运算放大器组成的比较器

合集下载

几种运算放大器(比较器)及经典电路的简单分析

几种运算放大器(比较器)及经典电路的简单分析

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大.为此本人特搜罗天下运放电路之应用,来个“庖丁解牛",希望各位从事电路板维修的同行,看完后有所斩获。

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=—Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断",不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上.而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1u A,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路.在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

集成运算放大器的非线性应用——比较器

集成运算放大器的非线性应用——比较器
一、过零比较器
图9-19(a)所示为过零比较器符号。 由于集成运放处于开环状态,uo与ui不再保持线性关系,而是将同相端电压 和反相端电压进行比较。 当u+>u-,即ui<0时,uo=+Uo(sat)。 当u+<u-,即ui>0时,uo=-Uo(sat)。
集成运算放大器的非线性应用——比较器
一、过零比较器
集成运算放大器的非线性应用——比较器
三、滞回比较器(施密特触发器)
图9-21所示为滞回比较器的电路图和波形图。由于电路工作于正反馈状态, 所以电路的输出电压将为负饱和值或正饱和值,uo与ui不再保持线性关系。
集成运算放大器的非线性应用——比较器
三、滞回比较器(施密特触发器)
输入电压ui经电阻R1加在集成运放的反相输入端,参考电压UR经电阻R2接在 同相输入端,此外,从输出端通过电阻Rf引回反馈,引入的反馈类型为电压串联 正反馈。因此,同相输入端的电压uP是由参考电压UR和输出电压Uo共同决定的, Uo有-Uo(sat)和+Uo(sat)两个状态。在输出电压发生翻转的瞬间,运放的两个输入 端的电压非常接近,即uN=uP。因此可用叠加原理来分析它的两个输入触发电平。
把两个门限电平的差值称为回差电压ΔUTH,即
集成运算放大器的非线性应用——比较器
三、滞回比较器(施密特触发器)
回差电压的存在,可大大提高电路 的抗干扰能力,避免了干扰和噪声信号 对电路的影响。消除干扰的原理如图922所示。
集成运算放大器的非线性应用——比较器
四、窗口比较器
图9-23所示为窗口比较器,即电压比较器的基本输入信号。窗口比较器信号之间的关系见表9-1。
集成运算放大器 的非线性应用—

电路中的运算放大器与比较器的原理与应用

电路中的运算放大器与比较器的原理与应用

电路中的运算放大器与比较器的原理与应用在电子领域中,运算放大器(Operational Amplifier,简称Op Amp)与比较器(Comparator)是两个非常重要的电子元件。

它们在电路设计与应用中起着至关重要的作用。

一、运算放大器的原理与应用运算放大器是一种具有差分放大功能的电子放大器。

它通常由多个晶体管以及与之相连的电阻、电容等元件组成。

运算放大器的输出信号是其输入信号的放大倍数。

1. 基本原理运算放大器的基本电路结构由一个差分放大器和一个输出级组成。

它有两个输入端,称为非反相输入端(+)和反相输入端(-),以及一个输出端。

其基本工作模式是将输入信号放大,并输出一个与输入信号有相关性的信号。

2. 应用领域运算放大器在电路设计中有广泛的应用,包括:(1)信号放大:将弱信号放大至适当的电平,以便进行后续处理;(2)滤波器设计:根据不同的频率要求,设计低通、高通、带通等类型的滤波器;(3)振荡器设计:用于产生高频信号的振荡器电路设计;(4)比例控制与调节:用于控制系统,在反馈环路中起到稳定系统的作用。

二、比较器的原理与应用比较器是一种电子元件,用于将两个输入进行比较,并输出一个相应的逻辑电平。

它通常由运算放大器、基准电压和一个阈值元件组成。

1. 基本原理比较器的基本原理是将两个输入信号进行比较,并输出一个高、低逻辑电平。

当一个输入信号高于另一个输入信号时,输出为高电平,反之输出为低电平。

2. 应用领域比较器在电子领域中应用广泛,包括:(1)开关控制:将比较器的输出连接到开关控制电路中,根据两个输入信号的大小关系来控制开关的开关与闭合;(2)模拟电压转数字信号:将模拟电压通过比较器进行比较,并将结果输出为数字信号,用于数字电路的处理;(3)电压检测与监测:将比较器连接到电压检测电路中,用于监测输入电压是否超过设定值。

