第一节_顺反异构
顺反异构体定义

顺反异构体定义
顺反异构体(Stereoisomers)是指具有相同的分子式和相同的原子连接顺序,但由于原子在空间排列不同而导致分子整体构型不同的一对或一组化合物。
顺反异构体是一种立体异构现象,可分为两大类:构象异构体(Conformational Isomers)和构型异构体(Configurational Isomers)。
1. 构象异构体
构象异构体是由于单键周围的原子或基团的旋转而产生的异构现象。
构象异构体之间可以通过旋转单键相互转化,能垒较低,属于动力学异构体。
常见的构象异构体有:
- 烷烃的旋转异构体
- 环丁烷的椅式和船式构象
- 环己烷的椅式和船式构象
2. 构型异构体
构型异构体是由于分子中含有手性中心或手性轴而产生的异构现象。
构型异构体之间不能简单地通过旋转单键相互转化,需要断开化学键并重新连接。
常见的构型异构体有:
- 手性碳原子引起的异构体(对映异构体)
- 手性轴引起的顺反异构体
- 手性平面引起的顺反异构体
顺反异构体是指由于分子中存在手性轴或手性平面而导致整体构型不同的一对立体异构体。
它们是构型异构体的一种,与对映异构体并列,是立体化学的重要内容。
高中化学 第2章 第1节 第1课时 烷烃和烯烃 烯烃的顺反异构同步导学课件 新人教版选修5

第十八页,共33页。
3.聚乙烯的结构和性质
聚乙烯是加聚产物,因为分子中不存在
,故不能
使溴水或酸性KMnO4溶液褪色。不同的聚乙烯分子 ( CH2—CH2 )中的n值不同,故聚乙烯是混合物。
第十九页,共33页。
某气态烃1体积只能与1体积氯气发生加成反应,
生成氯代烷烃,此氯代烷烃1 mol可与4 mol氯气发生完全的取代
利用
与HCl的加成反应。
第十七页,共33页。
2.烯烃的结构和性质 (1)烯烃与环烷烃的通式相同,环烷烃与同碳原子数烯烃
互为同分异构体。烯烃的官能团是碳碳双键
,其键
角为120°,故与双键碳原子相连的四个原子及两个双键碳原子
共面。
(2)
键中有一个键较牢固,而另一个键易断
裂,故乙烯容易发生加成反应、加聚反应和氧化反应。
探究2:烷烃、烯烃的结构与性质的特点 1.烷烃的结构与性质 (1)结构:碳原子之间以单键结合成链状,每个碳原子连 接4个原子,且每个碳原子都是四面体的中心。所以烷烃分子 中的碳原子并不在一条直线上,而是呈锯齿状排列。
第十六页,共33页。
(2)常温下,由于C—H键、C—C键很牢固,性质稳定, 不与强酸、强碱和强氧化剂反应,所以不能使溴的四氯化碳 溶液和酸性KMnO4溶液褪色。烷烃与Cl2取代反应可得到多种 取代产物,如制取一氯乙烷不宜用C2H6与Cl2的取代反应,而
子,当两个Cl加成在1,2位时发生1,2-加成,当两个Cl加在1,4
位时,2,3位的单电子重新形成共价键,此时发生1,4-加成。现
有烃
。
第二十八页,共33页。
(1)Br2与之加成产物(chǎnwù)有________种,结构简式分别 为
第二章 立体化学

(Z)-1,2-二氯-1-溴乙烯 反-1,2-二氯-1-溴乙烯
(E)-1,2-二氯-1-溴乙烯 顺-1,2-二氯-1-溴乙烯
(E)-3, 4-二甲基-2-戊烯 顺-3, 4-二甲基-2-戊烯
(Z)-3, 4-二甲基-2-戊烯 反-3, 4-二甲基-2-戊烯
二、顺反异构体的性质
▪ห้องสมุดไป่ตู้物理性质不同 ▪ 化学性质:基本相同,与空间构型有关的有差别。
次互换,使最不优先的基团位于顶部,剩下3个原子或基团按照从优先到不优
先的顺序,顺时针方向排列为R-构型,逆时针方向排列为S-构型。
(二)对称中心
