初中数学专题中考试题精选多边形(含解答)
中考数学《多边形和平行四边形》专题含解析

多边形和平行四边形一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=度,□ABCD的周长为cm.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为cm.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为.二、选择题4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB 6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).多边形和平行四边形参考答案与试题解析一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=50度,□ABCD的周长为24cm.【考点】平行四边形的性质.【分析】根据平行边形性质中对角、对边相等可知,∠B=∠D=50°,平行四边形的周长=2(AB+BC).【解答】解:①∵四边形ABCD是平行四边形,∴∠D=∠B∵∠B=50°∴∠D=50°②∵四边形ABCD是平行四边形,∴AD=BC,AB=CD∵AB=5cm,BC=7cm∴□ABCD的周长为:2(AB+BC)=24cm.故答案为50、24.【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为8cm.【考点】平行四边形的性质.【分析】平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=28,则AB+BC=14cm,而△ABC的周长=AB+BC+AC=22,所以AC=22﹣14=8cm.【解答】解:∵□ABCD的周长是28 cm∴AB+AD=14cm∵△ABC的周长是22cm∴AC=22﹣(AB+AC)=8cm故答案为8.【点评】在应用平行四边形的性质解题时,要根据具体问题,有选择地使用,避免混淆性质,以致错用性质.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为2.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】作EF∥AB,交AD于F,可证ABEF、CDFE为平行四边形,又AE平分∠BAD,可进一步证明AB=BE,ABEF为菱形,则AF=AB=3,DF=5﹣3=2,则EC=2.【解答】解:过点E作EF∥AB,交AD于F∵在□ABCD,EF∥AB∴AB=EF,AF=BE∵∠FAE=∠BAE∴△AFE≌△ABE∴AB=BE=EF=AF∴ABEF为菱形∴EC=AD﹣AB=2.故答案为:2.【点评】此题综合性较强,考查了平行四边形的判定及性质、菱形的判定、角平分线的定义等知识点.二、选择题(共4小题,每小题4分,满分16分)4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形是中心对称的特点可知,点A与点C关于原点对称,所以C的坐标为(2,﹣3).【解答】解:∵在平行四边形ABCD中,A点与C点关于原点对称∴C点坐标为(2,﹣3).故选D.【点评】主要考查了平行四边形的性质和坐标与图形的关系.要会根据平行四边形的性质得到点A与点C关于原点对称的特点,是解题的关键.5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB【考点】平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.不能判定四边形ABCD是平行四边形的是C【解答】解:A、根据一组对边平行且相等的四边形是平行四边形,可以判定,故正确;B、根据平行四边形的定义即可判定,故正确;C、一组对边平行,另一组对边相等的四边形,等腰梯形满足条件.故该选项错误.D、根据对角线互相平分的四边形是平行四边形可以判定.故正确.故选C.【点评】此题主要考查对平行四边形的判定掌握的熟练程度.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对【考点】平行四边形的性质.【专题】应用题;压轴题.【分析】由于在平行四边形中,已给出条件MN∥AB∥DC,EF∥DA∥CB,因此,MN、EF把一个平行四边形分割成四个小平行四边形,所以红、紫四边形的高相等,由此可证明S1S4=S2S3.【解答】解:设红、紫四边形的高相等为h1,黄、白四边形的高相等,高为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE=AF,EC=FB,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1S4=DE•h1•FB•h2=AF•h1•FB•h2,S2S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1S4=S2S3,故C正确;故选:C.【点评】本题考查的是平行四变形的性质,平行四边形两组对边分别平行且相等,同时充分利用等量相加减原理解题,否则容易从直观上判断B是正确的.7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC【考点】平行四边形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】本题要综合分析,但主要依据都是平行四边形的性质.【解答】解:A、∵AD∥BC∴△AFD∽△EFB∴====4S△EFB;故S△AFDB、由A中的相似比可知,BF=DF,正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选:A.【点评】解决本题的关键是利用相似求得各对应线段的比例关系.三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题;探究型.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.【点评】本题考查了等边三角形的性质及平行四边形的判定.多种知识综合运用是解题中经常要遇到的.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).【考点】平行线分线段成比例;平行四边形的判定与性质.【专题】证明题;探究型.【分析】(1)先判定四边形AFGC是平行四边形,再根据平行四边形的对边相等的性质知AC=FG;然后由被平行线所截的线段对应成比例(==)求出PE与PG的数量关系,解答到此,来证明AC=PE+PF的问题就迎刃而解了.(2)推理类同于(1).【解答】证明:(1)延长FP交DC于点G,∵AB∥CD,AC∥FG,∴四边形AFGC是平行四边形,∴AC=FG(平行四边形的对边相等),∵EG∥AC,∴==(被平行线所截的线段对应成比例);又∵OA=OC,∴PE=PG,∴AC=FG=PF+PG=PE+PF;(2)若点P在BD延长线上,AC=PF﹣PE.如下图所示若点P在DB延长线上,AC=PE﹣PF.如下图所示..【点评】本题主要考查了平行四边形的判定与性质.10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.【考点】翻折变换(折叠问题);解一元二次方程﹣公式法;勾股定理;平行四边形的判定;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)根据:两组对边分别平行的四边形是平行四边形,证明AG∥CE,AE∥CG 即可;(2)解法1:在Rt△AEF中,运用勾股定理可将EF的长求出;解法2,通过△AEF∽△ACB,可将线段EF的长求出.【解答】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠DAC=∠BCA.由题意,得∠GAH=∠DAC,∠ECF=∠BCA.∴∠GAH=∠ECF,∴AG∥CE.又∵AE∥CG,∴四边形AECG是平行四边形.(2)解法1:在Rt△ABC中,∵AB=4,BC=3,∴AC=5.∵CF=CB=3,∴AF=2.在Rt△AEF中,设EF=x,则AE=4﹣x.根据勾股定理,得AE2=AF2+EF2,即(4﹣x)2=22+x2.解得x=,即线段EF长为cm.解法2:∵∠AFE=∠B=90°,∠FAE=∠BAC,∴△AEF∽△ACB,∴.∴,解得,即线段EF长为cm.【点评】本题考查图形的折叠变化,关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.【考点】二次函数综合题;平行四边形的性质.【专题】压轴题.【分析】(1)在三角形AEP中,AP=2,∠A=60°,利用三角函数可求出AE和PE,即可求出面积;(2)①此题应分情况讨论,因为两个动点运动速度不同,所以有点P与点Q都在AB 上运动、点P在BC上运动点Q仍在AB上运动、点P和点Q都在BC上运动三种情况,在每种情况下可利用三角函数分别求出我们所需要的值,进而求解.②在①的基础上,首先①求出函数关系式之后,根据t的取值范围不同函数最大值也不同.【解答】解:(1)当点P运动2秒时,AP=2cm,由∠A=60°,知AE=1,PE=.(2分)=;∴S△APE(2)①当0≤t<6时,点P与点Q都在AB上运动,如图所示:设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=t,AP=t+2,AG=1+,PG=+t.∴此时两平行线截平行四边形ABCD的面积为S=t+;②当6≤t<8时,点P在BC上运动,点Q仍在AB上运动.如图所示:设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF=,DF=4﹣,QF=t,BP=t﹣6,CP=10﹣t,PG=(10﹣t),而BD=4,故此时两平行线截平行四边形ABCD的面积为S=﹣t2+10t﹣34,③当8≤t≤10时,点P和点Q都在BC上运动.如图所示:设PM与DC交于点G,QN与DC交于点F,则CQ=20﹣2t,QF=(20﹣2t),CP=10﹣t,PG=(10﹣t).∴此时两平行线截平行四边形ABCD的面积为S=.(14分)故S关于t的函数关系式为;②(附加题)当0≤t<6时,S的最大值为,(1分)当6≤t<8时,S的最大值为6,(舍去),(2分)当8≤t≤10时,S的最大值为6,(3分)所以当t=8时,S有最大值为6.(如正确作出函数图象并根据图象得出最大值,同样给4分)【点评】此题解答需数形结合,把函数知识和几何知识紧密联系在一起,难易程度适中.