总结起来,运算放大器和比较器是电子领域中非常常见的电子元件,它们在电路设计与应用中功不可没。

电工高级综合测试题01答案

电工高级综合测试题01答案

电子技术(一)一、判断题1、(√)正反馈主要用于振荡电路,负反馈主要用于放大电路。

2、(×)射极跟随器不存在负反馈。

3、(√)二级共射放大电路的输出端接一电阻到输入端则电路的反馈极性为正反馈。

4、(√)运放组成的滞回特性比较器具有正反馈。

5、(√)在放大电路中,如果信号从基极输入,反馈引回到同一管子的发射极,则此反馈是串联反馈。

6、(√)把输出电压短路后,如果反馈不存在了,则此反馈是电压反馈。

7、(√)负反馈放大电路的闭环放大倍数为8、(×)深度负反馈放大电路的闭环电压放大倍数为9、(√)运放在线性应用时,其反相输入端与同相输入端的电位相等。

10、(√)运放组成的积分器,当输入为恒定直流电压时,输出即从初始值起线性变化。

11、(×)比较器的输出电压可以是电源电压范围内的任意值。

12、(√)数字电路处理的信息是二进制数码。

13、(×)数字电路中的晶体管都工作在放大状态。

14、(×)把十六进制数26H化为二-十进制数是00100110。

15、(√)卡诺图是真值表的另外一种排列方法。

16、(×)卡诺图在化简时可以把3个1圈在一起。

17、(√)TTL电路的输入端是三极管的发射极。

18、(×)TTL输入端允许悬空,悬空时相当于输入低电平。

19、(√)TTL电路的灌电流负载能力大于拉电流负载能力。

二、单项选择题1、用差动放大器作为输入级的多级放大器,如果信号从某一输入端输入,反馈信号返回到同一个输入端,则此反馈属于( D )(A)电压反馈 (B)电流反馈 (C)串联反馈 (D)并联反馈2、如果把输出电压短路,反馈仍然存在,则该反馈属于( B )(A)电压反馈 (B)电流反馈 (C)串联反馈 (D)并联反馈3、线性应用的运放电路,如果信号是从反相端输入的,则反馈组态为( B )(A)串联负反馈 (B)并联负反馈 (C)电压负反馈 (D)电流负反馈4、带有负反馈的差动放大器电路,如果信号从一个管子的基极输入、反馈信号回到另一个管子的基极,则反馈组态为( A )(A)串联负反馈 (B)并联负反馈 (C)电压负反馈 (D)电流负反馈5、线性应用的运放电路,如果反馈信号是直接从输出端引出的,则反馈组态为( C )(A)串联负反馈 (B)并联负反馈 (C)电压负反馈 (D)电流负反馈6、在深度负反馈条件下,串联负反馈放大电路的( A )(A)输入电压与反馈电压近似相等 (B)输入电流与反馈电流近似相等(C)反馈电压等于输出电压 (D)反馈电流等于输出电流7、在深度负反馈条件下,并联负反馈电路的( B )(A)输入电压与反馈电压近似相等 (B)输入电流与反馈电流近似相等(C)反馈电压等于输出电压 (D)反馈电流等于输出电流8、放大器中,凡是电压反馈,其反馈量 ( C )(A)一定是电压 (B)一定是电流 (C)电压电流都有可能 (D)为09、放大器中,凡是串联反馈,其反馈量( A )(A)一定是电压 (B)一定是电流 (C)电压电流都有可能 (D)为010、放大器中,凡是并联反馈,其反馈量取自( C )(A)输出电压 (B)输出电流 (C)输出电压或输出电流都有可能 (D)输出电阻11、在深度负反馈条件下,串联负反馈电路的( A )(A)输入电压与反馈电压近似相等 (B)输入电流与反馈电流近似相等(C)反馈电压等于输出电压 (D)反馈电流等于输出电流12、以下关于直流负反馈的说法( D )是正确的(A)能稳定并减小放大倍数 (B)能改输入电阻 (C)能减小功耗 (D)能稳定静态工作点13、以下关于交流负反馈的说法( B )是错误的(A)能稳定取样对象 (B)能稳定静态工作点(C)串联负反馈能提高输入电阻 (D)电压负反馈能减小输出电阻14、以下关于交流负反馈的说法( A )是正确的(A)能稳定取样对象 (B)能提高输入电阻 (C)能减小功耗 (D)能稳定并提高放大倍数15、以下关于直流负反馈的说法( D )是正确的(A)能扩展通频带 (B)能抑制噪声 (C)能减小放大倍数 (D)能稳定静态工作点16、以下关于直流负反馈的说法( D )是正确的(A)能改善失真 (B)能改变输入输出电阻 (C)能稳定放大倍数 (D)能抑制零漂17、为了提高放大器的输入电阻、减小输出电阻,应该采用( C )。

