初中毕业毕业会考数学试卷及参考答案
初三会考数学试卷含答案

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. -2B. 0.5C. √4D. √2答案:D2. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长是()A. 14cmB. 18cmC. 22cmD. 24cm答案:C3. 下列函数中,在定义域内单调递增的是()A. y = 2x - 1B. y = -x^2 + 4xC. y = 3x^2 - 6x + 5D. y = 1/x答案:A4. 若平行四边形ABCD中,∠ABC=60°,∠BAD=120°,则∠BCD的度数是()A. 60°B. 120°C. 90°答案:A5. 下列命题中,正确的是()A. 如果a > b,那么a^2 > b^2B. 如果a > b,那么a + c > b + cC. 如果a > b,那么ac > bcD. 如果a > b,那么a/c > b/c答案:B6. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的两个根之和为()A. 5B. 6C. 10D. -5答案:A7. 在平面直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)答案:C8. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形D. 等腰三角形答案:B9. 若函数y = kx + b的图象经过点(1,2)和(3,4),则k和b的值分别是()A. k = 1,b = 1B. k = 1,b = 2C. k = 2,b = 1D. k = 2,b = 2答案:C10. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C二、填空题(每题4分,共40分)11. 如果一个数x满足x^2 - 4x + 3 = 0,那么x的值是______。
初中数学毕业考试卷加答案

一、选择题(每题2分,共20分)1. 下列数中,哪个是整数?A. √4B. 2.5C. -√9D. 0.32. 一个长方形的长是8cm,宽是4cm,它的周长是多少?A. 20cmB. 24cmC. 32cmD. 16cm3. 下列方程中,哪个方程的解是x=3?A. 2x + 1 = 7B. x - 2 = 1C. 3x = 9D. 4x + 2 = 124. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 105. 下列图形中,哪个是轴对称图形?A. 等腰三角形B. 长方形C. 正方形D. 梯形6. 一个等腰三角形的底边长是10cm,腰长是8cm,这个三角形的面积是多少?A. 40cm²B. 50cm²C. 60cm²D. 80cm²7. 下列数中,哪个是有理数?A. √2B. πC. -1/3D. 无理数8. 一个圆的半径是5cm,它的周长是多少?A. 15πcmB. 25πcmC. 30πcmD. 35πcm9. 下列代数式中,哪个是单项式?A. 3x + 2yB. 4x² - 3xy + 5y²C. 2x³D. 3x + 4y - 5z10. 下列图形中,哪个是旋转对称图形?A. 正方形B. 等边三角形C. 矩形D. 圆二、填空题(每题2分,共20分)11. 2的平方根是______。
12. 一个等腰三角形的腰长是6cm,底边长是8cm,这个三角形的面积是______cm²。
13. 若a = 3,则a² + a = ______。
14. 一个数的倒数是1/5,这个数是______。
15. 下列方程的解是x = 2,方程是______。
16. 下列图形中,轴对称轴是______。
17. 下列代数式中,单项式是______。
18. 一个圆的直径是10cm,它的半径是______cm。
19. 下列数中,有理数是______。
初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案一、选择题1.分式方程3111x x x =-+-的解是( ) A .4 B .2 C .1 D .-22.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒3.下面是投影屏上出示的抢答题,需要回答符号代表的内容.如图,已知AB =AD ,CB =CD ,∠B =30°,∠BAC =25°,求∠BCD 的度数.解:在ABC 和△ADC 中,AB AD CB CDAC AC =⎧⎪=⎨⎪=⎩(已知)(已知) , 所以△ABC ≌△ADC ,(@)所以∠BCA =◎.(全等三角形的★相等)因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°,所以∠BCD =360°﹣2∠BCA =※.则回答正确的是( )A .★代表对应边B .※代表110°C .@代表ASAD .◎代表∠DAC 4.化简211m m m m --÷的结果是 ( ) A .m B .1m C .1m - D .1m m- 5.我国古代许多关于数学的发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律,例如,第四行的四个数1,3,3,1恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数,请你猜想5()a b +的展开式中含32a b 项的系数是( )A .10B .12C .9D .86.如图,ABD ∆与AEC ∆都是等边三角形,AB AC ≠,下列结论中,正确的个数是( )①BE CD =;②60BOD ︒∠=;③BDO CEO ∠=∠;④若90BAC ︒∠=,且DA BC ,则BC CE ⊥.A .1B .2C .3D .47.如图,在△ABC 中,∠BAC =80°,AB 边的垂直平分线交AB 于点D ,交BC 于点E ,AC 边的垂直平分线交AC 于点F ,交BC 于点G ,连接AE ,AG .则∠EAG 的度数为( )A .15°B .20°C .25°D .30° 8.已知:如图,AB ⊥CD 于O ,EF 为经过点O 的一条直线,那么∠1与∠2的关系是( )A .互为对顶角B .互补C .互余D .相等 9.下列因式分解正确的是( ) A .x 2-y 2=(x -y )2B .-a +a 2=-a (1-a )C .4x 2-4x +1=4x (x -1)+1D .a 2-4b 2=(a +4b )(a -4b )10.下列图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个二、填空题11.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b 、的等式为________.12.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ),∴∠1=∠BCD =40°( ).∵BD ⊥BC ,∴∠CBD = .∵∠2+∠CBD+∠BCD = ( ),∴∠2= .13.如图,ABC ∆中,BC 边的垂直平分线交AC 于点D ,若100,50A ABC ︒︒∠=∠=,则ADB ∠的度数为_________________14.若4,3a b ab +==,则 22a b +的值为________.15.如图,点P 在∠AOB 的平分线上,∠AOB=60°,PD ⊥OA 于D ,点M 在OP 上,且DM=MP=6,若C 是OB 上的动点,则PC 的最小值是__________.16.如图,在矩形ABCD 中,6,8AB AD ==,以A 为圆心,任意长为半径画弧交,AB AC 于,M N ,再分别以,M N 为圆心,大于12MN 为半径画弧,两弧交于点G ,连接,AG 交边BC 于,E 则AEC 的周长为_________.17.如果实数m ,n 满足方程组212m n m n -=⎧⎨+=⎩,那么2021(2)m n -=______. 18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.计算:201(1)3π-⎛⎫+-= ⎪⎝⎭____________. 20.当 x_____ 时,分2x x+式有意义. 三、解答题21.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______________;(请选择正确的一个)A 、2222()a ab b a b -+=-,B 、22()()a b a b a b -=+-,C 、2()a ab a a b +=+.(2)应用你从(1)选出的等式,完成下列各题:①已知22412x y -=,24x y +=,求2x y -的值.②计算:2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 22.先化简:2222421121m m m m m m m ---÷+--+,其中m 从0,1,2中选一个恰当的数求值.23.化简求值:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2,其中a =﹣12,b =2. 24.已知分式:222222()1211x x x x x x x x x +--÷--++,解答下列问题: (1)化简分式;(2)当x =3时,求分式的值;(3)原分式的值能等于-1吗?为什么?25.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD 是∠BAC 的平分线.26.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.27.先化简,再求值:2112(1)3(2)23b a b ---+-,其中a =-1,b =1. 28.如图,ABC ∆中,30A ∠=︒,70B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥,求CDF ∠的度数.29.先化简,再求值:22(4)(4)516ab ab a b ab ⎡⎤+--+÷⎣⎦,其中10a =,34b =. 30.如图,直角坐标系中,点A 的坐标为(3,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 轴正半轴上一动点(OC >3),连结BC ,以线段BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E .(1)证明∠ACB=∠ADB ;(2)若以A ,E ,C 为顶点的三角形是等腰三角形,求此时C 点的坐标;(3)随着点C 位置的变化,OA AE的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】各项乘以(1)(1)x x +-去分母,然后移项合并,即可求出方程的解.【详解】解:去分母得:22331x x x x -=+-+,移项、合并得:24=x ,解得:2x =,经检验2x =是分式方程的解,故选:B .