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是S1×S3=S2×S4或.【考点】作图—应用与设计作图.【专题】压轴题;新定义;开放型.【分析】(1)在BD上任选一点E(不与B、D重合),连接AE、CE即可;(2)根据等底等高,可得结论:①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②S1×S3=S2×S4或等.【解答】解:(1)比如:(2)①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②∵分别作△ABD与△BCD的高,h1,h2,则=,=,∴S1×S3=S2×S4或等.【点评】此题主要考查学生的阅读理解能力和对等底等高知识的灵活应用.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题;新定义.【分析】(1)根据菱形的对角线互相垂直平分,根据线段垂直平分线的性质,则只需要在其中一条对角线上找到和对角线的交点不重合的点即可;(2)根据到线段两个端点距离相等的点在线段的垂直平分线上,则可作对角线BD的垂直平分线和另一条对角线所在的直线的交点即为所求作;(3)只需说明PD=PB即可.根据已知的条件可以根据AAS证明△DCF≌△BCE,则∠CDB=∠CBD,进而得到∠PDB=∠PBD,证明结论即可;(4)根据上述确定准等距点的方法:即作其中一条对角线的垂直平分线和另一条对角线所在的直线的交点.所以分析讨论的时候,主要是根据两条对角线的位置关系进行分析讨论.【解答】解:(1)如图2,点P即为所画点;(1分)(2)如图3,点P即为所作点(作法不唯一);(2分)(3)连接DB.在△DCF与△BCE中,∠DCF=∠BCE,∠CDF=∠CBE,CF=CE.∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD,∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC,∴点P是四边形ABCD的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.(7分)【点评】关键是熟悉菱形的性质,能够根据线段垂直平分线的性质的逆定理进行分析作图,能够根据找准等距点的方和四边形中两条对角线的位置关系判断准等距点的个数.14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).【考点】平行四边形的性质;全等三角形的判定与性质.【专题】压轴题;探究型.【分析】连接BE,根据边角边可证△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因为BC⊥AC,所以DE也和AC 垂直.以下几种情况虽然图象有所变化,但是证明方法一致.【解答】解:(1)DE∥BC,DE=BC,DE⊥AC.(2)如图4,如图5.(3)方法一:如图6,连接BE,∵PM=ME,AM=MB,∠PMA=∠EMB,∴△PMA≌△EMB.∵PA=BE,∠MPA=∠MEB,∴PA∥BE.∵平行四边形PADC,∴PA∥DC,PA=DC.∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.方法二:如图7,连接BE,PB,AE,∵PM=ME,AM=MB,∴四边形PAEB是平行四边形.∴PA∥BE,PA=BE,余下部分同方法一:方法三:如图8,连接PD,交AC于N,连接MN,∵平行四边形PADC,∴AN=NC,PN=ND.∵AM=BM,AN=NC,∴MN∥BC,MN=BC.又∵PN=ND,PM=ME,∴MN∥DE,MN=DE.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC.∴DE⊥AC.(4)如图9,DE∥BC,DE=BC.【点评】此题主要考查了平行四边形的性质和判定,以及全等的应用,难易程度适中.。
中考数学 真题精选 专题试卷 多边形与平行四边形(含答案解析) (含答案解析)

多边形与平行四边形一.选择题1.(,广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形答案:A.分析:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
60,则这个正多边形是2.(,湖北孝感)已知一个正多边形的每个外角等于A.正五边形B.正六边形C.正七边形D.正八边形考点:多边形内角与外角..分析:多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成60°n,列方程可求解.解答:设所求正n边形边数为n,则60°•n=360°,解得n=6.故正多边形的边数是6.故选B.点评:本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.3.(•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.4.(•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC 的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.5.(•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.(•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.7.(•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm考点:平行四边形的性质.分析:由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解答:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.8.(•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B. 2 C. 3 D. 4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD 是解题的关键,注意等腰三角形的性质的正确运用.9.(•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.10.(•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.11.(•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.12.(•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC考点:平行四边形的性质.分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.13.(•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.14.(•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3考点:平行四边形的性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ 面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.15.(•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.16.(•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.17.(•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个考点:平行四边形的性质;等边三角形的判定;翻折变换(折叠问题).分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.18.(•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.19.(•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.分析:根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.二.填空题1. (广东)正五边形的外角和等于(度).【答案】360.【解析】n边形的外角和都等于360度。
中考数学复习《多边形》专项提升训练(附答案)

中考数学复习《多边形》专项提升训练(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中,正确的是( )A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角2.如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是( )A.7B.8C.9D.103.有下列说法:①由许多条线段连接而成的图形叫做多边形;②多边形的边数是不小于4的自然数;③从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成(n-2)个三角形;其中正确的结论有( )A.1个B.2个C.3个D.4个4.一个多边形的外角中,钝角的个数不可能是( )A.1个B.2个C.3个D.4个5.若一个正多边形的一个外角是36°,则这个正多边形的边数是( )A.10B.9C.8D.66.如图,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )A.140米B.150米C.160米D.240米7.如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2 的度数是( )A.15°B.25°C.30°D.45°8.如果仅用一种多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是( )A.正三角形B.正四边形C.正六边形D.正八边形9.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是( )A.n2+4n+2B.6n+1C..n2+3n+3D.2n+410.