运算放大器作为比较器原理

运算放大器作为比较器原理

运算放大器作为比较器原理运算放大器是一种电子元件,具有高增益和高输入阻抗的特点。

它可以将微弱的输入信号放大成为较大的输出信号,常用于信号处理电路中。

比较器是一种电路,用于将两个电压进行比较,并输出相应的逻辑信号。

它常用于电压比较、开关控制等应用中。

在一些特殊应用中,可以使用运算放大器作为比较器来实现电压比较的功能。

下面我们来详细介绍一下运算放大器在比较器中的原理。

我们需要了解运算放大器的基本结构。

运算放大器由一个差动输入级和一个差动输出级组成。

差动输入级由两个输入端和一个共模输入端组成,差动输出级由一个输出端和一个共模输出端组成。

运算放大器还具有一个反馈回路,可以调整放大倍数和输入阻抗。

在比较器中,我们将运算放大器的差动输入端连接到需要比较的两个电压信号,将差动输出端连接到输出负载。

当两个输入端的电压相等时,差动输出为零,输出负载上没有电压。

当其中一个输入端的电压高于另一个输入端时,差动输出为正,输出负载上出现正电压。

当其中一个输入端的电压低于另一个输入端时,差动输出为负,输出负载上出现负电压。

通过调整运算放大器的放大倍数和反馈回路,我们可以实现不同的比较功能。

例如,如果需要判断两个电压信号的大小关系,可以设置一个阈值电压,在差动输出超过阈值时输出逻辑高电平,否则输出逻辑低电平。

运算放大器作为比较器还可以实现窗口比较功能。

窗口比较是指判断一个电压信号是否在指定的范围内。

通过调整运算放大器的阈值电压和反馈回路,我们可以设置一个上限电压和一个下限电压,当输入信号超过上限或低于下限时,输出逻辑高电平,否则输出逻辑低电平。

在实际应用中,我们需要考虑运算放大器的性能参数和电源电压等因素。

运算放大器的增益、带宽、输入偏置电流等参数都会对比较器的性能产生影响。

此外,电源电压的稳定性和噪声等因素也需要考虑。

总结一下,运算放大器作为比较器的原理是通过调整运算放大器的放大倍数和反馈回路来实现电压比较功能。

通过设置阈值电压和反馈回路,我们可以实现不同的比较功能,如判断大小关系和窗口比较。

运算放大器作为比较器原理

运算放大器作为比较器原理

运算放大器作为比较器原理运算放大器(Operational Amplifier,简称Op Amp)是一种高增益、直流耦合的电子放大器,具有反馈作用,被广泛应用于各种电子电路中。