【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法,注意需要检验.2.B解析:B【解析】【分析】由轴对称的性质可求出∠EFC 的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B .【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.3.B解析:B【解析】【分析】证△ABC ≌△ADC ,得出∠B =∠D =30°,∠BAC =∠DAC =12∠BAD =25°,根据三角形内角和定理求出即可.【详解】 解:在ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩(已知)(已知), 所以△ABC ≌△ADC ,(SSS )所以∠BCA =∠DCA .(全等三角形的对应角相等)因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°,所以∠BCD =360°﹣2∠BCA =110°.故可得:@代表SSS ;◎代表∠DCA ;★代表对应角;※代表110°,故选:B .【点睛】此题考查三角形全等的判定及性质,证明过程的填写,正确掌握全等三角形的判定定理是解题的关键.4.A解析:A【解析】【分析】先化除为乘,然后按照分式乘法法则进行计算即可.【详解】 解:211m m m m--÷ =211m m m m -⨯- =m .故答案为A .【点睛】本题考查了分式的的乘除运算,掌握分式乘除运算法则是解答本题的关键.5.A【解析】【分析】根据“杨辉三角”的构造法则即可得.【详解】由“杨辉三角”的构造法则得:5()a b +的展开式的系数依次为1,5,10,10,5,1,因为系数是按a 的次数由大到小的顺序排列,所以含32a b 项的系数是第3个,即为10,故选:A .【点睛】本题考查了多项式乘法中的规律性问题,理解“杨辉三角”的构造法则是解题关键.6.C解析:C【解析】【分析】利用全等三角形的判定和性质一一判断即可.【详解】解:∵ABD ∆与AEC ∆都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC +∠BAC即∠DAC=∠EAB∴DAC BAE ≅∴BE CD =,①正确;∵DAC BAE ≅∴∠ADO=∠ABO∴∠BOD=∠DAB=60°,②正确∵∠BDA=∠CEA=60°,∠ADC≠∠AEB∴∠BDA -∠ADC≠∠CEA -∠AEB∴BDO CEO ∠≠∠,③错误∵DA BC∴∠DAC+∠BCA=180°∵∠DAB=60°,90BAC ︒∠=∴∠BCA=180°-∠DAB -∠BAC=30°∵∠ACE=60°∴∠BCE=∠ACE+∠BCA=60°+30°=90°∴BC CE ⊥④正确故由①②④三个正确,故选C本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.B解析:B【解析】【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】解:∵AB边的垂直平分线交AB于点D,AC边的垂直平分线交AC于点F,∴AG=CG,AE=BE,∴∠C=∠CAG,∠B=∠BAE,∴∠BAE+∠CAG=∠B+∠C=180°﹣∠BAC=100°,∴∠EAG=∠BAE+∠CAG﹣∠BAC=100°﹣80°=20°,故选:B.【点睛】此题考查线段垂直平分线的性质和等腰三角形的性质,熟练掌握各性质定理并运用解题是关键.8.C解析:C【解析】【分析】根据垂线的定义得出∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【详解】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即:∠1与∠2互余,故选:C.【点睛】本题考查了垂线的定义、平角的定义、角的互余关系;熟练掌握垂线的定义和平角的定义是解题的关键.9.B解析:B【解析】A. x2-y2=(x-y)(x+y),故A选项错误;B. -a+a2=-a(1-a),正确;C. 4x2-4x+1=(2x-1)2,故C 选项错误;D. a2-4b2=(a+2b)(a -2b),故D选项错误,故选B.解析:B【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题11.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b解析:(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.12.已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠C BD =90°,由三角形内角和定理可求∠2的度数解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD =40°,∠CBD =90°,由三角形内角和定理可求∠2的度数.【详解】∵AB ∥CD (已知),∴∠1=∠BCD =40°(两直线平行,同位角相等).∵BD ⊥BC ,∴∠CBD =90°.∵∠2+∠CBD+∠BCD =180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.【点睛】本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.13.60°【解析】【分析】先根据三角形内角和计算出,再由垂直平分线的性质得出,最后再利用三角形外角的性质即可得出的度数.【详解】解:的垂直平分线交于点,,,故答案为:.【点睛】解析:60°【解析】【分析】先根据三角形内角和计算出C ∠,再由垂直平分线的性质得出∠=∠DBC C ,最后再利用三角形外角的性质即可得出ADB ∠的度数.【详解】解:100,50A ABC ︒︒∠=∠=30︒∴∠=C BC 的垂直平分线交AC 于点D ,DC BD ∴=,30DBC C ∴∠=∠=︒,60ADB C DBC ∴∠=∠+∠=︒故答案为:60︒.【点睛】本题考查了线段垂直平分线的性质、三角形内角和以及三角形外角的性质.根据垂直平分线得出∠=∠DBC C 是解题的关键.14.10【解析】【分析】【详解】因为,所以,故答案为:10.解析:10【解析】【分析】【详解】因为()2222a b a ab b +=+=, 所以()2222242316610a b a b ab +=+-=-⨯=-=, 故答案为:10.15.6【解析】【分析】根据角平分线的定义及垂直可得到∠DPO=60°,从而证明是等边三角形,得到DP 的长,再根据角平分线的性质即可求出点P 到OB 的距离,即PC 的最小值.【详解】∵点P 在∠AOB解析:6【解析】【分析】根据角平分线的定义及垂直可得到∠DPO=60°,从而证明PDM△是等边三角形,得到DP 的长,再根据角平分线的性质即可求出点P到OB的距离,即PC的最小值.【详解】∵点P在∠AOB的平分线上,∠AOB=60°,∴∠AOP=12∠AOB=30°,又∵PD⊥OA于点D,即∠PDO=90°,∴∠DPO=60°,又∵DM=MP=6,∴PDM△是等边三角形,∴PD=DM=6,∵C是OB上一个动点,∴PC的最小值为点P到OB的距离,∵点P在∠AOB的平分线上,PD⊥OA于点D,PD=6,∴PC的最小值=点P到OB的距离=PD=6.故答案为:6.【点睛】本题考查了角平分线的定义及性质,等边三角形的判定与性质,熟练掌握应用各性质及判定定理是解题关键.16.15+3【解析】【分析】作,根据角平分线的性质得到BE=EP,利用勾股定理求解即可;【详解】作,根据题意可知AE是的角平分线,∴BE=EP,在△ABE和△APE中,,∴,∴AB解析:【解析】【分析】作EP⊥AC,根据角平分线的性质得到BE=EP,利用勾股定理求解即可;【详解】作EP⊥AC,根据题意可知AE是BAC∠的角平分线,∴BE=EP ,在△ABE 和△APE 中,BAE PAE B APE BE PE ⎧∠=∠⎪∠=∠⎨⎪=⎩,∴△△ABE APE ≅,∴AB=AP ,设BE=x ,则PE=x ,∵6,8AB AD ==,∴10AC =,∴1064PC =-=,8EC x =-,在Rt △PEC 中,222PE PC EC +=,∴()22248x x +=-, 解得3x =,∴5EC =,∴222226345AE AP PE =+=+=, ∴35AE = ∴△1535AEC C AE AC PE =++=+ 故答案是15+35【点睛】本题主要考查了角平分线的性质应用,准确分析是解题的关键.17.1【解析】【分析】方程组中的两个方程相减可得,然后整体代入所求式子计算即可.【详解】解:对方程组,①-②,得,故答案为:﹣1.【点睛】本题考查了二元一次方程组的解法和代数式求解析:-1【解析】【分析】方程组中的两个方程相减可得21m n -=-,然后整体代入所求式子计算即可.【详解】解:对方程组21{2m n m n -=+=①②,①-②,得21m n -=-, 所以()()20212021211m n -=-=-.故答案为:﹣1.【点睛】本题考查了二元一次方程组的解法和代数式求值,灵活应用整体的思想是解题的关键.18.③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面; ∵正方形的每个内角都是90度,能将360度整除,故可以用其解析:③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面; ∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.10【解析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.解析:10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.20.【解析】【分析】直接利用分式有意义的条件分析得出即可.【详解】解:根据分式有意义得:2+x≠0,解得:x≠-2.故答案为:≠-2.【点睛】本题考查了分式有意义的条件,关键是熟练掌握解析:2≠-【解析】【分析】直接利用分式有意义的条件分析得出即可.【详解】解:根据分式有意义得:2+x≠0,解得:x≠-2.故答案为:≠-2.【点睛】本题考查了分式有意义的条件,关键是熟练掌握知识点:分式有意义,分母不为0.三、解答题21.(1)B;(2)①3;②51 100【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【详解】(1)根据图形得:22()()a b a b a b -=+-,上述操作能验证的等式是B ,故答案为:B ;(2)①∵224(2)(2)12x y x y x y -=+-=,24x y +=,∴23x y -=; ②2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111223⎛⎫⎛⎫⎛⎫=-+- ⎪⎪⎪⎝⎭⎝⎭⎝⎭1111111111349495050⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1324354850495122334449495050=⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯ 515120=⨯ 51100=. 