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是( )A.222B.280C.286D.292二、填空题11.形状、大小完全相同的三角形________(填“能”或“不能”)铺满地面;形状、大小完全相同的四边形________(填“能”或“不能”)铺满地面.12.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是.13.一个多边形有44条对角线,那么这个多边形内角和是__________.14.如图是由射线AB、BC、CD、DE、EA组成的图形,∠1+∠2+∠3+∠4+∠5=.15.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=_____度.16.两个完全相同的正五边形都有一边在直线上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB= .三、解答题17.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18.若两个多边形的边数之比为1:2,两个多边形的内角和之和为1440°,求这两个多边形的边数.19.一个多边形的内角和比四边形的内角和多540°并且这个多边形的各个内角都相等,这个多边形的每个内角等于几度?20.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.21.如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=80,则∠ABC+∠BCD=;∠E=;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为.22.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.(1)观察直线AB与直线DE的位置关系,你能得出什么结论并说明理由;(2)试求∠AFE的度数.23.探索问题:(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请你用学过的知识予以证明;(2)如图②﹣1,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣2,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣3,则∠A+∠B+∠C+∠D+∠E=°;(3)如图③,下图是一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F =°.参考答案1.D2.B.3.A4.D5.A6.B.7.A8.D9.B10.D11.答案为:能,能.12.答案为:1260°.13.答案为:1 620°14.答案为:360°.15.答案为:360.16.答案为:108°.17.解:设这个多边形的边数是n依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7. ∴这个多边形的边数是7.18.解:设这两个多边形的边数分别为n、2n,依题意得180(n﹣2)+180(2n﹣2)=1440540n﹣720=1440540n=2160n=4所以这两个多边形的边数分别为4和8所以这两个多边形的内角和分别为:180°×(4﹣2)=360°和180°×(8﹣2)=1080°19.解:设这个多边形的边数为n则有(n﹣2)•180°=360°+540°解得n=7.∵这个多边形的每个内角都相等∴它每一个内角的度数为900°÷7=20.解:连接AF.∵在△AOF和△COD中,∠AOF=∠COD∴∠C+∠D=∠OAF+∠AFD∴∠A+∠B+∠C+∠D+∠E+∠F=∠OAF+∠OFA+∠CFE+∠OAB+∠E+∠F=∠BAF+∠AFE+∠E+∠B=360°.21.解:(1)∵∠F=80∴∠FBC+∠BCF=180°﹣∠F=100°.∵∠ABC、∠BCD的角平分线交于点F∴∠ABC=2∠FBC,∠BCD=2∠BCF∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;∵四边形ABCD的内角和为360°∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=160°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E∴∠DAE=12∠BAD,∠ADE=12∠CDA∴∠DAE+∠ADE=12∠BAD+12∠CDA=12(∠BAD+∠CDA)=80°∴∠E=180°﹣(∠DAE+∠ADE)=100°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E∠ABC、∠BCD的角平分线交于点F∴∠DAE+∠ADE+∠FBC+∠BCF=180°∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为200°;100°;AB∥CD.22.解:(1)AB∥DE.理由如下:延长AF、DE相交于点G∵CD∥AF∴∠CDE+∠G=180°.∵∠CDE=∠BAF∴∠BAF+∠G=180°∴AB∥DE;(2)延长BC、ED相交于点H.∵AB⊥BC∴∠B=90°.∵AB∥DE∴∠H+∠B=180°∴∠H=90°.∵∠BCD=124°∴∠DCH=56°∴∠CDH=34°∴∠G=∠CDH=34°.∵∠DEF=80°∴∠EFG=80°﹣34°=46°∴∠AFE=180°﹣∠EFG=180°﹣46°=134°.23.解:(1)如图①,∠BOC=∠B+∠C+∠A.(2)如图②,∠A+∠B+∠C+∠D+∠E=180°.如图③根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D∵∠1+∠2+∠E=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和BC交于点G根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B ∵∠GFC+∠FGC+∠C=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,∵∠BOD=70°∴∠A+∠C+∠E=70°∴∠B+∠D+∠F=70°∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.。
初二多边形题型试题及答案

初二多边形题型试题及答案【试题】一、选择题1. 下面哪个选项不是多边形的内角和的计算公式?A. (n-2) × 180°B. n × (n-1) × 45°C. n × 180°D. 360°2. 一个多边形的外角和是多少度?A. 180°B. 360°C. 540°D. 720°3. 如果一个多边形的边数增加1倍,其内角和会如何变化?A. 增加1倍B. 增加2倍B. 保持不变D. 无法确定二、填空题4. 若一个多边形的边数为n,其内角和为______。
5. 一个正五边形的每个内角的度数是______。
三、解答题6. 一个多边形的内角和为2340°,求这个多边形的边数。
7. 如果一个多边形的每个外角都是40°,求这个多边形的边数。
【答案】一、选择题1. 答案:B。
多边形的内角和的计算公式是(n-2) × 180°,其中n是多边形的边数。
2. 答案:B。
任何多边形的外角和总是等于360°。
3. 答案:A。
如果一个多边形的边数增加1倍,其内角和也会增加1倍。
二、填空题4. 答案:(n-2) × 180°。
这是多边形内角和的通用公式。
5. 答案:108°。
正多边形的每个内角可以通过公式(n-2) × 180°/ n计算,对于正五边形,n=5,所以每个内角是(5-2) × 180° / 5= 108°。
三、解答题6. 解:设多边形的边数为n,根据内角和公式,我们有 (n-2) × 180° = 2340°。
解这个方程,我们得到 n-2 = 2340° / 180° = 13,所以 n = 15。
这个多边形有15条边。
七年级数学《多边形》专项训练试卷及答案解析

七年级数学《多边形》专项训练试卷及答案解析时间:120分钟 满分:120分班级______ 姓名______ 得分______一、选择题(每小题3分,共30分)1.一个正多边形的每个外角都等于36°,那么它是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 2.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线 C .∠3=12∠ACB D .CE 是△ABC 的角平分线第2题图 第3题图3.如图,下列说法中错误的是( ) A .∠1不是△ABC 的外角 B .∠B <∠1+∠2C .∠ACD 是△ABC 的外角 D .∠ACD >∠A +∠B4.下列长度的三条线段不能组成三角形的是( ) A .5,5,10 B .4,5,6 C .4,4,4 D .3,4,5 5.只用下列图形中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形6.已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x ,则x 的取值范围是( ) A .0<x <52 B .x ≥52C .x >52D .0<x <107.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .16 8.如图,把一块含有30°角(∠A =30°)的直角三角板ABC 的直角顶点放在长方形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 在三角板的斜边上,如果∠1=40°,那么∠AFE 的度数是( )A .50°B .40°C .20°D .10°第8题图9.如图,已知在△ABC中,∠B=∠C,D是BC边上任意一点,DF⊥AC于点F,E在AB边上,ED⊥BC于点D,∠AED=155°,则∠EDF等于( )A.50° B.65° C.70° D.75°第9题图第10题图10.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,M为正八边形内部的小正方形的一个顶点,则∠ABM的度数及阴影部分的面积分别为( )A.45°,2a2 B.60°,3a2 C.30°,4a2 D.75°,2a2二、填空题(每小题3分,共24分)11.在△ABC中,如果∠B=45°,∠C=72°,那么与∠A相邻的一个外角等于________度.12.如果三角形的三边长度分别为3a,4a,14,则a的取值范围是____________.13.如图,AD,BE分别是△ABC的角平分线和高,∠BAC=40°,则∠AFE=________.第13题图第14题图14.如图,在△ABC中,AD是BC边上的中线,已知AB=5cm,AC=7cm,则△ACD与△ABD 的周长差为________cm.15.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2=________.第15题图第16题图第18题图16.维明公园的一段小路是由型号相同的五边形地砖平铺而成的,如图所示,是平铺图案的一部分,如果每一个五边形中有3个内角相等,那么这三个内角的度数都等于________.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.18.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积是________。
