
控制科学与工程学科在理论研究与工程实践相结合、军民结合和学科交叉融合等方面具有明显的特色与优势,对我国国民经济发展和国家安全发挥了重大作用,以控制科学与工程学科为基础的自’动化技术是人类文明的标志。
自动化极大地提高了生产效率和产品质量,减轻了人类劳动的强度,降低了原材料和能源消耗,创造了前所未有的经济效益和社会财富一。
自动化技术对实现国家实力的增长、生态环境的改善和人民生活水平的普遍提高具有重要意义。
从航空航天到大规模的工业生产,从先进制造到供应链管理,从智能交通到楼宇自动化,从医疗仪器到家庭服务,自动化技术在提高生产效率的同时,也使我们的生活变得更加美好。
自动化程度已成为衡量一个国家发展水平和现代化程度的重要指标。
智能、生物、网络等新技术赋予控制科学与工程学科新的内涵,使其超越了时空的限制,增强了学科所涉及的不确定性、多样性和复杂性,即使学科发展面临巨大的挑战,也获得了前所未有的发展机遇。
二、学科内涵控制科学与工程以控制论、系统论、信息论为基础,以各个行业的系统与控制共性问题为动力牵引,研究在一定目标或指标体系下,如何建立系统模型,如何分析系统的特性和行为,特别是动态行为,系统内部之间、系统与环境的关系,如何设计与实现控制与决策系统。
本学科以数学分析、线性代数、数理统计、随机过程、电子电路技术、数字信号处理技术、计算机技术等为基础,专业理论包括自动控制原理、线性/非线性系统理论、最优控制、自适应控制、智能控制、过程控制、运动控制、系统优化与调度、系统辨识与仿真建模、现代检测技术、多传感器信息融合、计算机视觉与模式识别、机器智能与机器学习、生物信息学、导航与制导系统等。
控制科学与工程简单介绍

控制科学与工程学习心得控制科学与工程是一门研究控制的理论、方法、技术及其工程应用的学科。
它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。
11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。
到18世纪,近代工业采用了蒸汽机调速器。
但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。
此后,经典控制理论继续发展并在工业中获得了广泛的应用。
在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。
60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。
在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。
特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。
目前,本学科的应用已经遍及工业、农业。
交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。
1、量子计算量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础和原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。
量子的重叠与牵连原理产生了巨大的计算能力。
普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数,因为每一个量子比特可表示两个值。
如果有更多量子比特的话,计算能力就呈指数级提高。
2、优化调度就拿自来水SCADA生产调度系统来说吧,优化调度是利用计算机信息处理技术,现代通信技术以及自动控制技术对整个供水管网的主要运行参数、设备运行状况进行动态监测、实时调度和自动化控制。
北京市考研控制科学与工程复习资料控制理论与智能控制技术实践讲解

北京市考研控制科学与工程复习资料控制理论与智能控制技术实践讲解北京市考研控制科学与工程复习资料——控制理论与智能控制技术实践讲解控制科学与工程是一门综合性学科,主要研究系统的建模、分析和控制方法,以及利用计算机和智能技术解决实际控制问题的理论和方法。
作为控制科学与工程的一部分,控制理论与智能控制技术是考研考试中的重要内容之一。
本文将为考生们提供一些关于控制理论与智能控制技术实践的资料和讲解,以帮助考生们系统地复习与准备考研。
一、控制理论概述控制理论是控制科学与工程的核心理论。
它研究如何通过系统的输入与输出之间的关系对系统进行控制,以实现预期的目标。
控制理论又可分为经典控制理论和现代控制理论两个方面。