【点睛】本题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.22.21m +,2 【解析】 【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把0m =代入计算即可求出值.【详解】解:2222421121m m m m m m m ---÷+--+ 222(2)(1)1(1)(1)2m m m m m m m --=-⋅++-- 21m =+因为m+10≠ ,m-10≠,m-20≠所以m 1≠- ,m 1≠,m 2≠当0m =时,原式2=.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.23.2ab ,-2【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】解:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2=4a 2﹣b 2+2ab +b 2﹣4a 2=2ab ,当a =﹣12,b =2时,原式=2×(﹣12)×2=﹣2. 【点睛】本题考查了整式的混合运算和求值的应用以及学生的计算和化简能力,题目比较好,难度适中.24.(1)11x x +-;(2)当3x =时,分式的值为2;(3)原分式的值不能等于-1.理由见解析.【解析】【分析】(1)先做括号内的减法,注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式;(2)将x=3代入计算即可;(3)令111x x +=--,求解即可判断. 【详解】(1)222222()1211x x x x x x x x x +--÷--++ 22(1)(1)1()(1)(1)(1)x x x x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21()11x x x x x x +=-⋅-- 11x x x x +=⋅- 11x x +=-;(2)当3x =时,原式31231+==-; (2)如果111x x +=--, 那么()11x x +=--,解得0x =,又因为0x =时,原分式无意义.故原分式的值不能等于1-.【点睛】本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.25.证明见解析.【解析】【分析】根据等腰三角形的性质得∠DBC =∠DCB ,结合条件,得∠ABC =∠ACB ,进而得AB =AC ,易证△ABD ≌△ACD ,进而即可得到结论.【详解】∵BD =DC ,∴∠DBC =∠DCB .∵∠1=∠2,∴∠ABC =∠ACB ,∴AB =AC ,在△ABD 与△ACD 中∵12AB AC BD DC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACD (SAS),∴∠BAD =∠CAD ,∴AD 是∠BAC 的平分线.【点睛】本题主要考查等腰三角形的判定和性质定理以及三角形全等的判定和性质定理,掌握等腰三角形的判定和性质定理以及三角形全等的判定和性质定理是解题的关键.26.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC ,∠ACD=∠D ,再由∠ACD=∠B 可得∠D=∠B ,然后可利用AAS 证明△ABC ≌△CDE ,进而得到CB=DE ;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC ∥DE ,∴∠ACB=∠DEC ,∠ACD=∠D ,∵∠ACD=∠B .∴∠D=∠B ,在△ABC 和△DEC 中,===ACB E B D AC CE ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABC ≌△CDE (AAS ),∴BC=DE ;(2)∵△ABC ≌△CDE ,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.27.a 2-2b +4;3.【解析】【分析】首先根据整式的运算法则对算式进行化简,再把字母的值代入计算即可得到结果.【详解】解:原式=()2211221333223623b a b b a b ⎛⎫⨯-⨯-⨯--⨯-⨯-=-+-+ ⎪⎝⎭ =a 2-2b +4,当a=-1,b=1时,原式=1-2+4=3.【点睛】本题考查整式的化简求值,熟练应用乘法对加法的分配律计算是解答本题的关键. 28.70CDF ∠=︒【解析】【分析】首先根据三角形的内角和定理求得∠ACB 的度数,以及∠BCD 的度数,根据角的平分线的定义求得∠BCE 的度数,则∠ECD 可以求解,然后在△CDF 中,利用内角和定理即可求得∠CDF 的度数.【详解】解:∵30A ∠=︒,70B ∠=︒,∴18080ACB A B ∠=︒-∠-∠=︒.∵CE 平分ACB ∠,∴1402ACE ACB ∠=∠=︒. ∵CD AB ⊥于D ,∴90CDA ∠=︒,18060ACD A CDA ∠=︒-∠-∠=︒.∴20ECD ACD ACE ∠=∠-∠=︒.∵DF CE ⊥,∴90CFD ∠=︒,∴18070CDF CFD ECD ∠=︒-∠-∠=︒.【点睛】本题考查了三角形的内角和等于180°以及角平分线的定义,是基础题,准确识别图形是解题的关键.29.4ab -;﹣30【解析】【分析】原式括号内先根据平方差公式计算,再合并同类项,然后计算除法,最后把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=222216516a b a b ab ⎡⎤--+÷⎣⎦=224a b ab -÷=4ab -;当10a =,34b =时,原式=3410304-⨯⨯=-. 【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握整式的混合运算法则是解题的关键.30.(1)见解析;(2)C 点的坐标为(9,0);(3)OA AE 的值不变,12OA AE = 【解析】【分析】(1)由△AOB 和△CBD 是等边三角形得到条件,判断△OBC ≌△ABD ,即可证得∠ACB=∠ADB ;(2)先判断△AEC 的腰和底边的位置,利用角的和差关系可证得∠OEA=30,AE 和AC 是等腰三角形的腰,利用直角三角形中,30所对的边是斜边的一半可求得AE 的长度,因此OC=OA+AC ,即可求得点C 的坐标;(3)利用角的和差关系可求出∠OEA=30,再根据直角三角形中,30所对的边是斜边的一半即可证明.【详解】解:(1)∵△AOB 和△CBD 是等边三角形∴OB=AB ,BC=BD ,∠OBA=∠CBD=60︒,∴∠OBA+∠ABC=∠CBD+∠ABC ,即∠OBC=∠ABD∴在△OBC 与△ABD 中,OB=AB ,∠OBC=∠ABD ,BC=BD∴△OBC ≌△ABD(SAS)∴∠OCB=∠ADB即∠ACB=∠ADB(2)∵△OBC≌△ABD∴∠BOC=∠BAD=60︒又∵∠OAB=60︒∴∠OAE=1806060︒-︒-︒=60︒,∴∠EAC=120︒,∠OEA=30,∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.∵在Rt△AOE中,OA=3,∠OEA=30∴AE=6∴AC=AE=6∴OC=3+6=9∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)(3)OAAE的值不变.理由:由(2)得∠OAE=180︒-∠OAB-∠BAD=60︒∴∠OEA=30∴在Rt△AOE中,EA=2OA∴OAAE=12.【点睛】本题主要考查了全等三角形的性质以及判定定理,平面直角坐标系,含30角直角三角形的性质,等腰三角形的性质,等边三角形的性质,灵活运用全等三角形的判定定理寻求全等三角形的判定条件证明三角形全等是解题的关键.。
初中毕业考数学试卷及答案

一、选择题(每题4分,共40分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为()A. 4B. 5C. 6D. 7答案:A解析:将x=3代入函数f(x) = x^2 - 2x + 1,得到f(3) = 3^2 - 23 + 1 = 4。
2. 下列哪个数是负数?()A. -1/2B. 0C. 1/2D. 2答案:A解析:负数是小于0的数,只有A选项的-1/2是负数。
3. 已知等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 22cmC. 24cmD. 26cm答案:C解析:等腰三角形的两腰相等,所以周长=底边长+两腰长=6cm+8cm+8cm=24cm。
4. 下列哪个图形是轴对称图形?()B. 长方形C. 等腰三角形D. 等边三角形答案:A解析:轴对称图形是指通过某条直线将图形分成两部分,两部分完全重合。
正方形满足这个条件。
5. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x1=2,x2=3B. x1=3,x2=2C. x1=-2,x2=-3D. x1=-3,x2=-2答案:A解析:通过因式分解或配方法解得方程的解为x1=2,x2=3。
二、填空题(每题5分,共50分)6. 若a+b=5,ab=6,则a^2+b^2的值为______。
答案:37解析:根据公式(a+b)^2 = a^2 + 2ab + b^2,可得a^2+b^2 = (a+b)^2 - 2ab = 5^2 - 26 = 25 - 12 = 13。
7. 在直角三角形ABC中,∠A=90°,∠B=30°,则sinC的值为______。
答案:√3/2解析:在直角三角形中,sinC = 对边/斜边。
∠C=90°-∠B=60°,所以sinC = √3/2。
8. 若一个正方形的边长为a,则该正方形的面积为______。
解析:正方形的面积=边长×边长=a×a=a^2。
数学初三会考试题及答案

数学初三会考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2.5B. √2C. 3.14D. 0.33333答案:B2. 一个数的相反数是它自身的是:A. 0B. -1C. 1D. 2答案:A3. 一个数的绝对值是它自身的是:A. 负数B. 非负数C. 正数D. 非正数答案:B4. 下列哪个选项是二次根式?A. √2B. √(-2)C. √(2/3)D. √(-3)²答案:A5. 一个数的立方根是它自身的是:A. 1B. -1C. 0D. 以上都是答案:D6. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 一个数的平方根是它自身的是:A. 1B. -1C. 0D. 以上都是答案:C8. 下列哪个选项是一元二次方程?A. x + 2 = 0B. x² + 2x + 1 = 0C. x + 2x = 0D. x² + 2 = 0答案:B9. 一个数的立方是它自身的是:A. 0B. 1C. -1D. 以上都是答案:D10. 一个数的倒数是它自身的是:A. 1B. -1C. 0D. 以上都不是答案:B二、填空题(每题4分,共20分)1. 一个数的绝对值是5,那么这个数是______。