八年级数学上学期期中核心考点 专题04 多边形(含解析) 新人教版-新人教版初中八年级全册数学试题

专题04 多边形重点突破知识点一多边形相关知识多边形概念:在平面中,由一些线段首尾顺次相接组成的图形叫做多边形内角:多边形中相邻两边组成的角叫做它的内角。
外角:多边形的边与它邻边的延长线组成的角叫做外角。
对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
【对角线条数】一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn(重点)凸多边形概念:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
正多边形概念:各角相等,各边相等的多边形叫做正多边形。
(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)知识点二多边形的内角和外角(重点)n边形的内角和定理:n边形的内角和为(n−2)∙180°n边形的外角和定理:多边形的外角和等于360°(与多边形的形状和边数无关)。
考查题型考查题型一多边形的基础典例1.(2019·某某市期末)下列图中不是凸多边形的是()A.B.C.D.【答案】A【解析】根据凸多边形的概念,如果多边形的边都在任何一条边所在的直线的同旁,该多边形即是凸多边形.否则即是凹多边形,故A不是凸多边形;B是凸多边形;C是凸多边形;D是凸多边形.故选A.变式1-1.(2020·揭阳市期末)下列说法中,正确的是()A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角【答案】D【详解】A. ∵直线没有端点,向两方无限延伸,故不正确;B. ∵射线有一个端点,向一方无限延伸,故不正确;C. ∵有六边相等且六个角也相等的多边形叫做正六边形,故不正确;D. ∵有公共端点的两条射线组成的图形叫做角,故正确;故选D.变式1-2.(2019·某某市期末)关于正多边形的概念,下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等或各角相等的多边形是正多边形D.各边相等且各角相等的多边形是正多边形【答案】D【提示】根据正多边形的定义判定即可.【详解】解:A.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;B.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;C.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;D.各边相等且各角相等的多边形是正多边形,正确,故本选项符合题意.故选:D.【名师点拨】本题考查了正多边形的定义、熟记各边相等、各角也相等的多边形是正多边形是解决问题的关键.考查题型二多边形截角后的边数问题典例2.(2018·某某市期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.变式2-1.(2017·某某市期末)一个四边形截去一个角后内角个数是()A.3 B.4 C.5 D.3、4、5【答案】D【解析】如图可知,一个四边形截去一个角后变成三角形或四边形或五边形,故内角个数是为3、4或5.故选D.变式2-2.(2019·海淀区期末)把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.三角形B.四边形C.五边形D.六边形【答案】D【提示】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形,由此即可解答.【详解】当剪去一个角后,剩下的部分是一个四边形,则这X纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选D.【名师点拨】剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.考查题型三多边形的对角线条数问题典例3.(2019·某某市期中)一个多边形从一个顶点最多能引出三条对角线,这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【解析】试题提示:对于n边形,经过一个顶点能引出(n-3)条对角线,故本题选择D.变式3-1.(2018·松北区期末)若一个多边形的内角和为540°,那么这个多边形对角线的条数为()A.5 B.6 C.7 D.8【答案】A【解析】提示: 先根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线的条数与边数的关系求解.详解: 设所求正n边形边数为n,则(n-2)•180°=540°,解得n=5,∴这个多边形的对角线的条数=5(53)2⨯-=5.故选:A.名师点拨: 本题考查根据多边形的内角和计算公式及多边形的对角线的条数与边数的关系,解答时要会根据公式进行正确运算、变形和数据处理.变式3-2.(2018·某某市期中)若一个多边形的对角线共有14条,则这个多边形的边数是()A.6 B.7 C.10 D.14【答案】B【提示】根据多边形的对角线的条数公式()32n n-列式计算即可求解.【详解】解:设这个多边形的边数是n,则()32n n-=14,整理得,n2﹣3n﹣28=0,解得:n=7,n=﹣4(舍去).故选:B.【名师点拨】本题考查一元二次方程的应用,解题的关键是掌握多边形对角线条数与边数的关系,并据此列出方程.考查题型四多边形的内角和问题典例4.(2018·红桥区期中)已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】C【解析】试题提示:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=7.变式4-1.(2019·某某市期若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6 B.8 C.10 D.12【答案】B【解析】试题提示:设多边形的边数为n,则180(2)nn-=135,解得:n=8∠+∠+∠+∠+∠+∠的度数为()变式4-2.(2018·宿迁市期末)如图所示,A B C D E FA.180o B.360o C.540o D.720o【答案】B【解析】提示:根据三角形外角的性质,四边形的内角和计算即可.详解:∵∠A+∠1+∠D+∠E=360°,∠1=∠B+∠2,∠2=∠C+∠F,∠+∠+∠+∠+∠+∠=360°.∴A B C D E F故选B.名师点拨:本题考查了多边形内角和公式和三角形外角的性质,三角形的外角等于和它不相邻的两个内角的和,四边形的内角和等于360°.考查题型五多(少)算一个角的内角和问题典例5.(2020·某某市期中)当多边形的边数增加1时,它的内角和会()A.增加160B.增加180C.增加270D.增加360【答案】B【提示】根据n边形的内角和为180°(n-2),可得(n+1)边形的内角和为180°(n-1),然后作差即可得出结论.【详解】解:∵n边形的内角和为180°(n-2)∴(n+1)边形的内角和为180°(n+1-2)=180°(n-1)而180°(n-1)-180°(n-2)=180°∴当多边形的边数增加1时,它的内角和会增加180故选B.【名师点拨】此题考查的是多边形的内角和,掌握多边形的内角和公式是解决此题的关键.变式5-1.(2018·某某市期末)小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形【答案】C【提示】根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1000度.则内角和是(n-2)•180°与1000°的差一定小于180度,并且大于0度.因而可以解方程(n-2)•180°>1000°,多边形的边数n一定是最小的整数值即可,【详解】解:设多边形的边数是n.依题意有(n-2)•180°>1000°,解得:n>759,则多边形的边数n=8;故选C.【名师点拨】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.变式5-2.(2019·某某市期末)马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )A.7 B.8 C.7或8 D.无法确定【答案】C【提示】n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.【详解】设少加的2个内角和为x度,边数为n.则(n-2)×180=830+x,即(n-2)×180=4×180+110+x,因此x=70,n=7或x=250,n=8.故该多边形的边数是7或8.故选C.【名师点拨】本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.考查题型六多边形截角后的内角和问题典例6.(2018·某某市期中)如图,在三角形纸片ABC中,∠B=∠C=35°,过边BC上的一点,沿与BC垂直的方向将它剪开,分成三角形和四边形两部分,则在四边形中,最大的内角的度数为()A.110°B.115°C.120°D.125°【答案】D【解析】提示:根据三角形的内角和,可得∠A,根据四边形的内角和,可得答案.详解:由三角形的内角和,得∠A=180°-35°-35°=110°,由四边形的内角和,得360°-90°-110°-35°=125°,故选D.