其中一个常见的应用是作为比较器。

比较器是将输入信号与参考电平进行比较,并输出高电平或低电平的电路。

运算放大器作为比较器具有以下原理:1.输入偏置电压和输入短路电流在实际应用中,运算放大器输入端的电压和电流不为0,会存在输入偏置电压和输入短路电流。

偏置电压是指在输入端接通电压零时,输出电压并不为零的情况。

短路电流是指输入端短路时所产生的电流。

这些因素对于运算放大器作为比较器来说是关键的,因为它们影响了比较器输出的响应时间和精度。

在实际设计中,需要通过调整偏置电压和降低短路电流来减小这些不利影响。

2.开环增益和共模抑制比运算放大器的开环增益很高,通常达到100000或更高,这使得其在负反馈应用中非常有用。

然而,开环放大器不适合直接作为比较器使用,因为如果输入信号与参考电平非常接近,放大器会出现较大的误差。

这称为共模干扰。

为了减小共模干扰,运算放大器可以使用共模抑制比参数来调整输出电压。

共模抑制比表示放大器对共模信号的抑制程度。

3.比较器阈值和迟滞比较器阈值是指当输入信号超过或低于某个电压水平时,比较器会切换其输出状态。

阈值通常是以运算放大器输入电压的一部分来定义。

迟滞是指当比较器输出状态改变时,它需要一定的时间来稳定,以避免输出状态发生了错误的瞬态。

4.负载驱动能力和输出保护作为比较器,运算放大器需要具备一定的负载驱动能力,以保证输出电压的稳定性和可靠性。

运算放大器还需要具备输出保护功能,以保护电路免受过电压、过电流等异常情况的影响。

总之,运算放大器作为比较器的原理是基于其高增益、反馈控制和可调节的共模抑制比等特点。

在实际应用中,需要考虑诸多因素,例如输入偏置电压和短路电流、阈值和迟滞、负载驱动能力和保护等方面。

使用适当的运算放大器可以实现高性能、低功耗的比较器电路设计。

运算放大器比较器电路

运算放大器比较器电路

运算放大器比较器电路运算放大器和比较器电路是电子电路中常见且重要的组件,它们在各个领域中都发挥着重要的作用。

本文将介绍运算放大器和比较器电路的原理、特点和应用。

一、运算放大器运算放大器(Operational Amplifier,简称Op-Amp)是一种具有高增益、高输入阻抗和低输出阻抗的电子放大器。

它通常由差分放大器和输出级组成,使用直流电源供电。

运算放大器有两个输入端和一个输出端,分别是非反相输入端(+)和反相输入端(-),以及输出端(OUT)。

通过控制输入端的电压,可以调整输出端的电压。

运算放大器的增益可以非常高,通常可达到几十万甚至几百万倍。

运算放大器的主要特点有以下几点:1. 高增益:运算放大器的增益非常高,可以将微弱的输入信号放大到较大的幅度。

2. 高输入阻抗:运算放大器的输入阻抗很大,可以有效地隔离输入信号源和输出负载,避免对信号源的影响。

3. 低输出阻抗:运算放大器的输出阻抗很低,可以驱动较大的负载。

4. 可以实现各种数学运算:由于运算放大器的高增益和线性特性,可以实现加法、减法、乘法、除法、积分、微分等各种数学运算。

运算放大器广泛应用于模拟电路和信号处理领域。

例如,在放大器电路中,运算放大器可以用作放大电路的核心部件,将小信号放大到适合后续处理的幅度。

在滤波器电路中,运算放大器可以实现各种滤波器,如低通滤波器、高通滤波器、带通滤波器等。

此外,运算放大器还可以用于比较器、振荡器、多谐振荡器等电路的设计。

二、比较器电路比较器电路是一种将两个电压进行比较的电路。

它由一个或多个运算放大器组成,具有输入电压和输出电压之间的比较关系。

比较器电路的基本原理是:当输入电压大于参考电压时,输出高电平(通常为正电压);当输入电压小于参考电压时,输出低电平(通常为零电压或负电压)。

比较器电路的输出信号通常是开关型的,能够很好地实现数字信号的处理。

比较器电路的特点有以下几点:1. 高增益:比较器电路通常采用运算放大器作为核心部件,具有高增益特性,能够将微小的输入差异转化为明显的输出差异。

锁存比较器原理

锁存比较器原理

锁存比较器原理锁存比较器是一种电子电路,可以在两个输入信号之间进行比较,并在输出端产生数字信号,表示哪个输入信号更大。

它的特点是具有锁存功能,即一旦输出状态被设置,它将保持该状态,直到另一个输入信号超过当前输入信号并触发输出状态的变化。

在本文中,我们将详细探讨锁存比较器的原理、特点和应用。

一、锁存比较器的基本原理锁存比较器通常由两个运算放大器组成,其中一个运算放大器作为比较器,另一个运算放大器作为锁存器。

比较器的正输入端接收一个参考电压,而负输入端接收待比较的信号电压。