答案:±52. 一个数的相反数是-3,那么这个数是______。
答案:33. 一个数的平方是36,那么这个数是______。
答案:±64. 一个数的立方是-8,那么这个数是______。
答案:-25. 一个数的倒数是1/2,那么这个数是______。
答案:2三、解答题(每题10分,共50分)1. 解方程:2x - 5 = 9。
答案:首先将方程中的常数项移至等号的右侧,得到2x = 9 + 5,即2x = 14。
然后将x的系数2除到等号的右侧,得到x = 14 / 2,所以x = 7。
2. 已知一个数的平方是49,求这个数。
初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .1 7.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=08.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查 9.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个B .2个C .3个D .4个10.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元二、填空题11.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 12.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.13.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.14.单项式22ab 的系数是________.15.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).16.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 17.若α与β互为补角,且α=50°,则β的度数是_____.18.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.19.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.20.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题21.计算(1(2)22.某学校七年级举行“每天锻炼一小时,健康生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全级1000名学生参加为了解本次大赛的成绩,校团委随机抽取了其中100名学生的成绩作为样本进行统计,制成如下不完整的统计图表根据所给信息,解答下列问题;(1)m=______,n=______. (2)补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优”,请你估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有多少人.80≤x <90 m 35% 90≤x≤10025n23.如图,已知180AOB ∠=︒,射线ON .()1请画出BON ∠的平分线OC ;()2如果70AON ∠=︒,射线OA OB 、分别表示从点O 出发东、西两个方向,那么射线ON 方向,射线OC 表示 方向.()3在()1的条件下,当60AON ∠=︒时,在图中找出所有与AON ∠互补的角,这些角是_ .24.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费 元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费 元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?25.计算(1)()547-- (2) 213(2)()24-⨯-26.已知:∠AOD=150°,OB ,OM ,ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当射线OB 绕点O 在∠AOD 内旋转时, ∠MON= °;(2)OC 也是∠AOD 内的射线,如图2,若∠BOC=m°,OM 平分∠AOC ,ON 平分∠BOD , 求∠MON 的大小(用含m 的式子表示);(3)在(2)的条件下,若m=20,∠AOB=10°,当∠BOC 在∠AOD 内部绕O 点以每秒2°的速度逆时针旋转t 秒,如图3,若3∠AOM=2∠DON 时,求t 的值.27.化简:3(a 2﹣2ab )﹣2(﹣3ab+b 2) 28.解方程: (1)2235x x -=+ (2)2432142x x +-=- 29.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.30.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020710a c ++-=,点B对应点的数为-3.(1)a =______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.A解析:A【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.5.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.6.B解析:B 【解析】 【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果. 【详解】 解:由题意可得, 当x =1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.7.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.8.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.9.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.10.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.二、填空题11.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.12.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.13.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.15.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy-=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入16.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 17.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.18.5.【解析】【分析】利用有理数的减法运算即可求得答案.解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.19.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 20.-7【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、解答题21.(1)2;(2)【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;(2)先去括号,然后再进行加减运算即可.【详解】=5-3=2;(2)==【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.22.(1)35,25%;(2)见解析;(3)600人【分析】(1)根据“频数=样本容量×频率”,直接求解即可;(2)求出m 的值,再补全频数分布直方图,即可;(3)由成绩在80分以上(包括80分)的百分比,即可求解.【详解】(1)∵被调查的总人数为100人,∴m=100×35%=35,n=25100×100%=25%, 故答案为:35,25%;(2)补全图形如下:(3)估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有:1000×(35%+25%)=600(人).【点睛】本题主要考查频数分布直方图表,掌握“频数=样本容量×频率”,是解题的关键.23.(1)详见解析;(2)北偏东20°,北偏西35°;(3),BON AOC ∠∠【解析】【分析】(1)以点O 为圆心,以任意长为半径画弧,与OB 、ON 相交于两点,再分别以这两点为圆心,以大于它们12长度为半径画弧,两弧相交于一点,然后过点O 与这点作射线OC 即为所求;(2)过点O 作OE ⊥AB ,根据垂直的定义以及角平分线的定义求出∠EON 与∠COE ,然后根据方位角的定义解答即可;(3)根据∠AON=60°,利用平角的定义可得∠BON ,利用角平分线的定义求出∠CON=60°,然后求出∠AOC=120°从而得解.【详解】解:(1)如图所示,OC 即为∠BON 的平分线;(2)过点O作OE⊥AB,∵∠AON=70°,∴∠EON=90°-70°=20°,∴ON是北偏东20°,∵OC平分∠BON,∴∠CON=12(180°-70°)=55°,∴∠COE=∠CON-∠EON=55°-20°=35°,∴OC是北偏西35°;故答案为:北偏东20°;北偏西35°.(3)∵∠AON=60°,OC平分∠BON,∴∠CON=12(180°-60°)=60°,∴∠AOC=∠CON+∠AON=60°+60°=120°,∴∠AOC+∠AON=180°,又根据平角的定义得,∠BON+∠AON=180°,∴与∠AON互补的角有∠AOC,∠BON;故答案为:∠AOC,∠BON.【点睛】本题考查了复杂作图,角平分线的定义,方位角,以及余角与补角,比较简单,作角平分线是基本作图,一定要熟练掌握.24.(1)10,20.5,(2)需付车费65元;(3)行驶的里程为13公里【解析】【分析】(1)根据计价规则,列式计算,即可得到答案,(2)根据计价规则,列式计算,即可得到答案,(3)若行驶的里程为10公里,计算所需要付的车费,得出行驶的里程大于10公里,设行驶的里程为x公里,根据计价规则,列出关于x的一元一次方程,解之即可.