如果有机分子中存在一个假想的点,从分子中任一原子或基团向该点作一直 线,再从该点将直线延长,在等距离处遇到相同的原子或原子团,则该点即 为该分子的对称中心。
四、判断对映体的方法
➢ 比较一个分子和它的镜像,如果两者不能重合,则为对映体。 ➢ 有对称面或对称中心的分子为非手性分子(没有对映体)。 ➢ 仅有一个手性碳原子(或手性中心)的分子为手性分子(有对映体)。
第三节
手性、手性分子和对映体
一、手性
镜像与实物不能重合的现象称为手性(chirality)。
二、手性分子和对映体
手性分子:与镜像不能重合的分子。 手性碳(不对称中心):连接4个不同原子或基团的碳。
手性碳
与镜像不能重合的分子彼此互为对映异构体(手性异构体)
三、分子中常见对称因素
(一)对称面
对称面:能将分子切分为具有实物与镜像关系的假想平面。有对称面的化合 物不是手性分子。
第二章
立体化学
立体化学:研究有机分子的立体结构、反应的立体选择性 及其相关规律和应用。
碳链异构
位置异构 构造异构
几何异构也称顺反异构名词解释生物化学

几何异构也称顺反异构名词解释生物化学几何异构和顺反异构是生物化学中常见的名词,它们在分子结构和构象方面起着重要作用。
几何异构指的是分子中存在两个或两个以上的双键,且这些双键的连接方式不同,从而使得分子构象排列不同,产生几何异构体。
而顺反异构则是指分子结构中存在两个或两个以上的取代基团,这些取代基团的排列顺序不同,导致分子构象和性质的差异。
在生物化学中,几何异构和顺反异构对分子的稳定性、活性和反应性都有显著影响。
下面,我将从几何异构和顺反异构的概念、在生物体内的作用、相关实验方法以及未来研究方向等方面展开深入讨论。
一、几何异构和顺反异构的概念1. 几何异构几何异构是指分子中的化学键的连线方式不同,导致构象排列不同的现象。
在生物化学中,例如脂肪酸、生物酯等有机分子中,存在着多个双键,这些双键的空间排列方式会产生不同的几何异构体。
几何异构体的存在会影响分子的构象稳定性和生物活性。
2. 顺反异构顺反异构是指分子结构中的取代基团排列方式不同,导致分子的构象和性质发生变化的现象。
在生物化学中,例如蔗糖、核酸等大分子化合物中,存在着多个取代基团,这些基团的排列方式会形成不同的顺反异构体。
顺反异构体的存在对分子的空间构象和反应性有着重要的影响。
二、几何异构和顺反异构在生物体内的作用1. 生物活性几何异构和顺反异构对生物分子的活性有着显著影响。
在人体内,许多生物活性物质的活性和生物效应都与其构象密切相关。
脂肪酸的生物活性和对细胞膜的影响,部分取决于其空间构象的稳定性和排列方式。
对几何异构和顺反异构的研究有助于深入理解生物分子的活性和生物效应。
2. 药理学在药理学研究中,几何异构和顺反异构的存在也具有重要意义。
生物药物的活性和毒性往往与其构象和空间排列相关。
研究几何异构和顺反异构对生物药物的影响,有助于合理设计和改进药物结构,从而提高药物的有效性和安全性。
三、几何异构和顺反异构的实验检测方法1. 分子模拟技术通过分子模拟技术,可以模拟和预测几何异构和顺反异构体的构象和稳定性,为生物化学研究提供重要参考。
《有机化学(第二版)》第6章:立体化学基础

第六章
立体化学基础
19:21
第一节 顺反异构 一、顺式和反式 二、Z—型和E—型 三、顺反异构的性质
19:21
第一节 顺反异构
1、 顺反异构
重点介绍顺反异构体的Z/E标记法。 哪些化合物存在顺反异构体:
(1). 含有 C =C 、 C =N 、 N =N 双键的化合物。
(2). 环状化合物。
顺反异构现象。
顺反异构体的命名方法: 1. 顺/反标记法:
相同的原子或基团位于双键(或环平面)的同侧为“顺 式”; 否则为“反式”。
a C=C b b b a a C=C a b b b b a a a
19:21
b a
_ 顺式 (cis )
_ 反式 (trans )
_ 顺式 (cis )
_ 反式 (trans )
2. Z / E标记法:
该法是1968年IUPAC规定的系统命名法。
规定按“次序规则”,若优先基团位于双键的同侧为 Z
式(德文Zusammen的缩写,中文意为‘在一起’);否
a C=C b (Z)
c d
a c
b d
a C=C b (E)
d c
19:21
应用举例: 含C=C双键的化合物:
H Cl _ C=C H Cl H Cl C=C Cl H
翻 转
CO O H HO H C H3
翻 转
(2) 可以旋转n180。(n>=1),但不能旋转90。或270。。
19:21
CO O H H OH C H3
旋 转180
C H3 。 HO H CO O H
19:21
旋转180 。
CO O H H OH C H3
第十章 立体异构

不存在对称因素,手性碳原子是产生 对映异构体的常见条件
费歇尔投影式
表示
命名
性质 意义
顺反命名法, Z/E命名法
具有不同的物理性质;化学性质基 本相同 理化性质有差异,生理活性不同
D/L构型标记法
除旋光方向相反外,其他理化性质相 同 光学性质不同、生物活性较大差异
第十章 立体异构
ห้องสมุดไป่ตู้
国家卫生和计划生育委员会“十二五”国家级规划教材 全 国 高 等 医 药 教 材 建 设 研 究 会 规 划 教 材 全 国 高 职 高 专 学 校 规 划 教 材
位于异侧时,用E标记其构型
优先 Br C H C F Cl 优先
。
H3C C C CH2CH2CH2CH3 CH(CH3)2 优先
优先 CH3CH2
(Z)-1-氟-1-氯-2-溴乙烯
(E)-3-甲基-4-异丙基-3-辛烯
第十章 立体异构
第一节 顺反异构
第一节 顺反异构
二、顺反异构体的性质
(一)理化性质 1.顺反异构体具有不同的物理性质,并表现出某些规律性;
普通光
起偏振器
偏振光
乳酸溶液
检偏振器
观察者
第十章 立体异构
第二节 对映异构
第二节 对映异构
二、旋光度和比旋光度
α
0
90
光源
起偏镜
偏振光
盛液管
检偏镜
(一)旋光度(α) 1.旋光性物质使偏振光振动面旋转的角度称为该物质的旋光 度; 2.使平面偏振光振动面向右旋转(顺时针)的称为右旋体, 以(+)或d表示; 3.使平面偏振光振动面向左旋转(逆时针)的称为左旋体, 以(-)或l表示; 4.所有旋光性化合物,不是左旋体就是右旋体。 5.(+)和(-)仅仅表示旋光方向不同,与旋光度的大小无 关。
有机化合物普遍存在同分异构现象

H
CH 3 H
CH 3
反-l,3-二甲基环己烷
(二)Z、E命名法
顺、反命名法只适用于双键或环上至 少有一对原子或原子团是相同的情况。若 双键或脂环碳原子上所连的 4 个原子或原 子团都不相同,就无法用顺、反命名法命 名。为克服顺、反命名法的局限性,国际 系统命名法规定以字母Z和E表示顺反异构 体的两种构型,即为Z、E命名法。
序数相同,就延伸比较第一碳原子上
所连接的原子。-CH3与第一碳原子相 连的是H、H、H,而在-CH2CH3中与 之相连的是C、H、H,由于碳的原子
序数大于氢,故
CH 3 CH >
H
C(C、H、H)
H CH
H
C(H、H、H)
同理
CH 3 C CH3 >
CH 3
CH 3 C CH3 >
H
CH 2CH 3 CH
第十章 立体异构 有机化合物普遍存在同分异构现象, 简称异构现象,这是有机化合物的结 构特点之一。各种异构的相互关系归 纳如下:
同分异构
碳链异构 碳架异构
碳环异构
构造异构
位置异构 官能团异构 互变异构
顺反异构
命过程本身包含着复杂的立体化学 问题。生物体在新陈代谢过程中所产 生的化学物质具有高度的立体专一性; 一切具有生物活性物质的功能,都与 其构型或构象紧密地联系着。如药物 的构型与受体之间的构效关系,生物 反应过程中的立体选择性,都需从立 体化学的角度来理解和阐明。
H3C
CH 3
CC
H
H
Z-2-丁烯 顺-2-丁烯
H3C
H
CC
H
CH 3
E-2-丁烯 反-2-丁烯
H3C
顺反异构现象的定义

顺反异构现象的定义全文共四篇示例,供读者参考第一篇示例:顺反异构现象是一个涉及有机化学中分子结构特征的概念。
具体来说,顺反异构现象指的是同一种有机分子因为化学键旋转或立体异构体的不同而呈现出不同的构象或立体异构体的现象。
在有机化学中,这种现象经常出现在环状化合物、立体异构体或手性分子上。
顺反异构现象的最典型的例子可以从烷烃中找到。
正丁烷(CH3-CH2-CH2-CH3)就是一个简单的烷烃分子,它可以存在两种不同的构象:顺丁烷和反丁烷。
在顺丁烷中,四个碳原子位于同一直线上,而在反丁烷中,两个碳原子之间相互靠近,形成了一个折叠的结构。
这两种构象是由于碳-碳键的旋转所导致的,它们并没有化学键的断裂或形成。
另外一个常见的例子是手性分子的顺反异构现象。
手性分子是指这些分子不重合于其镜像像分子的情况。
最著名的手性分子例子是葡萄糖。
葡萄糖有两种手性异构体:D-葡萄糖和L-葡萄糖。
这两种异构体的结构是非对称的,但它们的化学组成是相同的。
这种顺反异构现象是由于葡萄糖分子中的手性碳原子的排列方式不同而导致的。
在有机化学反应中,顺反异构现象也可能对反应的速率和选择性产生影响。
在有机合成中,合成的产物可能会出现多种立体异构体,而且这些异构体之间的产率和选择性可能受到顺反异构现象的影响。
有机合成化学家通常会针对这些顺反异构现象进行精确的设计和控制,以获得所需的产物。
顺反异构现象是有机化学中的一个重要现象。
它不仅仅是分子结构的一种形式,还可能对分子的性质、反应和合成产物产生影响。
通过深入研究顺反异构现象,我们可以更好地理解有机分子的结构特点,为合成有机化合物和药物提供更多的有用信息。
第二篇示例:顺反异构现象是指在同一种物质中存在不同空间构型的现象。
通俗来说,就是同一个分子可以存在多种不同的形态或构型。
这种现象在化学、生物学和物理学领域都有所体现,并且具有重要的科学意义和应用价值。
顺反异构现象最早被发现于有机化学领域。
在有机分子中,由于碳原子的四价性质以及自由旋转的特性,同一个分子可以存在不同的构型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O C (CO、OOH、O) >
H、H)
O CC H(O、>O、H) CH 2OCH (O、
根据上述规则,下列化合物分别命
名为:
H3C
CH 3
CC
H
H
H3C
H
CC
H
CH 3
Z-2-丁烯
时,按原子序数大小排列,原子
序数大者为大基团;同位素按质
量大小排列(如D>H)。
(2)如与双键碳直接相连的 2 个原子
相同,则向外延伸,比较其次相
连原子的原子序数,依次类推,
以确定原子团的大小次序。
例如:双键碳原子上连有甲基(-
CH3)和乙基(-CH2CH3),与双键 碳直接相连的第一个原子都是碳
反-l,2-二溴丙烯
H
H
H CH 3
CH 3 顺-1,3-二甲基环己烷
环己烷
CH 3
CH 3
H 反-l,3-二甲基
(二)Z、E命名法