名师点拨:本题考查了多边形的内角,利用多边形的内角和是解题关键.变式6-1.(2019·某某市期中)一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能【答案】D【解析】试题提示:根据一个四边形截一刀后得到的多边形的边数即可得出结果.解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能减少180°,可能不变,可能增加180°.故选D.变式6-2.(2020·某某市期末)如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形(含三角形),+不可能是().若这两个多边形的内角和分别为M和N,则M NA.360︒B.540︒C.720︒D.630︒【答案】D【解析】如图,一条直线将该矩形ABCD分割成两个多边(含三角形)的情况有以上三种,①当直线不经过任何一个原来矩形的顶点,此时矩形分割为一个五边形和三角形,∴M+N=540°+180°=720°;②当直线经过一个原来矩形的顶点,此时矩形分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;③当直线经过两个原来矩形的对角线顶点,此时矩形分割为两个三角形,∴M+N=180°+180°=360°.故选D.考查题型七正多边形外角和问题典例7.(2020·某某市期末)已知正多边形的一个外角为36°,则该正多边形的边数为( ). A.12 B.10 C.8 D.6【答案】B【提示】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【名师点拨】本题主要考查了多边形的外角和定理.是需要识记的内容.变式7-1.(2020·某某市期中)正十边形的外角和为()A.180°B.360°C.720°D.1440°【答案】B【提示】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选B.【名师点拨】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.变式7-2.(2019·某某市期中)如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m【答案】D【提示】从A点出发,前进8m后向右转60°,再前进8m后又向右转60°,…,这样一直走下去,他第一次回到出发点A 时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,故他第一次回到出发点A时,共走了:8×6=48(m).故选:D.【名师点拨】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.考查题型八多边形内角和与外角和综合典例8.(2020·某某市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为()A.360︒B.540︒C.720︒D.900︒【答案】C【提示】根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和.【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.【名师点拨】考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.变式8-1.(2019·某某市期末)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【提示】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【名师点拨】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.变式8-2.(2020·某某市期末)一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为( ) A.5 B.6 C.7 D.8【答案】C【提示】解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.【详解】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据内角和比他的外角和的3倍少180°列方程求解.设所求n边形边数为n,则(n-2)•180°=360°×3-180°,解得n=7,故选C.【名师点拨】本题主要考查了多边形的内角和与外角和,解答本题的关键是记住多边形内角和公式为(n-2)×180°.考查题型九平面镶嵌典例9.(2020·某某市期末)下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【名师点拨】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.变式9-1.(2019·临清市期末)能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【提示】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D.【名师点拨】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.变式9-2.(2018·某某市期末)用边长相等的两种正多边形进行密铺,其中一种是正八边形,则另一种正多边形可以是()A.正三角形B.正方形C.正五边形D.正六边形【答案】B【解析】提示:正八边形的每个内角为:180°-360°÷8=135°,分别计算出正五边形,正六边形,正三角形,正四边形的每个内角的度数.利用“围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角”作为相等关系列出多边形个数之间的数量关系,利用多边形的个数都是正整数可推断出能和正八边形一起密铺的多边形是正四边形.详解:正八边形的每个内角为180°−360°÷8=135°,A. 正三角形的每个内角60∘,得135m+60n=360°,n=6−94m,显然m取任何正整数时,n不能得正整数,故不能铺满;B. 正四边形的每个内角是90°,得90°+2×135°=360°,所以能铺满;C. 正五边形每个内角是180°−360°÷5=108°,得108m+135n=360°,m取任何正整数时,n不能得正整数,故不D. 正六边形的每个内角是120度,得135m+120n=360°,n=3−98m,显然m取任何正整数时,n不能得正整数,故不能铺满.故选B.名师点拨:本题考查了平面密铺的知识,用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.。
初中多边形经典练习题(含详细答案)

初中多边形经典练习题(含详细答案)一、选择题1. 根据图形的特征,下列哪个图形是多边形?A. 圆形B. 椭圆C. 正方形D. 梯形答案:C. 正方形解析:多边形是由线段组成的闭合图形,而正方形是一个有四条相等边的多边形。
2. 下列哪个图形不是凸多边形?A. 正三角形B. 正方形C. 长方形D. 梯形答案:D. 梯形解析:凸多边形是指所有内角均小于180度的多边形,梯形的一个内角是直角,因此不是凸多边形。
二、填空题3. 有一个五边形,其中三个内角分别为82°、95°和120°,求另外两个内角的度数。
答案:83°和120°解析:五边形的内角和为540°,已知三个内角分别为82°、95°和120°,将它们相加得到297°,所以另外两个内角的度数为540° - 297° = 243°,再分别减去已知角度82°和95°即可得到答案。
4. 在一个正五边形中,每个内角的度数是多少?答案:108°解析:正五边形的内角和为540°,而正五边形的每个内角是相等的,所以每个内角的度数为540° / 5 = 108°。
三、解答题5. 已知一个凸五边形的一个内角是132°,其他四个内角分别是95°、110°、115°和138°,求该凸五边形的内角和。
答案:590°解析:凸五边形的内角和为540°,已知一个内角是132°,其他四个内角的度数之和为95° + 110° + 115° + 138° = 458°,所以该凸五边形的内角和为540° - 132° - 458° = 590°。
中考数学真题《多边形与平行四边形》专项测试卷(附答案)

中考数学真题《多边形与平行四边形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(27题)一 、单选题1.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 BC ∥AD 添加下列条件 不能判定四边形ABCD 是平行四边形的是( )A .AB =CD B .AB ∥CDC .∥A =∥CD .BC =AD2.(2023·湖南永州·统考中考真题)下列多边形中 内角和等于360︒的是( )A .B .C .D .3.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 AB CD ∥ 若添加一个条件 使四边形ABCD 为平形四边形,则下列正确的是( )A .AD BC =B .ABD BDC ∠=∠ C .AB AD = D .A C ∠=∠4.(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S ah =时 若ABE 平移到DCF 4a = 3h =,则ABE 的平移距离为( )A .3B .4C .5D .125.(2023·四川泸州·统考中考真题)如图,ABCD 的对角线AC BD 相交于点O ADC ∠的平分线与边AB 相交于点P E 是PD 中点 若4=AD 6CD =,则EO 的长为( )A .1B .2C .3D .46.(2023·四川成都·统考中考真题)如图,在ABCD 中 对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AC BD =B .OA OC = C .AC BD ⊥ D .ADC BCD ∠=∠7.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O 连接,OC OD ,则BAE COD ∠-∠=( )A .60︒B .54︒C .48︒D .36︒二 填空题8.(2023·云南·统考中考真题)五边形的内角和是________度.9.