【详解】解:(1)根据题意得:2.5×2+0.45×8=7.6<10,即小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费10元,2.3×5+0.3×20+0.3×(20﹣10)=11.5+6+3=20.5(元),即傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费20.5元,故答案为:10,20.5,(2)20×2.4+40×0.35+(20﹣10)×0.3=48+14+3=65(元),答:需付车费65元,(3)若行驶的里程为10公里,需要付车费:2.3×10+0.3×30=29<39.8,即行驶的里程大于10公里,设行驶的里程为x 公里,根据题意得:2.3x+0.3×30+0.3(x ﹣10)=39.8,解得:x =13,答:行驶的里程为13公里.【点睛】本题考查了一元一次方程的应用和有理数的混合运算,解题的关键:(1)正确掌握有理数的混合运算法则,(2)正确掌握有理数的混合运算法则,(3)正确找出等量关系,列出一元一次方程.25.(1)8;(2)-1.【解析】【分析】(1)先计算括号内的减法,再进一步计算减法可得;(2)先计算乘方和括号内的减法,再计算乘法可得.【详解】解:()1原式()53538=--=+=;()2原式1414⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.26.(1)75;(2)(75-12m)°;(3)t 为19秒. 【解析】【分析】(1)根据角平分线的定义,以及角度和的关系,可得∠MON=12∠AOD 即可得出;(2)根据角平分线的定义,得出∠MOC=12∠AOC,∠BON=12∠BOD,利用角度和与差的关系,得出∠MON=∠MOC+∠BON﹣∠BOC,角度代换即可得出结果;(3)由题意知,∠AOM=12(10+2t+20°),∠DON=12(150﹣10﹣2t)°,根据3∠AOM=2∠DON,列出方程求解即可.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠MOB=12∠AOB,∠BON=12∠BOD,∴∠MON=∠MOB+∠BON,=12∠AOB+12∠BOD,=12∠AOD,=12×150°,=75°,故答案为:75;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×(150°+m°)﹣m°=(75-12 m)°,故答案为:(75-12 m)°;(3)∵∠AOM=12∠AOC=12(10+2t+20°)=(15+t)°,∠DON=12∠BOD=12(150﹣10﹣2t )°=(70-t )°, 又∵3∠AOM=2∠DON ,∴3(15+t )=2(70﹣t ),得t=19.答:t 为19秒,故答案为:19秒.【点睛】本题考查了角平分线的定义,角度的和差关系式,一元一次方程的列式求解,掌握角平分线的定义是解题的关键.27.3a 2﹣2b 2.【解析】【分析】原式去括号合并即可得到结果.【详解】原式=()()223a -6ab --6ab+2b 22=3a 6ab 6ab 2b -+-223a -2b =【点睛】本题考查了整式的加减运算,熟练掌握整式加减运算法则是解题的关键.28.(1)x=-7;(2)x=1【解析】【分析】(1)直接移项合并同类项进而解方程得出答案;(2)直接去分母,再移项合并同类项进而解方程得出答案.【详解】(1) 解:2352x x -=+7x -=7x =-(2) 解:242(32)4x x +--=24644x x +-+=44x -=-1x =【点睛】本题主要考查解一元一次方程,正确掌握解一元一次方程的方法是解题关键.29.()1(42-8x )元,(28-4x )元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x 元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x )元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x 元,则爱心气球的单价是(14-3x )元,根据题意得 第②束气球的总价格是:x+3(14-3x )=x+42-9x=42-8x (元);第③束气球的总价格是:2x+2(14-3x )=2x+28-6x=28-4x (元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.30.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【解析】【分析】(1)由绝对值和偶次方的非负性列方程组可解;(2)设经过t 秒两点的距离为43,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.【详解】(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩, ∴7a =-,1c =,故答案为:-7,1;(2)设经过t 秒两点的距离为43, 由题意得:41433t t ⨯+-=, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇,由题意得:34x x =+,∴2x =,表示的数为:7321-+⨯=-,点P 运动到点C 返回时,设经过y 秒P ,Q 相過,由题意得:()34217y y ++=--⎡⎤⎣⎦,∴3y =,表示的数是:()331710⨯----=⎡⎤⎣⎦,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇, 由题意得:()1373z z +=---, ∴53z =, 表示的数是:57323-+⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【点睛】本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.。
初中生会考数学试卷及答案

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √2B. πC. 0.5D. √9答案:C2. 已知a=2,b=-3,那么|a-b|的值是()A. 1B. 5C. 2D. 5答案:B3. 下列函数中,反比例函数是()A. y=2x+1B. y=2/xC. y=x^2D. y=x^3答案:B4. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°答案:C5. 已知一元二次方程x^2-5x+6=0,则它的两个根是()A. x=2,x=3B. x=1,x=4C. x=2,x=4D. x=1,x=3答案:A6. 已知直角三角形ABC中,∠C=90°,∠A=30°,则AC的长度是AB长度的()A. 1/2B. 1/√3C. √3D. 2答案:B7. 下列各式中,正确的是()A. (a+b)^2=a^2+b^2B. (a-b)^2=a^2-b^2C. (a+b)^2=a^2+2ab+b^2D. (a-b)^2=a^2-2ab+b^2答案:D8. 在等腰三角形ABC中,若底边AB=8,腰AC=10,则底角∠ABC的度数是()A. 30°B. 45°D. 90°答案:C9. 已知等边三角形ABC的边长为a,则其周长是()A. 3aB. 2aC. aD. a/3答案:A10. 已知一元一次方程2x-3=5,则x的值是()A. 1B. 2C. 3D. 4答案:B二、填空题(每题5分,共20分)11. 已知a=-3,b=4,那么a+b的值是__________。
答案:112. 若x=3,那么2x-1的值是__________。
答案:513. 若y=2x+1,当x=2时,y的值是__________。
答案:514. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是__________。
2024年河南省商丘市中考数学毕业会考试卷(含答案)

2024年河南省商丘市中考数学毕业会考试卷一、选择题(每题3分,共30分)1.(3分)数学美是简洁性、对称性、统一性和奇异性的有机结合.下列曲线中,既是中心对称图形,又是轴对称图形的是 A .爱心曲线B .蝴蝶曲线C .费马螺线曲线D .四叶花曲线2.(3分)下列成语或词语所反映的事件中,发生的可能性大小最小的是 A .守株待兔B .旭日东升C .瓜熟蒂落D .夕阳西下3.(3分)在中,若,则的度数是 A .B .C .D .4.(3分)已知关于的方程的一根为0,另一根不为0,则的值为 A .1B .C .1或D .以上均不对5.(3分)如图,在平面直角坐标系中,已知点、,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是 ()()ABC ∆21|sin |cos )02A B -+-=C ∠()120︒105︒75︒45︒x 22(3)230m x x m m ++++-=m ()3-3-(3,6)A -(9,3)B --O 13ABO ∆A A '()A .B .C .或D .或6.(3分)函数与在同一平面直角坐标系中的图象大致是 A .B .C .D .7.(3分)如图,在平面直角坐标系中,矩形的两边,分别在轴和轴上,并且,.若把矩形绕着点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为 A .,B .,C .,D .,8.(3分)如图,在中,为的直径,,,,则弦 (1,2)-(9,18)-(9,18)-(9,18)-(1,2)-(1,2)-21y kx =-(0)ky k x=≠()OABC OA OC x y 5OA =3OC =OABC O A BC 1A C 1C ()9(5-12)512(5-9)516(5-12)512(5-16)5O CD O CD AB ⊥60AEC ∠=︒4OB =(AB =)A .B .C .D .9.(3分)如图,在中,延长斜边到点,使,连接,若,则的值为 ABC .D .10.(3分)如图,矩形中,,,点为平面内一点,且,点为上一个动点,则的最小值为 A .11B .CD .13二、填空题(每小题3分,共15分)11.(3分)若,则的值为 .12.(3分)设,是方程的两个实数根,则 .13.(3分)若函数的图象与轴只有一个交点,那么的值为 .14.(3分)如图,在中,,点在轴上,、分别为、的中点,连接,为上任意一点,连接、,反比例函数的图象经过点.若的面积为6,则的值为 .15.(3分)如图,在中,,,,将绕直角顶点顺时针旋转Rt ABC ∆BC D 12CD BC =AD 5tan 3B =tan CAD ∠()1315ABCD 5AB =6AD =P 2BP =Q CD AQ PQ +()2-2-25m n =22m nm-a b 220240x x +-=22a a b ++=21(2)12y mx m x m =++++x m AOB ∆AO AB =B x C D OA OB CD E CD AE BE (0)ky x x=<A ABE ∆k ABC ∆90BAC ∠=︒30ACB ∠=︒2AB =ABC ∆A得,点的对应点是点,则图中阴影部分面积为 .三、计算题(本题共8题,共75分)16.(8分)(1)解方程:;(2)计算:.17.(9分)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”,小明购买了“二十四节气”主题邮票,他将“立春”“清明”“雨水”三张纪念邮票(除正面内容不同外,其余均相同)背面朝上,洗匀放好.