1. 经典控制理论经典控制理论主要研究线性时不变系统和连续时间系统的控制方法。
其中,著名的控制方法包括比例控制、积分控制、微分控制、PID控制等。
这些方法利用数学建模和系统分析的原理,设计出可以稳定系统、减小系统响应时间和减小系统误差的控制器。
2. 现代控制理论现代控制理论主要研究非线性系统、时变系统和离散时间系统的控制方法。
在现代控制理论中,研究者们提出了诸如状态空间法、根轨迹法、频率域法等一系列新的理论和方法,用于解决更为复杂的系统控制问题。
现代控制理论在控制精度、鲁棒性和自适应性方面较经典控制理论具有明显的优势。
二、智能控制技术实践智能控制技术是应用智能计算和智能算法进行系统控制的一种方法。
它结合了控制理论和人工智能技术,旨在通过人工智能算法来提高系统的自学习和自适应能力。
1. 模糊控制模糊控制是一种基于模糊逻辑和模糊推理的控制方法。
它通过将人类专家的经验知识转化为模糊规则,并结合系统输入与输出之间的模糊关系进行控制。
模糊控制在处理模糊和不确定信息方面具有一定的优势,适用于一些复杂且非精确的系统控制问题。
2. 神经网络控制神经网络控制是一种模拟人脑神经网络结构和功能的控制方法。
它通过训练神经网络来建立系统的输入与输出之间的映射关系,并利用训练好的神经网络进行实时控制。
工程师中的控制科学与工程知识点梳理

工程师中的控制科学与工程知识点梳理在工程师的职业中,控制科学和工程是非常重要的一部分。
它涉及了许多关键概念和知识点,对于工程师们来说理解和掌握这些内容至关重要。
本文将对工程师中的控制科学与工程的知识点进行梳理。
一、控制科学的基础概念1. 控制系统:控制系统是指由输入、输出和反馈组成的一个整体,通过对输入信号进行处理和反馈调节输出信号以达到控制目标的过程。
2. 控制器:控制系统中的关键部分,它接收输入信号和反馈信号,并产生输出信号来控制被控制对象。
3. 控制对象:控制系统中需要被调节和控制的对象或过程,比如机器人、电机等。
4. 开环控制与闭环控制:开环控制是指控制器输出信号不受反馈信号影响的控制方式,闭环控制是在开环控制的基础上添加反馈元件,通过对反馈信号的调节来实现更准确的控制。
二、控制工程的基本原理1. 反馈原理:控制系统中的反馈机制可以将输出信号与期望信号进行比较,并对差异进行修正,以实现控制系统的稳定性和准确性。
2. 控制对象动态特性:控制对象会受到其自身的特性和环境的影响,了解和分析控制对象的动态特性是设计有效控制系统的重要前提。
3. PID控制器:PID(比例-积分-微分)控制器是最常用的控制器之一,它根据当前误差的大小,以及过去误差和未来误差的变化趋势来决定输出信号。
三、控制理论与方法1. 系统建模:通过对被控制对象的特性进行数学建模,可以获得系统的数学描述,为控制设计提供基础。
2. 线性控制系统理论:线性控制系统是指控制对象以线性特性变化的系统,其设计方法主要基于线性控制理论,如根轨迹法和频率响应法等。
3. 非线性控制系统理论:非线性控制系统是指控制对象以非线性特性变化的系统,其设计方法则需要使用非线性控制理论,如滑模控制和自适应控制等。
4. 状态空间理论:状态空间理论是一种系统的描述方法,通过描述系统的状态变量来进行控制系统的设计和分析。
5. 最优控制理论:最优控制理论是一种通过优化目标函数来设计控制系统的方法,通过最小化性能指标来获得最优控制策略。
控制科学与工程

控制科学与工程Control Science and Engineering(专业代码:0811)一、学科简介控制科学与工程是一门研究控制的理论、方法、技术及其工程应用的学科。
它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。
本学科为国务院学位委员会于2000年批准的第二批一级学科博士学位授权点,下设“控制理论与控制工程”、“检测技术与自动化装置”、“系统工程”、“模式识别与智能系统”以及“导航、制导与控制”五个二级学科博士点。
其中:“模式识别与智能系统”为国家重点学科;“系统工程”为国防科工委重点学科;“控制理论与控制工程”则是我校最早获得博士学位授予权的学科之一(1987年),现为江苏省重点学科。
多年来,本学科在研究生培养和学术研究方面获得了十分显著的成绩,是国家“211工程”重点建设学科。
主要研究领域:控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。
它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。