(2023·新疆·统考中考真题)若正多边形的一个内角等于144︒,则这个正多边形的边数是 ______. 10.(2023·上海·统考中考真题)如果一个正多边形的中心角是20︒ 那么这个正多边形的边数为________. 11.(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60° 那么这个正多边形的边数是_____. 12.(2023·山东临沂·统考中考真题)如图,三角形纸片ABC 中 69AC BC ==, 分别沿与BC AC ,平行的方向 从靠近A 的AB 边的三等分点剪去两个角 得到的平行四边形纸片的周长是____________.13.(2023·湖南·统考中考真题)如图,在平行四边形ABCD 中 3AB = 5BC = B ∠的平分线BE 交AD 于点E ,则DE 的长为_____________.14.(2023·重庆·统考中考真题)如图,在正五边形ABCDE 中 连接AC ,则∥BAC 的度数为_____.15.(2023·湖北黄冈·统考中考真题)若正n 边形的一个外角为72︒,则n =_____________.16.(2023·福建·统考中考真题)如图,在ABCD 中 O 为BD 的中点 EF 过点O 且分别交,AB CD 于点,E F .若10AE =,则CF 的长为___________.17.(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是______边形. 18.(2023·甘肃兰州·统考中考真题)如图,在ABCD 中 BD CD = AE BD ⊥于点E 若70C ∠=︒,则BAE ∠=______︒.19.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 展开后 再将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ,则AFB '∠的大小为__________度.20.(2023·重庆·统考中考真题)若七边形的内角中有一个角为100︒,则其余六个内角之和为________.三 解答题21.(2023·四川自贡·统考中考真题)在平行四边形ABCD 中 点E F 分别在边AD 和BC 上 且DE BF =. 求证:AF CE =.22.(2023·湖南·统考中考真题)如图所示 在ABC 中 点D E 分别为AB AC 、的中点 点H 在线段CE 上 连接BH 点G F 分别为BH CH 、的中点.(1)求证:四边形DEFG 为平行四边形(2)32DG BH BD EF ⊥==,, 求线段BG 的长度.23.(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD 的对角线,AC BD 相交于点O 点,E F 在对角线BD 上 且BE EF FD == 连接,AE EC ,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2 求CFO △的面积.24.(2023·山东·统考中考真题)如图,在ABCD 中 AE 平分BAD ∠ 交BC 于点E CF 平分BCD ∠ 交AD 于点F .求证:AE CF =.25.(2023·重庆·统考中考真题)学习了平行四边形后 小虹进行了拓展性研究.她发现 如果作平行四边形一条对角线的垂直平分线 那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空: 用直尺和圆规 作AC 的垂直平分线交DC 于点E 交AB 于点F 垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形 AC 是对角线 EF 垂直平分AC 垂足为点O .求证:OE OF =.证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= ∥ .∥EF 垂直平分AC∥ ∥ .又EOC ∠=___________∥ .∥()COE AOF ASA ∆≅∆.∥OE OF =.小虹再进一步研究发现 过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ∥ .26.(2023·四川南充·统考中考真题)如图,在ABCD 中 点E F 在对角线AC 上 CBE ADF ∠=∠.求证:(1)AE CF =(2)BE DF ∥.27.(2023·四川广安·统考中考真题)如图,在四边形ABCD 中 AC 与BD 交于点,O BE AC ⊥ DF AC ⊥ 垂足分别为点E F 、 且,AF CE BAC DCA =∠=∠.求证:四边形ABCD 是平行四边形.参考答案一单选题1.(2023·湖南·统考中考真题)如图,在四边形ABCD中BC∥AD添加下列条件不能判定四边形ABCD 是平行四边形的是()A.AB=CD B.AB∥CD C.∥A=∥C D.BC=AD【答案】A【分析】依据平行四边形的判定依次分析判断即可得出结果.【详解】解:A 当BC∥AD AB=CD时不能判定四边形ABCD是平行四边形故此选项符合题意B 当AB∥CD BC∥AD时依据两组对边分别平行的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意C 当BC∥AD∥A=∥C时可推出AB∥DC依据两组对边分别平行的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意D 当BC∥AD BC=AD时依据一组对边平行且相等的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意故选:A.【点睛】此题考查了平行四边形的判定解决问题的关键要熟记平行四边形的判定方法.2.(2023·湖南永州·统考中考真题)下列多边形中内角和等于360︒的是()A.B.C.D.【答案】Bn-⋅︒分别求解后即可得到答案【分析】根据n边形内角和公式()2180【详解】解:A.三角形内角和是180︒故选项不符合题意B .四边形内角和为()42180360-⨯︒=︒ 故选项符合题意C .五边形内角和为()52180540-⨯︒=︒ 故选项不符合题意D .六边形内角和为()62180720-⨯︒=︒ 故选项不符合题意.故选:B .【点睛】此题考查了n 边形内角和 熟记n 边形内角和公式()2180n -⋅︒是解题的关键.3.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 AB CD ∥ 若添加一个条件 使四边形ABCD 为平形四边形,则下列正确的是( )A .AD BC =B .ABD BDC ∠=∠ C .AB AD = D .A C ∠=∠【答案】D 【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】解:A .根据AB CD ∥ AD BC = 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意B . ∥AB CD ∥ ∥ABD BDC ∠=∠ 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意C .根据AB CD ∥ AB AD = 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意D .∥AB CD ∥∥180ABC C ∠+∠=︒∥A C ∠=∠∥180ABC A ∠+∠=︒∥AD BC ∥∥四边形ABCD 为平形四边形故该选项正确 符合题意故选:D .【点睛】本题考查了平行四边形的判定定理 熟练掌握平行四边形的判定定理是解题的关键.4.(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S ah =时 若ABE 平移到DCF 4a = 3h =,则ABE 的平移距离为( )A .3B .4C .5D .12【答案】B 【分析】根据平移的方向可得 ABE 平移到DCF ,则点A 与点D 重合 故ABE 的平移距离为AD 的长.【详解】解:用平移方法说明平行四边形的面积公式S ah =时 将ABE 平移到DCF 故平移后点A 与点D 重合,则ABE 的平移距离为4AD a ==故选:B .【点睛】本题考查了平移的性质 熟练掌握平移的性质是解题的关键.5.(2023·四川泸州·统考中考真题)如图,ABCD 的对角线AC BD 相交于点O ADC ∠的平分线与边AB 相交于点P E 是PD 中点 若4=AD 6CD =,则EO 的长为( )A .1B .2C .3D .4【答案】A 【分析】根据平行四边形的性质 平行线的性质 角平分线的定义以及等腰三角形的判定可得4AP AD == 进而可得2BP = 再根据三角形的中位线解答即可.【详解】解:∥四边形ABCD 是平行四边形 6CD =∥AB CD 6AB CD == DO BO =∥CDP APD ∠=∠∥PD 平分ADC ∠∥ADP CDP ∠=∠∥ADP APD ∠=∠∥4AP AD ==∥642BP AB AP =-=-=∥E 是PD 中点∥112OE BP == 故选:A.【点睛】本题考查了平行四边形的性质 平行线的性质 等腰三角形的判定以及三角形的中位线定理等知识 熟练掌握相关图形的判定与性质是解题的关键.6.(2023·四川成都·统考中考真题)如图,在ABCD 中 对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AC BD =B .OA OC = C .AC BD ⊥ D .ADC BCD ∠=∠【答案】B【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∥四边形ABCD 是平行四边形 对角线AC 与BD 相交于点OA. AC BD = 不一定成立 故该选项不正确 不符合题意B. OA OC = 故该选项正确 符合题意C. AC BD ⊥ 不一定成立 故该选项不正确 不符合题意D. ADC BCD ∠=∠ 不一定成立 故该选项不正确 不符合题意故选:B .【点睛】本题考查了平行四边形的性质 熟练掌握平行四边形的性质是解题的关键.7.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O 连接,OC OD ,则BAE COD ∠-∠=()A .60︒B .54︒C .48︒D .36︒【答案】D【分析】先计算正五边形的内角 再计算正五边形的中心角 作差即可.【详解】∥360360180,55BAE COD ︒︒∠=︒-∠=∥3603601803655BAE COD ︒︒∠-∠=︒--=︒ 故选D . 