(1)小明从中随机抽取一张邮票是“清明”的概率是 .(2)小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后再从中随机抽取一张邮票,请用画树状图或列表的方法,求小明两次抽取的邮票中至少有一张是“雨水”的概率(这三张邮票依次分别用字母,,表示).18.(9分)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,点为出发点,途中设置两个检查点,分别为点和点,行进路线为.点在点的南偏东方向处,点在点的北偏东方向,行进路线和所在直线的夹角为.(1)求行进路线和所在直线的夹角的度数;(2)求检查点和之间的距离(结果保留根号).60︒ADE ∆E C 2650x x ++=2|cos60sin 45tan 30sin 60︒+︒-︒︒A B C A B C A B C A →→→B A 25︒C A 80︒AB BC ABC ∠45︒BC CA BCA ∠B C19.(9分)某景区旅游商店以20元的价格采购一款旅游食品加工后出售,销售价格不低于22元,不高于45元.经市场调查发现每天的销售量与销售价格(元之间的函数关系如图所示.(1)求关于的函数表达式;(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润(销售价格采购价格)销售量】20.(9分)已知抛物线交轴于,,两点,为抛物线的顶点,,为抛物线上不与,重合的相异两点,记的中点为,直线,的交点为.(1)求抛物线的函数表达式;(2)若,,且,求证:,,三点共线;(3)小明研究发现,无论,在抛物线上如何运动,只要,,三点共线,的面积恒为定值,请求出此定值.21.(10分)如图,是的外接圆,为的直径,过点作平分交于点,过点作的平行线分别交、的延长线于点,,于点,连接.(1)求证:;(2)求证:是的切线;/kg /kg /kg ()y kg x /)kg y x =-⨯23y ax bx =++x (1A 0)(3B 0)M C D A B AB E AD BC P (4,3)C 3(,)4D m -2m <C DE C D C D E ABP ∆O ABC ∆AB O A AD BAC ∠O D D BC AC AB EF DG AB ⊥G BD AED DGB ∆∆∽EF O(3)若,,求劣弧的长度(结果保留.22.(10分)《函数)复习课后,为加深对函数的认识,李老师引导同学们对函数的图象与性质进行探究,过程如下,请完成探究过程:(1)初步感知:函数的自变量取值范围是 ;(2)作出图象:①列表:0123235表中 , ;②描点,连线:在平面直角坐标系中,描出以表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(3)研究性质:小明观察图象,发现这个图象为双曲线,进一步研究中,小明将函数转化为,他判断该函数图象就是反比例函数通过某种平移转化而来,反比例函数是中心对称图形,对称中心为,则函数的对称中心为 ;BF DF =6OA = BD )π1xy x =+1xy x =+x⋯3-2-74-32-54-34-12-14-⋯y⋯32m 3-1-13-n122334⋯m =n =1x y x =+111x -+1y x =-1y x=-(0,0)1xy x =+(4)拓展应用:当时,关于的方程有实数解,求的取值范围.23.(11分)如图①,是一块锐角三角形材料,边,高.把它加工成正方形零件,使正方形的一边在上,其余两个定点分别在,上,这个正方形零件的边长是多少?(1)解这个题目,求出这个正方形零件的边长是多少?变式训练:(2)如果要加工成一个矩形零件,如图②,这样,此矩形零件的两边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长是多少?(3)如图③,在中,,正方形的边长是8,且四个顶点都在的各边上,.求的值.14x ……x 11xkx x +=+k ABC ∆100BC mm =60AD mm =BC AB AC ABC ∆90A ∠=︒DEFG ABC ∆4CE =:AGF ABC S S ∆∆2024年河南省商丘市中考数学毕业会考试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)数学美是简洁性、对称性、统一性和奇异性的有机结合.下列曲线中,既是中心对称图形,又是轴对称图形的是 A .爱心曲线B .蝴蝶曲线C .费马螺线曲线D .四叶花曲线【解答】解:.是轴对称图形,不是中心对称图形,故不符合题意;.是轴对称图形,不是中心对称图形,故不符合题意;.是中心对称图形,不是轴对称图形,故不符合题意;.既是轴对称图形,也是中心对称图形,故符合题意.故选:.2.(3分)下列成语或词语所反映的事件中,发生的可能性大小最小的是 A .守株待兔B .旭日东升C .瓜熟蒂落D .夕阳西下【解答】解:.守株待兔所反映的事件可能发生也可能不发生,是不确定事件,符合题意;.旭日东升,是必然事件,发生的可能性为1,不符合题意;.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;.夕阳西下,是必然事件,发生的可能性为1,不符合题意;故选:.3.(3分)在中,若,则的度数是 A .B .C .D.()A B C D D ()A B C D A ABC∆21|sin |cos )02A B -+-=C ∠()120︒105︒75︒45︒【解答】解:,,,,,,.故选:.4.(3分)已知关于的方程的一根为0,另一根不为0,则的值为 A .1B .C .1或D .以上均不对【解答】解:关于的方程的一根为0,,即,解得:或.又关于的方程的另一根不为0,所以△,即,解得:,当时,,此方程不可能有两根,故选:.5.(3分)如图,在平面直角坐标系中,已知点、,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是 A .B . 21|sin |cos )02A B -+-=∴1sin 02A -=cos 0B -=∴1sin 2A =cos B =30A ∴∠=︒30B ∠=︒180120C A B ∴∠=︒-∠-∠=︒A x 22(3)230m x x m m ++++-=m ()3-3- x 22(3)230m x x m m ++++-=22(3)00230m m m ∴+⨯+++-=2230m m +-=1m =3-x 0>214(3)(23)0m m m -++->(,)m ∈-∞+∞3m =-30m +=A (3,6)A -(9,3)B --O 13ABO ∆A A '()(1,2)-(9,18)-C.或D.或【解答】解:点,以原点为位似中心,相似比为,把缩小,点的对应点的坐标是或,故选:.6.(3分)函数与在同一平面直角坐标系中的图象大致是 A.B.C.D.【解答】解:分两种情况讨论:①当时,反比例函数,在一、三象限,而二次函数开口向上,与轴交点为,都不符;②当时,反比例函数,在二、四象限,而二次函数开口向下,与轴交点为,符合.故选:.7.(3分)如图,在平面直角坐标系中,矩形的两边,分别在轴和轴上,并且,.若把矩形绕着点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为 (9,18)-(9,18)-(1,2)-(1,2)-(3,6)A-O13ABO∆∴A A'(1,2)-(1,2)-D21y kx=-(0)ky kx=≠()k>kyx=21y kx=-y(0,1)-0k<kyx=21y kx=-y(0,1)-DDOABC OA OC x y5OA= 3OC=OABC O A BC1A C1C ()A .,B .,C .,D .,【解答】解:方法一:过点作轴于点,过点作轴于点,由题意可得:,,则△△,,,,,,设,则,,则,解得:(负数舍去),则,,故点的对应点的坐标为:,.故选:.方法二:设旋转角为,过作轴于,过作轴于,由题意知:,,,9(5-12)512(5-9)516(5-12)512(5-16)51C 1C N x ⊥N 1A 1A M x ⊥M 1190C NO A MO ∠=∠=︒123∠=∠=∠1A OM ∽1OC N 5OA = 3OC =15OA ∴=13A M =4OM ∴=∴3NO x =14NC x =13OC =22(3)(4)9x x +=35x =±95NO =1125NC =C 1C 9(5-125A α1C 1C P y ⊥P 1A 1A Q x ⊥Q 1||3A Q =1||5A O =||4OQ ∴=,,又,,,,,故选:.8.(3分)如图,在中,为的直径,,,,则弦 A .B .C .D .【解答】解:连接,3sin 5α∴=4cos 5α=1||3OC=119||||sin 5PC OC α∴=⋅=112||||cos 5OP OC α=⋅=19(5C ∴-12)5A O CD O CD AB ⊥60AEC ∠=︒4OB =(AB =)BD为的直径,,,,,,,是等边三角形,,,,,故选:.9.(3分)如图,在中,延长斜边到点,使,连接,若,则的值为 ABC .D .【解答】解:如图,作交于.在中,,可以假设,,,,,,,CD O CD AB ⊥2AB BF ∴= AC BC=60AEC ∠=︒ 60ODB AEC ∴∠=∠=︒OD OB = OBD ∴∆4OB OD ∴==122OF OD ∴==BF ∴===2AB BF ∴==D Rt ABC ∆BC D 12CD BC =AD 5tan 3B =tan CAD ∠()1315//DE AC AB E Rt ABD ∆5tan 3AD B AB ==∴5AD k =3AB k =BD ∴=CD =//DE AC DAC ADE ∴∠=∠23BE BD BA BC ==,,,故选:.10.(3分)如图,矩形中,,,点为平面内一点,且,点为上一个动点,则的最小值为 A .11B .CD .13【解答】解:点为平面内一点,且,点在以为圆心,2为半径的上,延长到,使,连接,连接交于点,四边形使矩形,垂直平分,,,的最小值为,在△中,2BE k ∴=AE k ∴=1tan tan 55AE k CAD ADE AD k ∴∠=∠===D ABCD 5AB =6AD =P 2BP =Q CD AQ PQ +()2-2- P 2BP =∴P B B AD A '6DA DA '==QA 'BA 'B P ' ABCD CD ∴AA 'QA QA '∴=2AQ PQ A Q PQ PB P B A B P B A B '''''+=++--=- …AQ PQ ∴+2A B '-Rt A AB ',,由勾股定理,得,的最小值为,故选:.二、填空题(每小题3分,共15分)11.(3分)若,则的值为 .【解答】解:设,,则原式.故答案为:.12.(3分)设,是方程的两个实数根,则 2023 .【解答】解:,是方程的两个实数根,,,.故答案为:2023.13.(3分)若函数的图象与轴只有一个交点,那么的值为 0或2或 .【解答】解:当时,函数为,其图象与轴只有一个交点.当时,△,即.解得:.当,或时,函数的图象与轴只有一个交点.故答案为:0或2或.14.