当待比较的信号电压超过参考电压时,比较器输出高电平信号,否则输出低电平信号。

锁存器的作用是在比较器输出状态发生变化时,将新的输出状态锁存并保持,直到另一个输入信号超过当前输入信号并触发输出状态的变化。

锁存器通常由一个正反馈电路和一个开关电路组成。

当比较器输出状态发生变化时,正反馈电路将输出端的状态反馈到比较器的输入端,使输出状态得以保持。

开关电路则用于在另一个输入信号超过当前输入信号时,切换输出状态。

二、锁存比较器的特点1.速度快:由于锁存比较器采用了正反馈电路,使得输出状态的变化非常迅速,响应速度快。

2.稳定性好:锁存功能可以有效地抑制噪声和干扰信号对输出状态的影响,提高了电路的稳定性。

3.分辨率高:由于比较器的输入失调电压和偏移电压很小,使得锁存比较器具有很高的分辨率,可以检测出微小的信号变化。

4.可调范围广:通过调整参考电压和反馈电阻的阻值,可以改变锁存比较器的阈值电压和灵敏度,以适应不同的应用需求。

三、锁存比较器的应用1.高速数据采集:锁存比较器可以快速准确地检测出模拟信号的变化,适用于高速数据采集系统。

2.自动控制:通过设定合适的阈值电压,可以将锁存比较器用于自动控制系统中,实现对温度、压力等参数的监控和控制。

3.电子测量仪器:锁存比较器的高分辨率和可调范围广的特点使其成为电子测量仪器中的重要组成部分,如示波器、频谱分析仪等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 功能及应用:主要用来判断输入信号电位之间的相对大小,它至少有两个输入端及一个输出端,通常用一个输入端接被比较信号U i,另一个则接基准电压V R定门限电压(或称阀值)的U T。

输出通常仅且仅有二种可能即高、低二电平的矩形波,应用于模-数转换,波形产生及变换,及越限警等。

2. 运放的工作状态:开环和正反馈应用:运放在线性运用时,由于开环增益一般在105以上,所以其对应的输入的线性范围很小,U i数量级,为了拓宽其线性范围就必须引入负反馈,降低其开环增益。

而比较器则希望其输入的线性范围越小越好(即比较灵敏度越高)采用开环或使开环增益更高的正反馈应用。

在这儿有必要重复展现运放开环电压传输特性。

见图8.2.1,请注意横、纵坐标标度的不同
(1) 从途中可化称
(2) 若U i发出变化,使Uo从负波饱和值突变到正饱和值,只在经过极窄的线性区
时,才遵循在线性工作时才特有的“虚短”,其它时刻“虚短”不复存在。

(3) 若横坐标采用与纵坐标相同的标尺,则线性部分特性与纵轴合拢。

(4) 若用正反馈使Aod↑,则可缩短状态的转换时间。

3. 分类:
(1) 单限比较器
(2) 迟滞比较器(Schmitt)
(3) 双限比较器(窗口比较器)
二. 单限比较器
1. U i与U R分别接运放两输入端的开环串接比较器,见图8.
2.2
ΔU i>U R Uo=+Uom
ΔU i<U R Uo=-Uom
ΔU i=U R Uo发生翻转(或称突变)
U T=U R谶纬门限电压或阀值,若UR=0称为过零比较器
Δ当U i与U R互换位置,此时Uo以U i=U R为对称轴与交换量对称。

2. U i与U R并联在运放同一输入端时的开环并接比较器见图8.2.3
Δ在同相端可作Therenin等效
当Uoc>0时,即 Uo=+Uom
当Uoc<0时,即 Uo=-Uom
可见
Δ若把运放的同相端与反相端互换,则与图8.2.2(b)类同
三.迟滞比较器(正反馈比较器)
其特点抗干扰能力较强。

在单限比较器种,如果U i受到干扰,在阀值附近回出现U i+ΔU i(干扰信号多出现在阀值电压上,下波动,以致出现条纹误翻转,而迟滞比较器利用其传输特性的回差电压,输入的干扰信号不能使状态误翻转。

1. 两种迟滞比较器的传输特性见图8.2.4
动画演示
迟滞比较器在单调区间内只能变化一次;
对于反相:Ui从小变到大时,Uo一直为高电平,只有当Ui到达上门限电压时,Uo翻转为低电平,之后随着Ui不断增大,Uo始终为低;在Ui减小时,必须减到下门限电压时,Uo才会翻转为高电平
对于同相:Ui从小变到大时,Uo一直为低电平,只有当Ui到达上门限电压时,Uo翻转为高电平,之后随着Ui不断增大,Uo始终为高;在Ui减小时,必须减到下门限电压时,Uo才会翻转为低电平
Δ同相型:U i接运放同相端
反相型:U i接运放反相端
Δ均由二根传输特性(1),(2)合成,同相型. 当U i从低值↑≥U TH,Uo从U OL↑U OH;当U i从高值↓≤U TL时,Uo从U OH↓U OL。