“控制理论与控制工程”是以工程领域内的系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、设计和实现的理论、技术和方法。
“检测技术与自动化装置”是研究被控对象的信息提取、转换、传递与处理的理论、方法和技术的一门学科。
“系统工程”是为了解决日益复杂的社会实践问题而形成的从整体出发,合理组织、控制和管理各类系统的综合性的工程技术学科。
“导航、制导与控制”是以飞行器为对象,以数学、力学、控制理论与工程、信息科学与技术、系统科学、计算机技术、传感与测量技术、建模与仿真技术为基础的综合性应用技术学科。
二、培养目标培养德、智、体全面发展,具有求实严谨科学作风和创新精神,使他们具有本学科坚实的基础理论和较系统深入的专业知识;具有较强的独立从事本学科领域内的科学研究能力;能够成为社会主义现代化建设服务的、具有较强的科技创新、尤其是原创能力的高级学术研究和科技开发人才。
控制科学与工程陕西省考研控制科学与工程重点知识点整理

控制科学与工程陕西省考研控制科学与工程重点知识点整理控制科学与工程是一门综合性的学科,旨在研究如何通过系统的设计和优化来实现对各种过程和系统的精确控制。
在陕西省考研控制科学与工程的考试中,以下是重点知识点的整理。
1. 数学基础知识控制科学与工程的基础是数学,需要掌握线性代数、概率论与数理统计、微积分等数学知识。
其中,线性代数包括矩阵、向量空间、特征值与特征向量等内容;概率论与数理统计包括概率、随机变量、概率分布、假设检验等内容;微积分则包括极限、导数、微分方程等内容。
2. 系统建模与仿真控制科学与工程的核心内容是系统建模与仿真,要求掌握系统的数学模型以及仿真方法。
其中,系统建模涉及到物理建模、数学建模和仿真模型的构建;而仿真方法包括离散事件仿真、连续仿真和混合仿真等技术。
3. 控制理论与方法在控制科学与工程中,控制理论与方法是重中之重。
要掌握经典控制理论与方法,包括PID控制器、根轨迹法、频率响应法等。
另外,还需要了解现代控制理论与方法,如状态空间法、模糊控制、神经网络控制等。
4. 特殊控制系统除了常规的控制系统,还需要了解特殊控制系统的知识。
例如,非线性控制系统,包括非线性系统建模、平衡点分析、稳定性分析等;多变量系统,包括多变量系统的建模与控制方法;自适应控制,包括模型参考自适应控制、直接自适应控制等。
5. 先进控制技术随着科技的不断发展,控制科学与工程也在不断进步和创新。
因此,了解一些先进控制技术是必要的。
例如,模糊逻辑控制、遗传算法控制、粒子群优化等。
这些技术在实际应用中能够解决一些复杂的问题。
6. 自动控制系统设计与应用控制科学与工程的最终目标是设计和应用自动控制系统。
因此,在考试中也会涉及到自动控制系统的设计与应用。
要了解控制系统的结构与组成、参数选择、鲁棒性设计等方面的知识。
总结起来,控制科学与工程陕西省考研的重点知识点主要包括数学基础知识、系统建模与仿真、控制理论与方法、特殊控制系统、先进控制技术以及自动控制系统设计与应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2 变频器在家用空调中的应用
8.2.1 家用空调概述 家用空调分为移动式、窗式和分体式。过去一般房
间的空调是采用ON/OFF控制方式,用笼型电动机带动 压缩机来调节冷暖气,但它存在着下述问题。
(1) 根据地区气候、房屋的朝向等估计一年中最大负 载,从而选择恰当的空调机比较困难。
(2) 由于是ON/OFF方式运行,室内温度和湿度会发生 波动,引起不舒适感。
式中:P1为出水压力;P2为回水压力;PD压差。
(1) 利用变频器控制节能。 (2) 压缩机ON/OFF损耗减少。 (3) 舒适性改善。 (4) 消除50/60Hz的地区的能力差。 (5) 启动电流减小。
8.3 中央空调的变频调速 8.3.1 中央空调的构成
中央空调的结构如图8.5所示,中央空调系统主要由 冷冻主机和冷却水塔、外部热交换系统等部分组成。
图8.5 中央空调系统的组成2.外部热交换系统1.冷冻主机与冷却水塔 1) 冷冻主机 2)冷却水塔
2.外部热交换系统 外部热交换系统由以下几个系统组成。 1) 冷冻水循环系统 2) 冷却水循环系统 3) 冷却风机 (1) 盘管风机。安装于所有需要降温的房间内,用于
将由冷冻水盘管冷却了的空气吹入房间,加速房间内 的热交换。
速很低,循环水也能在管路中流动。 (2) 在水泵转速为“0”的状态下,回水管与出水管