【点睛】本题考查了正五边形的外角 内角 中心角的计算 熟练掌握计算公式是解题的关键.二 填空题8.(2023·云南·统考中考真题)五边形的内角和是________度.【答案】540【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.9.(2023·新疆·统考中考真题)若正多边形的一个内角等于144︒,则这个正多边形的边数是 ______.【答案】10【分析】本题需先根据已知条件设出正多边形的边数 再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n 边形 根据题意得:()2180144n n -⨯︒÷=︒解得:10n =.故答案为:10.【点睛】本题主要考查了正多边形的内角 在解题时要根据正多边形的内角公式列出式子是本题的关键. 10.(2023·上海·统考中考真题)如果一个正多边形的中心角是20︒ 那么这个正多边形的边数为________.【答案】18【分析】根据正n 边形的中心角的度数为360n ︒÷进行计算即可得到答案.【详解】根据正n 边形的中心角的度数为360n ︒÷则3602018n =÷=故这个正多边形的边数为18故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识 掌握中心角的计算公式是解题的关键.11.(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60° 那么这个正多边形的边数是_____.【答案】6【详解】解:根据多边形的外角和等于360°和正多边形的每一个外角都相等 得多边形的边数为360°÷60°=6.故答案为:6.12.(2023·山东临沂·统考中考真题)如图,三角形纸片ABC 中 69AC BC ==, 分别沿与BC AC ,平行的方向 从靠近A 的AB 边的三等分点剪去两个角 得到的平行四边形纸片的周长是____________.【答案】14【分析】由平行四边形的性质推出DF BC ∥ DE AC ∥ 得到∽ADF ABC BDE BAC ∽△△ 利用相似三角形的性质求解即可. 【详解】解:如图,由题意得13AD AB = 四边形DECF 是平行四边形∥DF BC ∥ DE AC ∥ ∥∽ADF ABC BDE BAC ∽△△ ∥13DF AD BC AB == 23DE BD AC AB == ∥69AC BC ==,∥3DF = 4DE =∥四边形DECF 平行四边形∥平行四边形DECF 纸片的周长是()23414+=故答案为:14.【点睛】本题考查了平行四边形的性质 相似三角形的判定和性质 解题的关键是灵活运用所学知识解决问题.13.(2023·湖南·统考中考真题)如图,在平行四边形ABCD 中 3AB = 5BC = B ∠的平分线BE 交AD 于点E ,则DE 的长为_____________.【答案】2【分析】根据平行四边形的性质可得AD BC ∥,则AEB CBE ∠=∠ 再由角平分线的定义可得ABE CBE ∠=∠ 从而求得AEB ABE ∠=∠,则AE AB = 从而求得结果.【详解】解:∥四边形ABCD 是平行四边形∥AD BC ∥∥AEB CBE ∠=∠∥B ∠的平分线BE 交AD 于点E∥ABE CBE ∠=∠∥AEB ABE ∠=∠∥AE AB =∥3AB = 5BC =∥===53=2DE AD AE BC AB ---故答案为:2.【点睛】本题考查平行四边形的性质 角平分线的定义 等腰三角形的判定 掌握平行四边形的性质是解题的关键.14.(2023·重庆·统考中考真题)如图,在正五边形ABCDE 中 连接AC ,则∥BAC 的度数为_____.【答案】36°【分析】首先利用多边形的内角和公式求得正五边形的内角和 再求得每个内角的度数 利用等腰三角形的性质可得∥BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540° ∥5401085B ︒︒∠==∥180B 1801083622BAC ︒︒︒︒-∠-∠=== . 故答案为36°.【点睛】本题主要考查了正多边形的内角和 熟记多边形的内角和公式:(n -2)×180°是解答此题的关键. 15.(2023·湖北黄冈·统考中考真题)若正n 边形的一个外角为72︒,则n =_____________.【答案】5【分析】正多边形的外角和为360︒ 每一个外角都相等 由此计算即可.【详解】解:由题意知 360572n == 故答案为:5.【点睛】本题考查正多边形的外角问题 解题的关键是掌握正n 边形的外角和为360︒ 每一个外角的度数均为360n ︒. 16.(2023·福建·统考中考真题)如图,在ABCD 中 O 为BD 的中点 EF 过点O 且分别交,AB CD 于点,E F .若10AE =,则CF 的长为___________.【答案】10【分析】由平行四边形的性质可得,DC AB DC AB =∥即,OFD OEB ODF EBO ∠=∠∠=∠ 再结合OD OB=可得()AAS DOF BOE ≌△△可得DF EB = 最进一步说明10FC AE ==即可解答. 【详解】解:∥ABCD 中∥,DC AB DC AB =∥∥,OFD OEB ODF EBO ∠=∠∠=∠∥OD OB =∥()AAS DOF BOE ≌△△ ∥DF EB =∥DC DF AB BE -=-,即10FC AE ==.故答案为:10.【点睛】本题主要考查了平行四边形的性质 全等三角形的判定与性质等知识点 证明三角形全等是解答本题的关键.17.(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是______边形.【答案】5【详解】设这个多边形是n 边形 由题意得(n -2) ×180°=540° 解之得 n =5.18.(2023·甘肃兰州·统考中考真题)如图,在ABCD 中 BD CD = AE BD ⊥于点E 若70C ∠=︒,则BAE ∠=______︒.【答案】50【分析】证明70DBC C ∠=∠=︒ 18027040BDC ∠=︒-⨯︒=︒ 由AB CD ∥ 可得40ABE BDC ∠=∠=︒ 结合AE BD ⊥ 可得904050BAE ∠=︒-︒=︒.【详解】解:∥BD CD = 70C ∠=︒∥70DBC C ∠=∠=︒ 18027040BDC ∠=︒-⨯︒=︒∥ABCD∥AB CD ∥∥40ABE BDC ∠=∠=︒∥AE BD ⊥∥904050BAE ∠=︒-︒=︒故答案为:50【点睛】本题考查的是等腰三角形的性质 平行四边形的性质 三角形的内角和定理的应用 熟记基本几何图形的性质是解本题的关键.19.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 展开后 再将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ,则AFB '∠的大小为__________度.【答案】45【分析】根据题意求得正五边形的每一个内角为()5218101508-⨯︒=︒ 根据折叠的性质求得,,BAM FAB '∠∠在AFB '中 根据三角形内角和定理即可求解.【详解】解:∥正五边形的每一个内角为()5218101508-⨯︒=︒ 将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 则111085422BAM BAE ∠=∠=⨯︒=︒ ∥将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ∥11542722FAB BAM '∠=∠=⨯︒=︒ 108AB F B '∠=∠=︒ 在AFB '中 1801801082745AFB B FAB ''∠=︒-∠-∠=︒-︒-︒=︒故答案为:45.【点睛】本题考查了折叠的性质 正多边形的内角和的应用 熟练掌握折叠的性质是解题的关键. 20.(2023·重庆·统考中考真题)若七边形的内角中有一个角为100︒,则其余六个内角之和为________.【答案】800︒/800度【分析】根据多边形的内角和公式()1802n ︒-即可得.【详解】解:∥七边形的内角中有一个角为100︒∥其余六个内角之和为()180********︒⨯--︒=︒故答案为:800︒.【点睛】本题考查了多边形的内角和 熟记多边形的内角和公式是解题关键.三 解答题21.(2023·四川自贡·统考中考真题)在平行四边形ABCD 中 点E F 分别在边AD 和BC 上 且DE BF =.求证:AF CE =.【答案】见解析【分析】平行四边形的性质得到,AD BC AD BC = 进而推出AE CF = 得到四边形AECF 是平行四边形 即可得到AF EC =. 【详解】解:四边形ABCD 是平行四边形∴,AD BC AD BC =BE DF =AE CF ∴=∥,AE CF AE CF =∥∴四边形AECF 是平行四边形AF CE ∴=.【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法 是解题的关键. 22.(2023·湖南·统考中考真题)如图所示 在ABC 中 点D E 分别为AB AC 、的中点 点H 在线段CE 上 连接BH 点G F 分别为BH CH 、的中点.(1)求证:四边形DEFG 为平行四边形(2)32DG BH BD EF ⊥==,, 求线段BG 的长度.【答案】(1)见解析 5【分析】(1)由三角形中位线定理得到1,2DE BC DE BC =∥ 1,2GF BC GF BC =∥ 得到,GF DE GF DE =∥ 即可证明四边形DEFG 为平行四边形(2)由四边形DEFG 为平行四边形得到2DG EF == 由DG BH ⊥得到90DGB ∠=︒ 由勾股定理即可得到线段BG 的长度.【详解】(1)解:∥点D E 分别为AB AC 、的中点 ∥1,2DE BC DE BC =∥ ∥点G F 分别为BH CH 的中点. ∥1,2GF BC GF BC =∥ ∥,GF DE GF DE =∥∥四边形DEFG 为平行四边形(2)∥四边形DEFG 为平行四边形∥2DG EF ==∥DG BH ⊥,∥90DGB ∠=︒∥3BD = ∥2222325BG BD DG =--【点睛】此题考查了中位线定理 平行四边形的判定和性质 勾股定理等知识 证明四边形DEFG 为平行四边形和利用勾股定理计算是解题的关键.23.(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD 的对角线,AC BD 相交于点O 点,E F 在对角线BD 上 且BE EF FD == 连接,AE EC ,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2 求CFO △的面积.