(3分)如图,在中,,点在轴上,、分别为、的中点,连接,为上任意一点,连接、,反比例函数的图象经过点.若的面积为6,则的值为 .212A A AD '==5AB =13A B '===AQ PQ ∴+213211A B '-=-=A 25m n =22m n m-2-2m k =5n k =2104k k k-=84kk -=2=-2-a b 220240x x +-=22a a b ++=a b 220240x x +-=22024a a ∴+=1a b +=-222()()202412023a a b a a a b ∴++=+++=-=21(2)12y mx m x m =++++x m 2-0m =21y x =+x 0m ≠0=21(2)4(1)02m m m +-+=2m =±∴0m =2m =±21(2)12y mx m x m =++++x 2-AOB ∆AO AB =B x C D OA OB CD E CD AE BE (0)k y x x=<A ABE ∆k 12-【解答】解:如图:连接,中,,在轴上,、分别为,的中点,,,,.故答案为:.15.(3分)如图,在中,,,,将绕直角顶点顺时针旋转得,点的对应点是点,则图中阴影部分面积为 【解答】解:如图,由题意可知,,,在中,,,,,在中,,,AD AOB ∆AO AB =OB x C D AB OB AD OB∴⊥//AB CD6ABE AOD S S ∆∆∴==12k ∴=-12-ABC ∆90BAC ∠=︒30ACB ∠=︒2AB =ABC ∆A 60︒ADE ∆E C 2π60CAE ∠=︒ABC ADE ∆≅∆Rt ABC ∆30ACB ∠=︒2AB =AC ∴==24BC AB ==Rt ADF ∆906030ADF B ∠=∠=︒-︒=︒2AB AD ==,,,.故答案为:.三、计算题(本题共8题,共75分)16.(8分)(1)解方程:;(2)计算:.【解答】解:(1),,或,解得,;(2)17.(9分)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”,小明购买了“二十四节气”主题邮票,他将“立春”“清明”“雨水”三张纪念邮票(除正面内容不同外,其余112DF AD ∴==AF AD ==413EF DE DF ∴=-=-=AEFACE S S S ∆∴=-阴影部分扇形132=-2π=2π2650x x ++=2|cos60sin 45tan 30sin 60︒+︒-︒︒2650x x ++=(1)(5)0x x ++=10x +=50x +=11x =-25x =-2|cos60sin 45tan 30sin 60︒+︒-︒︒212=+1122=+-=均相同)背面朝上,洗匀放好.(1)小明从中随机抽取一张邮票是“清明”的概率是 .(2)小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后再从中随机抽取一张邮票,请用画树状图或列表的方法,求小明两次抽取的邮票中至少有一张是“雨水”的概率(这三张邮票依次分别用字母,,表示).【解答】解:(1)一共有三种可能,(抽到“清明” ;(2)列树状图:(至少一张雨水).18.(9分)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,点为出发点,途中设置两个检查点,分别为点和点,行进路线为.点在点的南偏东方向处,点在点的北偏东方向,行进路线和所在直线的夹角为.(1)求行进路线和所在直线的夹角的度数;(2)求检查点和之间的距离(结果保留根号).13A B C P 1)3=P 59=A B C A B C A →→→B A 25︒C A 80︒AB BC ABC ∠45︒BC CA BCA ∠B C【解答】解:(1)由题意得:,,,,,行进路线和所在直线的夹角的度数为;(2)过点作,垂足为,在中,,,,,在中,,,,检查点和之间的距离.80NAC ∠=︒25BAS ∠=︒18075CAB NAC BAS ∴∠=︒-∠-∠=︒45ABC ∠=︒ 18060ACB CAB ABC ∴∠=︒-∠-∠=︒∴BC CA BCA ∠60︒A AD BC ⊥D Rt ABD∆AB =45ABC ∠=︒sin 453()AD AB km ∴=⋅︒==cos 453()BD AB km =⋅︒==Rt ADC ∆60ACB ∠=︒)tan 60AD CD km ===︒(3BC BD CD km ∴=+=+∴BC (3km +19.(9分)某景区旅游商店以20元的价格采购一款旅游食品加工后出售,销售价格不低于22元,不高于45元.经市场调查发现每天的销售量与销售价格(元之间的函数关系如图所示.(1)求关于的函数表达式;(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润(销售价格采购价格)销售量】【解答】解:(1)当时,设函数表达式为,将,代入解析式得,,解得,函数表达式为:;当时,设函数表达式为:,将,代入解析式得,,解得,函数表达式为:,综上,与的函数表达式为:;(2)设利润为元,当时,,在范围内,随着的增大而增大,当时,取得最大值为400;/kg /kg /kg ()y kg x /)kg y x =-⨯2230x ……y kx b =+(22,48)(30,40)22483040k b k b +=⎧⎨+=⎩170k b =-⎧⎨=⎩∴70y x =-+3045x <…y mx n =+(30,40)(45,10)30404510m n m n +=⎧⎨+=⎩2100m n =-⎧⎨=⎩∴2100y x =-+y x 70(2230)2100(3045)x x y x x -+≤≤⎧=⎨-+<≤⎩w 2230x ……22(20)(70)901400(45)625w x x x x x =--+=-+-=--+ 2230x ……w x ∴30x =w当时,,当时,取得最大值为450;,当销售价格为35元时,利润最大为450元.20.(9分)已知抛物线交轴于,,两点,为抛物线的顶点,,为抛物线上不与,重合的相异两点,记的中点为,直线,的交点为.(1)求抛物线的函数表达式;(2)若,,且,求证:,,三点共线;(3)小明研究发现,无论,在抛物线上如何运动,只要,,三点共线,的面积恒为定值,请求出此定值.【解答】(1)解:由题意得:,则,即抛物线的函数表达式为;(2)证明:设直线对应的函数表达式为,因为为中点,所以.又因为,所以,解得:,所以直线对应的函数表达式为,因为点在抛物线上,所以,解得:或,所以,,因为,即满足直线对应的函数表达式,所以点在直线上,即,,三点共线;3045x <…22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+35x =w 450400> ∴/kg 23y ax bx =++x (1A 0)(3B 0)M C D A B AB E AD BC P (4,3)C 3(,)4D m -2m <C DE C D C D E ABP ∆22(1)(3)(43)3y a x x a x x ax bx =--=-+=++1a =243y x x =-+CE (0)y kx n k =+≠E AB (2,0)E (4,3)C 2043k n k n +=⎧⎨+=⎩ 1.53k n =⎧⎨=-⎩CE 1.53y x =-D 23434m m -+=-32m =523(2D 34-3333224⨯-=-D CE D CE C D E(3)解:小明研究发现,无论,在抛物线上如何运动,只要,,三点共线,的面积恒为定值,故在(2)的条件下,,,,,直线对应的函数表达式为;直线对应的函数表达式为,联立上述两式得:,解得:,则点,,此时 的面积.21.(10分)如图,是的外接圆,为的直径,过点作平分交于点,过点作的平行线分别交、的延长线于点,,于点,连接.(1)求证:;(2)求证:是的切线;(3)若,,求劣弧的长度(结果保留.【解答】(1)证明:过点作平分交于点,过点作的平行线分别交、的延长线于点,,于点,连接.是的外接圆,为的直径,,,,平分,,,,C D C D E ABP ∆(3,0)B (4,3)C 3(2D 3)4-∴BC 39y x =-AD 3322y x =-+333922x x -=-+73x =7(3P 2)-ABP ∆11||(31)2222P AB y =⨯⨯=⨯-⨯=O ABC ∆AB O A AD BAC ∠O D D BC AC AB E F DG AB ⊥G BD AED DGB ∆∆∽EF O BF DF =6OA = BD)πA AD BAC ∠O D D BC AC AB E F DG AB ⊥G BD O ABC ∆AB O 90ACB ADB ∴∠=∠=︒//BC EF 90AED ACB ∴∠=∠=︒AD BAC ∠EAD DAB ∴∠=∠ADE ABD ∴∠=∠DG AB ⊥,;(2)证明:连接,,,,,,,,,是的切线;(3)解:,,,,,,,,,,,90BGD AED ∴∠=∠=︒AED DGB ∴∆∆∽OD OA OD = OAD ADO ∴∠=∠2DOF OAD ADO DAF ∴∠=∠+∠=∠2EAF DAF ∠=∠ EAF DOF ∴∠=∠//AE OD ∴AE EF ⊥ OD EF ∴⊥EF ∴O 90EAD ADE ∠+∠=︒ 90DAF ADE ∴∠+∠=︒90BDF ADE ∠+∠=︒ DAF BDF ∴∠=∠ADF DBF ∴∆∆∽∴AD AF DFDB DF BF===2222(66)AD BD AB +==+ 22)144AD AD ∴+=AD ∴=6BD ∴=tan BD DAB AD ∴∠==30DAB ∴∠=︒,.22.(10分)《函数)复习课后,为加深对函数的认识,李老师引导同学们对函数的图象与性质进行探究,过程如下,请完成探究过程:(1)初步感知:函数的自变量取值范围是 ;(2)作出图象:①列表:0123235表中 , ;②描点,连线:在平面直角坐标系中,描出以表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(3)研究性质:小明观察图象,发现这个图象为双曲线,进一步研究中,小明将函数转化为,他判断该函数图象就是反比例函数通过某种平移转化而来,反比例函数是中心对称图形,对称中心为,则函数的对称中心为 ;(4)拓展应用:当时,关于的方程有实数解,求的取值范围.【解答】解:(1)函数的自变量的取值范围是.故答案为.60DOB∴∠=︒∴ 6062180BDππ⋅⋅==1xyx=+1xyx=+1x≠-x⋯3-2-74-32-54-34-12-14-⋯y⋯32m3-1-13-n122334⋯m=n=1xyx=+111x-+1yx=-1yx=-(0,0)1xyx=+14x (x1)1xkxx+=+k1xyx=+x1x≠-1x≠-(2)①时,,.当时,,,故答案为:,0;②函数图象如图所示:(3)函数的对称中心为,故答案为:;(4)当时,函数中,,把,代入函数得,,解得,把,代入函数得,解得,当时,关于的方程有实数解,的取值范围是.23.(11分)如图①,是一块锐角三角形材料,边,高.