中的最高水位永远是相等的。因此,水泵的转速只是 改变水的流量,而与扬程无关。所以在循环水系统中 ,用扬程来描绘水泵的做功情形是不够准确的。 3.压差的概念
循环水系统的工作情形与电路十分相似,水泵的做 功情形也可通过水泵出水与回水的压力差来描绘,即
8.1.3 系统结构 变频恒压供水系统原理如图8.2所示。它主要有PLC
、变频器、压力变送器、液位传感器、动力及控制线 路以及泵组组成。
图8.2 变频恒压供水系统原理
8.1.4 工作原理 该系统有手动和自动两种运行方式。手动方式时,
按下按钮启动和停止水泵,可根据需要分别控制1#~3# 泵的启停,该方式主要供设备调试、自动有故障和检修 时使用。自动运行时,首先由1#水泵变频运行,变频器 输出频率从0Hz上升,同时PID调节器把接收的信号与给 定压力比较运算后送给变频器控制。如压力不够,则频 率上升到50Hz,变频器输出一个上限频率到达信号给 PLC,PLC接收到信号后经延时,1#泵变频迅速切换为工 频,2#泵变频启动,若压力仍达不到设定压力,则2#泵 由变频切换成工频,3#泵变频启动;如用水量减少, PLC控制从先启动的泵开始切除,同时根据PID调节参数 使系统平稳运行,始终保持管网压力。
8.1.5 PLC控制系统 泵组切换示意图如图8.3所示。
图8.3 泵组切换示意图
8.1.6 注意事项
1.变频、工频切换时间T 切换时间T在PLC程序中设定,设置T时为了确保在加
泵时,泵由变频转换为工频过程中,同一台泵的变频 运行和工频运行各自对对应的交流接触器不会同时吸 合,而损坏变频器,同时为了避免工频启动时启动电
控制科学与工程系
8.1.2 节能原理 供水管网及水泵的运行特性曲线如图8.1所示。
图8.1 管网及水泵的运行特性曲线
当采用阀门控制时,若供水量高峰期水泵工作在E点 ,此时水泵流量为Q1,扬程为H0;当供水量从Q1减小到 Q2时,必须关小阀门,此时阀门的摩擦阻力变大,阻力 曲线从b3移到b1,扬程则从H0升至H1,运行工况点从E点 移到F点,此时水泵输出功率用图形表示为(0,Q2,F, H1)围成的矩形部分,其值为:
且随着阀门的不断关小,阀门的摩擦阻力不断变大, 管阻特性曲线上移,运行工况点也随之上移,导致被 浪费的功率随之增加。
根据水泵变速运行的相似定律,变速前、后的流
量Q、扬程H、功率P与转速N之间的关系为:
式中:Q1、H1、P1为变速前的流量、扬程、功率; Q2、H2、P2为变速后的流量、扬程、功率。
由上面公式可知,与阀门控制方式相比,调速控制 方式的供水功率要小得多,节能效果显著。
(2) 冷却塔风机。用于降低冷却浴中的水温,加速将 “回水”带回的热量散发到大气中去。
8.3.2 循环水系统的特点 1.循环水的特点
如图8.6所示,在水循环系统中,所用的水是并不 消耗的。
图8.6 循环水系统
2.调速特点 在循环水系统中,当通过改变转速来调节流量时
,有以下两个特点。 (1) 水在封闭的管路中具有连续性,即使水泵的转
的转速,可解决上述问题,变频器控制框图如图8.4所 示。
图8.4 变频器控制框图
室内部分以室内控制部为中心,由遥控、传感器、 显示器和风机电动机驱动回路组成。温度和湿度数据 及运行模式等设定以序列信号的形式送往室外部分。 室外部分以系统控制部为中心,由整流单元、逆变单 元、电流传感器、室外风机电动机及阀门控制部分组 成。使用变频器控制空调可以达到以下效果。
(3) 在50/60Hz地区产生较大差别。 (4) 压缩机在启动时有很大的冲击电流,因此需要比 连续运行时更大的电源容量。 (5) 由于压缩机转速恒定,外面温度变化会引起冷暖 空调能力的变化(特别在暖气运行时,外面气温下降会 导致暖气效果下降)。
8.2.2 变频器解决方案 将变频器应用于房间空调可连续地控制笼型电动机
当采用调速控制时,若采用恒压(H0)变速泵(n2)供 水,管阻特性曲线为b2,扬程特性变为曲线n2,工作点 从E点移到D点。此时水泵输出功率用图形表示为(0,Q2 ,D,H0)围成的矩形面积,其值为:
改用调速控制可节约的能耗为由(H0,D,F,H1)
围成的矩形面积,其值为:
可见,当采用阀门控制流量时有ΔP功率被浪费,
流大而对电网产生冲击,所以在允许的范围内时间T必
须尽可能小。
2.上、下限频率持续时间TH和TL
变频器运行的频率随管网用水量增大而升高,本系 统以变频运行的频率是否达到上限(下限),并保持一 定的时间来判断是否加、减泵,这个判断时间就是
TH(TL),如果设定值过大,系统就不能迅速地对管网
用水量的变化做出反应;如果设定值过小,管网用水 量变化时就很可能引起频繁的加、减喔泵工作。