【答案】(1)见解析(2)1【分析】(1)根据平行四边形对角线互相平分可得OA OC = OB OD = 结合BE FD =可得OE OF = 即可证明四边形AECF 是平行四边形(2)根据等底等高的三角形面积相等可得2AEF ABE S S == 再根据平行四边形的性质可得11121222CFO CEF AEF S S S ===⨯=. 【详解】(1)证明:四边形ABCD 是平行四边形∴OA OC = OB OD =BE FD =∴OB BE OD FD -=-∴OE OF =又OA OC =∴四边形AECF 是平行四边形.(2)解:2ABE S = BE EF = ∴2AEF ABE S S ==四边形AECF 是平行四边形∴11121222CFO CEF AEF S S S ===⨯=. 【点睛】本题考查平行四边形的判定与性质 解题的关键是掌握平行四边形的对角线互相平分. 24.(2023·山东·统考中考真题)如图,在ABCD 中 AE 平分BAD ∠ 交BC 于点E CF 平分BCD ∠ 交AD 于点F .求证:AE CF =.【答案】证明见解析【分析】由平行四边形的性质得B D ∠=∠ AB CD = AD BC ∥ 由平行线的性质和角平分线的性质得出BAE DCF ∠=∠ 可证BAE DCF ≌△△ 即可得出AE CF =.【详解】证明:∥四边形ABCD 是平行四边形∥B D ∠=∠ AB CD = BAD DCB ∠=∠ AD BC ∥∥AE 平分BAD ∠ CF 平分BCD ∠∥BAE DAE BCF DCF ∠=∠=∠=∠在BAE 和DCF 中B D AB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∥()ASA BAE DCF ≌∥AE CF =.【点睛】本题主要考查平行四边形的性质 平行线的性质及全等三角形的判定与性质 根据题目已知条件熟练运用平行四边形的性质 平行线的性质是解答本题的关键.25.(2023·重庆·统考中考真题)学习了平行四边形后 小虹进行了拓展性研究.她发现 如果作平行四边形一条对角线的垂直平分线 那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空: 用直尺和圆规 作AC 的垂直平分线交DC 于点E 交AB 于点F 垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形 AC 是对角线 EF 垂直平分AC 垂足为点O .求证:OE OF =.证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= ∥ .∥EF 垂直平分AC∥ ∥ .又EOC ∠=___________∥ .∥()COE AOF ASA ∆≅∆.∥OE OF =.小虹再进一步研究发现 过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ∥ .【答案】作图:见解析 FAO ∠ AO CO = FOA ∠ 被平行四边形一组对边所截 截得的线段被对角线中点平分【分析】根据线段垂直平分线的画法作图 再推理证明即可并得到结论.【详解】解:如图,即为所求证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= FAO ∠.∥EF 垂直平分AC∥AO CO =.又EOC ∠=FOA ∠.∥()COE AOF ASA ≅.∥OE OF =.故答案为:FAO ∠ AO CO = FOA ∠由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截 截得的线段被对角线中点平分故答案为:被平行四边形一组对边所截 截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质 作线段的垂直平分线 全等三角形的判定和性质 熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.26.(2023·四川南充·统考中考真题)如图,在ABCD 中 点E F 在对角线AC 上 CBE ADF ∠=∠.求证:(1)AE CF =(2)BE DF ∥.【答案】见解析【分析】(1)根据平行四边形的性质推出相应的线段和相应的角度相等 再利用已知条件求证ABE CDF ∠=∠ 最后证明()ASA ABE CDF ≌△△即可求出答案.(2)根据三角形全等证明角度相等 再利用邻补角定义推出BEF EFD ∠=∠即可证明两直线平行.【详解】(1)证明:四边形ABCD 为平行四边形AB CD ∴∥ AB CD = ABC ADC ∠=∠BAE FCD .CBE ADF ∠=∠ ABC ADC ∠=∠ABE CDF ∴∠=∠.()ASA ABE CDF ∴≌.AE CF ∴=.(2)证明:由(1)得()ASA ABE CDF ≌△△ AEB CFD ∴∠=∠.180AEB BEF ∠+∠=︒ 180CFD EFD ∠+∠=︒BEF EFD ∴∠=∠.BE DF ∴∥.【点睛】本题考查了平行四边形的性质 邻补角定义 三角形全等 平行线的判定 解题的关键在于熟练掌握平行四边形的性质.27.(2023·四川广安·统考中考真题)如图,在四边形ABCD 中 AC 与BD 交于点,O BE AC ⊥ DF AC ⊥ 垂足分别为点E F 、 且,AF CE BAC DCA =∠=∠.求证:四边形ABCD 是平行四边形.【答案】见详解【分析】先证明()≌ASA AEB CFD 再证明 ,AB CD AB CD =∥ 再由平行四边形的判定即可得出结论.【详解】证明:BE AC ⊥ DF AC ⊥90AEB CFD ∴∠=∠=︒,,,AF CE AE AF EF CF CE EF ==-=-,AE CF ∴=又BAC DCA ∠=∠(ASA)∴≌AEB CFD∴=AB CD∠=∠∥BAC ACD∴∥AB CD四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定全等三角形的判定与性质等知识熟练掌握平行四边形的判定证明三角形全等是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形
1.济南市2003年中考第6题
如图(1),小强拿一张正方形的纸片,沿虚线对折一次得到图(2),再对折一次得到图(3),然后用剪刀沿图(3)中的虚线剪去一个角,那么再打开的形状是( )
2.黑龙江省2003中考第26题
已知:如图1,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD,AG ⊥CE,垂足分别为F 、G,连结FG,延长AF 、AG,与直线BD 相交,易证FG=2
1
(AB+AC+BC).若(1)BD 、CE 分别是△ABC 的内角平分线(如图2);(2)BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线(如图3),则在图2、图3的两种情况下,线段FG 与△ABC 的三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.
(1)
(2)
(3)
(A)
(B)
(C)
(D)
A
B
E
C
D
G
F (图1)
A
B
E
C
D G
F
(图2)
A
B
E
C
D G F
(图3)
解:在图2的情况下, FG=
2
1
(AB+AC-BC). 分别延长AF 、AG 交BC 于点M 、N.易证得BM=BA,CN=CA, ∴GF=
21MN=2
1
(AB+AC-BC). 同样可以证得,在图3的情况下, FG=
2
1
(AC+BC-AB).
3.河北省省2003年中考第7题
如图,这是圆桌正上方的灯泡(看做一个点)发出的光线在地面上形成圆形阴影的示意图,已知桌面的直径为1.2米,桌面距地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为( )
(A)0.36π平方米.(B)0.81π平方米.(C) 2π平方米.(D) 3.24π平方米.
解:如图,建立数学模型:在等腰三角形ABC 中,已知AB=AC,DE
∥BC,高AG 交DE 于F,FE=0.6米,AG=3米,FG=1米,求GC 的长.
∵AF:AG=FE:GC, ∴GC=0.9米, ∴选(B).
4.长沙市2003年中考第26题
如图,在平行四边形ABCD 中,过点B 作BE ⊥CD,垂足为E,连结AE,F 为AE 上一点,且∠BFE=∠C.
(1)求证:△ABF ∽△EAD;
(2)若AB=4,∠BAE=30°,求AE 的长; (3)在(1)、(2)的条件下,若AD=3,求BF 的长. 解(1)∠D=∠AFB;
(2)AB:AE=cos30°,AE=
338
. (3)∵AB:AE=BF:AD,∴BF=32
3
.
5.上海市2003年中考第27题
如图1,在正方形ABCD 中,AB=1,弧AC 是以点B 为圆心,AB 长为半径的圆的一段弧,点E 是边AD 上的任意一点(点E 与点A 、D 不重合),过E 作弧AC 所在圆的切线,交边DC 于点F,G 为切点
.
B
E C
D G
F
C
D
A B
E
F
(1)当∠DEF=45°时,求证点G 为线段EF 的中点;
(2)设AE=x,FC=y,求y 关于x 的函数解析式,并写出函数的定义域(即自变量的取值范围);
(3)将△DEF 沿直线EF 翻折后得△HEF,如图2,当EF=
6
5
时,讨论△AHD 与△EHF 是否相似.如果相似,请加以说明;如果不相似,只要求写出结论,不要求写出理由.
解: (1)∵DE=DF, ∴AE=CF,
由切线长定理,得GE=GF. (2)在Rt △EFD 中, ∵EF=x+y,DE=1-x,DF=1-y, 由勾股定理列方程,得x
x
y +-=
11(0<x<1). (3)当EF=65时,即x+y=65
,解得:
AE=31,或AE=2
1.
连结AH,DH,DH 交EF 于P, 当AE=
2
1
时,可由ED=EA=EH 证得∠AHD=90°,再证∠ DAH=∠FEH,∠AHD=∠EHF,得△AHD 与△EHF 相似;
当AE=3
1
时,两三角形不相似.
B
C
F
A
D E
H F
G
图2
B
C F
A
D E
G
图1
B
C
A D
备用图
A 图3
〖化简题〗如图,在正方形ABCD中,点E是边AD的中点,过E作直线EF,交边DC于点F,将△DEF沿直线EF翻折后得△HEF,连结AH、DH.求证△AHD∽△EHF.
(注:本题复习轴对称、直角三角形的判定及三角形相似的判定)
A。