反相型则类同。

Δ U TH,U TL为二个阀值,ΔU T(回差)=U TH-U TL
Δ |U OH|=|U OL|或|U OH|≠|U OL|根据输出是否有箝位电路而定。

2. 二种基型迟滞比较器
(1) 反相型迟滞比较器见图8.2.5
U i=U-,Uo被箝位在±UZ,避免运放计入过饱和。

假设U i在足够低时,U i<U+,Uo=U off=+U Z (始终稳定)
此时
Δ当U i从低值↑若U i≥U+时,Uo从+U Z↓ -U Z
此时
Δ当U i从高值↓至U i≤,Uo从-U Z↑+U Z
Δ门限宽度ΔU T=U TH-U TL=
Δ当U R=0时,
ΔU i无论从足够低或足够高单调增加或单调减少,Uo仅翻转一次,即过了阀值
后就维持在一种稳态。

因为当过阀值电压后,Uo从低变为高或从高变为低了,正反馈到Ur(Uth)端,使该阀值电压变高或变低了。

只要门限宽度ΔU T=U TH-U TL 幅度大于U I 在阀值电压波动的幅度,Uo就不会翻转了,所以比单限比较器抗干扰能力强多了。

(2) 同相迟滞比较器见图 8.2.6
注××××××:U i 和Ur 的位置应该互换一下
U TL=U-
设U i足够低,使U+ < U-=U R,Uo=U oL=-U Z (初始稳态)
若要使Uo从-U Z上升到+U Z,必须使U i↑,以致使U+≥U-=U R才行,而此时对应U R的U i=U TH
Δ当U i从低值↑,使
即此时Uo从-U Z↑+U Z
Δ当U i从高值↓,使时所对应的U i=U TL
即此时Uo从+U Z↓-U Z
同上面反相型类同,Ui单调升或单调降,Uo只改变一次状态,过了阀值后只维持在一种稳态上。

我的理解:首先求出阀值电压;阀值电压是在放大器处在线性区域时求得的,不过在正反馈中,线性区域很窄。

在该区域,才可以用到虚断和虚短的概念。

(在正反馈状态下,只有在输出电压发生跳变瞬间,集成运放两个输入端之间的电压才可近似等于0,才能用到虚断和虚短的)
Vp=Vn=Ur
Vr=R1*Ui/(R1+R2)+ R2*Uo/(R1+R2) (1)
而门限电压是对于输入电压来说的,当输入电压大于或小于这个Uth时,输出就会有跳变。

所以
当Ui= Uth时,这时的输入电压就是门限电压:
而由(1)式可求出,Uth=Ui=Ur(R1+R2)/R1 – R2Uo/R1,(Uo=+-Uz)
四. 双限比较器 (窗口比较器)
其特点是U i单调升或单调降,Uo均有两次突变,与单限比较器和迟滞比较器有区别,因此它可以判别U i是否在两个电平之间。

它实际上由二个单限开环比较器组成,D1,D2作用为隔断,Uo1,Uo2连接通路,避免Uo1,Uo2极性相反时,互为对方提供低阻通路而造成运放损坏。

ΔU i<U RL(<U RH)
ΔU i>U RH(>U RL)
ΔU RL<U i<U RH
Δ采用上面窗口比较器可以区分三极管β是否在需要范围内,比如记为合格范围为50<β100,其它β<50或β>100均要取出,则可用发光二极管亮表示一种越限极警,不亮记为可通过即β合格。

Δ改接一下上述输入输出回路即方便可得
分析上面的等效三极管电路,e端接15v,b端通过下拉电阻接地,从而b端电压为(15-0.7)v,c端同样接下拉电阻接地,只要c端的Ui电压比b端电压低,就能保证集电结的反偏
要区分β=50,100 找出时应得U RL及U RH
对应图 8.2.7(b) 传输特性可画出β与Uo的关系
即。

相关文档
最新文档