把它加工成正方形零件,使正方形的一边在上,其余两个定点分别在,上,这个正方形零件的边长是多少?74x =-7747314y -==-+73m ∴=0x =0y =0n ∴=731xy x =+(1,1)-(1,1)-14x ……1x y x =+1425y ……4x =45y =1y kx =+4415k =+120k =-1x =12y =1y kx =+1212k =+14k =-∴14x ……x 11x kx x +=+k 11420k --……ABC ∆100BC mm =60AD mm =BC AB AC(1)解这个题目,求出这个正方形零件的边长是多少?变式训练:(2)如果要加工成一个矩形零件,如图②,这样,此矩形零件的两边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长是多少?(3)如图③,在中,,正方形的边长是8,且四个顶点都在的各边上,.求的值.【解答】解:(1)四边形为正方形,,,设正方形零件的边长为 ,则 ,,,,即,解得,故这个正方形零件的边长是.(2)设 ,四边形为矩形,,,,,,ABC ∆90A ∠=︒DEFG ABC ∆4CE =:AGF ABC S S ∆∆ EGHF //BC EF ∴AEF ABC ∴∆∆∽x mm KD EF x ==mm (60)AK x mm =-AD BC ⊥∴EF AKBC AD =6010060x x-=752x =752mm EG a =mm EGHF //EF BC ∴AEF ABC ∴∆∆∽∴EF AKBC AD =∴6010060EF a-=∴5(60)510033a aEF -==-矩形面积,时,此时矩形面积最大.即当,时,此时矩形面积最大.(3)四边形是正方形,,,,,,,,,,,,,,.∴22555(100)100(30)1500333a a S a a a =⨯-=-+=--+30a ∴=30EG mm =50EF mm = EFGD 8DE EF DG mm ∴===90GDE DEF ∠=∠=︒90BDG CEF ∴∠=∠=︒90B C ∠+∠=︒ 90C CFE ∠+∠=︒B CFE ∴∠=∠BDG FEC ∴∆∆∽∴BD DGEF EC =∴884BD =16BD ∴=168428BC BD DE EC ∴=++=++=//FG BC AGF ABC ∴∆∆∽228:()()4:4928AGF ABC GF S S BC ∆∆∴===。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1999年初中毕业会考试卷一、填空题(本题共18个小题,每小题2分,满分36分)1.3/5的相反数是____,│-6│=____。
2.用科学记数法表示:570000=_____。
3.一次函数y=2x-1的图象经过点(0,____)与(____,0)。
4.分解因式:a-ab2=________________。
5.已知:如图,在平形四边形ABCD中,∠1=∠B=50°,则∠2=____。
6.函数y=x+中,自变量x的取值范围是____。
7.已知线段a=4cm,b=9cm,则线段a、b的比例中项是c=____cm。
8.已知线段68,69,70,71,72的平均数是____,方差是____。
9.化简:a(a-1)2-(a+1)(a2-a+1)=____。
10.已知:两圆⊙O1与⊙O2的圆心距O1O2=5cm,两圆半径分别为R1=6cm和R2=8cm,则这两圆的位置关系是____。
11.一个n边形的内解和是1080°,则n=____。
12.关于x的一元二次方程kx2+3x-1=0有两个相等的实数根,则k=____。
13.如图,AB是半圆直径,∠ABC=63°,则所对的圆周角度数是____。
14.计算:=__________。
15.计算:sin45°-sin30°cos60°-tg45°=__________。
16.下图是屋架设计图一的部分,其中BC⊥AC,DE⊥AC,点D是AB的中点,∠A=30°,AB=7.4m,则BC=____m,DE=____m。
17.甲队有32人,乙队有28人,现在从乙队抽调x人到甲队,使甲队人数是乙队人数的2倍,依题意,列出的方程是________________。
18.已知扇形的圆心角是150°,弧长为20π厘米,则这个扇形的半径为____厘米。
二、选择题(本题共10个小题,每小题3分,满分30分)19.下列计算,正确的是A.B.C.D.20.下列说法中,正确的是A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线。
B.P是直线l外一点,A.B.C分别是l上的三点,已知PA=1,PB=2,PC=3,则点P到l的距离一定是1。
C.相等的角是对顶角。
D.钝角的补角一定是锐角。
21.化简(-2a)3b4÷ 12a3b2的结果是A.1/6b2B.-1/6b2C.-2/3b2D.-2/3ab222.点P(-2,-4)关于x轴对称的点p'的坐标是A.(-2,4) B.(2,-4) C.(2,4) D.(-4,-2) 23.下列命题中,真命题是A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线相等且互相垂直的四边形是正方形24.已知x<2,化简的结果是A.x-2 B.2-x C.-x-2 D.x+2 25.计算2×(-3)2+(-2)-1÷1/4+3.140的结果为A.-18 B.-15 C.17 D.21 26.抛物线y=2(x-3)+5的对称轴和顶点坐标分别为A.x=-3,(-3,5) B.x=3,(3,5)C.x=3,(-3,-5) D.x=-3,(3,-5)27.已知:如图,AB∥CD,AD与BC相交于O,则下列比例式中,正确的是A.AB/CD=OA/ADB.OA/OD=OB/BCC.AB/CD=OB/OCD.BC/AD=OB/OD28.分式方程1/(x+2)+4x/(x2-4)+2/(2-x)=1的根为A.x1=1,x2=2 B.x1=-1,x2=-2C.x=2 D.x=1三、(本题共3个小题,每小题5分,满分15分)29.解不等式x-2≥(3x-5)/4,并把它的解集在数轴上表示出来。
30.已知函数y=k/(x+1),且当x=-2时,y=-3。
(1)求k的值;(2)当x=1/2时,求y的值。
31.已知:如图,梯形ABCD中,AD∥BC,AB=DC,AD=2cm,中位线长5cm,高AE=cm,求这个梯形的腰长。
四、(本题满分5分)32.李明以两种形式储蓄了500元,一种储蓄的年利率是5%,另一种是4%,一年后共得到利息23元5角,两种储蓄各存了多少钱?五、(本题满分5分)33.已知:如图,E、F是AB上的两点,AE=BF,又AC∥DB且AC=DB,求证:CF=DE。
六、(本题满分9分)34.已知:如图,EB是⊙O的直径,且EB=6,在BE的延长线上取点P,使EP=EB。
A是EP上一点,过A作⊙O的切线AD,切点为D。
过D作DF⊥AB于F,过B作AD的垂线BH,交AD 的延长线于H。
连结ED和FH。
(1)若AE=2,求AD的长;(2)当点A在EP上移动(点A不与点E重合)时,①是否总有AD/AH=ED/FH?试证明你的结论;②设ED=x,BH=y,求y与x的函数关系式,并写出自变量x的取值范围。
1999年初中毕业会考数学试卷答案和评分标准说明:一、《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分100分二、《答案》中解法只是该题解法中的一种或几种,如果老先生的解法和本《答案》不同,可参照《答案》中评分标准的精神,进行评分。
三、评卷时,要坚持每题评阅到底,勿因考生解答中出现错误而中断本题评阅,如果老先生的解答在某一步出现错误,影响后继部分而未改变本题的内容与难度者,视影响程度来决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如果有严重概念性错误,就不给分。
一、填空题(本题满分36分,每小题2分)1、-3/5,62、5.7×1053、-1,1/24、A(1-B)(1+B)5、80°6、x≤27、6 8、70,2 9、-2a2+a-1 10、相交11、8 12、-9/413、27°14、a+b 15、-1/4 16、3.7,1.85 17、32+x=2(28-x) 18、24二、选择题(本题满分30分,每小题3分)19、C 20、D 21、C 22、A 23、A 24、B 25、C 26、B 27、C 28、D三、(本题满分15分,每小题5分)29、解:去分母得4(x-2)≥3x-5去括号,得 4x-8≥3x-5 2分移项,得 4x-3x≥-5+8 3分合并同类项,得x≥3 4分这个不等式的解集在数轴上表示如下 5分30、解:(1)∵x=-2时, y=-3 1分∴-3=k/-2+1∴k=3 3分(2)由(1),得 y=3/(x+1)∴当x=1/2时,y=3/(x+1)=2 5分31、解:由中位线定理,得(2+BC)/2=5∴BC=8 2分∵四边形ABCD是等腰梯形∴BE=(BC-AD)/2=(8-2)/2=3 3分在Rt△AEB中,AB==6(cm) 5分四、(本题满分5分)32、解法一:设年利率是5%和4%的两种储蓄分别存了x元和y元,依题意,得解这个方程组得x=350,y=150 4分答:年利率是5%和4%的两种储蓄分别存了350元和150元。
5分解法二:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄了(500-x)元依题意,得x×5%+(500-X〕×4%=23.5 3分解这个方程,得x=350 ∴500-x=150 4分答:年利率是5%和4%的两种储蓄分别存了350元和150元。
5分五、(本题满分5分)33、证明:∵AE=BF,∴AE+EF=BF+EF 1分即AF=BE 又∵AC∥BD,2分∴∠A=∠B ∵AC=BD∴△ACF≌△BDE 4分∴CF=DE 5分六、(本题满分9分)34、(1)解:∵AD切⊙O于D,AE=2,EB=6,∴AD2=AE·AB=2×(2+6)=16∴AD=4 2分(2)无论点A在EP上怎么移动(点A不与点E重合),总有AD/AH=ED/FH 3分证法一:连结DB,交FH于G∵AH是⊙O的切线,∴∠HDB=∠DEB又∵BH⊥AH,BE为直径,∴∠BDE=90°有∠DBE=90°-∠HDB=∠DBH在△DFB和△DHB中,DF⊥AB,∠DFB=∠DBH=90°∴△DFB≌△DHB 4分∴BH=BF ∴△BHF是等腰三角形∴BG⊥FH,即BD⊥FH∴ED∥FH,∴AD/AH=ED/FH 5分证法二:连结DB∵AH是⊙O的切线,∴∠HDB=∠DEF又∵DF⊥AB,BH⊥DH,∴∠EDF=∠DBH4分以BD为直径作一个圆,则此圆必过F、H两点∴∠DBH=∠DFH,∴∠EDF=∠DFH∴ED∥FH∴AD/AH=ED/FH5分②∵ED=x,BH=y,BE=6,BF=BH∴EF=6-y又∵DF是Rt△BDE斜边上的高,∴△DFE∽△BDE,∴EF/ED=ED/EB即ED2=EF·EB ∴x2=6(6-y),即y=-1/6x2=67分∵点A不与点E重合,∴ED=x>0,当A从E向左移动,ED逐渐增大,当A和P重合时,ED最大,这时,连接OD,则OD⊥PH,∴OD∥BH又PO=PE+EO=6=3=9,PB=12,OD/BH=PO/PB,BH=OD·PB/PO=4 ∴BF=BH=4,EF=EB-BF=6-4=2由ED2=EF·EF,得:x2=2×6=12∵x>0,∴x=∴0<x≤(或由BH=4=y,代入y=-1/6x2+6,得x=)故所求函数关系式为y=1/6x2+6 (x<x≤=9分。