顺、反命名法只适用于双键或
环上至
少有一对原子或原子团是相同的情况。 若
双键或脂环碳原子上所连的 4 个原子或 原
子团都不相同,就无法用顺、反命名法 命
名。为克服顺、反命名法的局限性,国
第一节 顺反异构
有机化合物分子中如存在双键或脂环,键的自由旋转就会受到阻碍, 分子中原子或原子团在空间就有固定的排列方式(即构型),从而产生两种 不同构型的化合物。其中一种为顺式,另一种为反式。这种异构现象称为顺 反异构。
H
H
CC
CH 3
H
CC
CH 3
CH3 H
CH 3
顺-2-丁烯
反-2-丁烯
沸点4℃
如果同一双键碳上连有相同的原
子或基团,就没有顺反异构现象。
例如:
a
b
CC
a
d
a
d
CC
a
b
脂环的存在使构成环的碳原 子不能自由旋转,当环上至少有2 个碳原子上各连有2个不同的原子 或原子团时,便可产生顺反异构。
COOH
COOH H
COOH
顺-1,2-环丙二甲酸
H二甲酸
H
COOH
熔
点
熔点178℃
反-l,2-环丙
命名原则:Z、E命名法应用次序 规则确定连接在双键碳原子上的 原子或原子团的大小顺序。当2个 较大的原子或原子团在双键的同 侧时,为Z构型;在异侧则为E构 型。在下列构型式中,若a>b,d >e,则它们的构型分别为:
a
da
e
CC
CC
b
eb
d
Z构型
E构型
次序规则的主要内容有:
(1)与双键碳直接相连的原子不相同
H3C
CH 3
CC
H
H
H3C
H
CC
H
CH 3
Z-2-丁烯 顺-2-丁烯
E-2-丁烯 反-2-丁烯
H3C C
H
C
CH 3 H3C CC
BEr-2-溴-2-H丁烯
Br CH 3
Z-2-溴-2-丁烯
顺-2-溴-2-丁烯
反-2-溴-2-丁烯
三、顺反异构体的性质
反式构型内能比顺式小,有较
高的熔
点、较小的溶解度。顺式和反式异构体 的
E-2-丁烯
H3C
Br
CC
H
CH 3
H3C
CH 3
CC
H
Br
Z-2-溴-2-丁烯 E-2-溴-2-丁烯
H3C
CH 2CH 2CH 3
CC
H
CH 2CH 3
(-CH3 > H; -CH2CH2CH3 > -CH2CH3)
Z-3-乙基-2-己稀
Z、E命名法适用于所有的顺反异 构体,顺、反法和Z、E法两种命 名系统的规则不同,二者没有固 定联系,在某些顺反异构体中, 顺式对应Z型,反式对应E型,但 也常有二者无对应关系的情况。 例如:
沸点l℃
顺 -2- 丁 烯 和 反 -2- 丁 烯 的 沸 点 不 同,它们显然是两种不同的物质。 二者的分子组成和构造完全相同, 其区别在于构型不同。
一、产生顺反异构的条件
产生顺反异构必须具备2个条件: ①分子中存在限制旋转的因素,如双键或脂环;②每个不能自由旋转的碳原 子必须连有2个不同的原子或原子团。
原子,原子序数相同,就延伸比
较第一碳原子上所连接的原子。-
CH3与第一碳原子相连的是H、H、H, 而在-CH2CH3中与之相连的是C、H、 H,由于碳的原子序数大于氢,故
CH 3 CH >
H
C(C、H、H)
C(H、H、H)
H CH
H
同理
CH 3 C CH3 >
CH 3
CH 3 C CH3 >
H
CH 2CH 3 CH
H
137℃
二、顺反异构的命名
(一)顺、反命名法
2个相同的原子或原子团处于π键或脂环平面同侧的异构体称为顺 式,处于异侧称为反式。例如:
HOOC
COOH HOOC
H
C H
C
H
C H
顺-丁烯二酸
C
COOH
反-丁烯二酸
(失水苹果酸)
(延胡索酸)
Br
Br Br
CH 3
CC
CC
H
CH3 H
Br
顺-1,2-二溴丙烯
化学性质大致相同,只是与空间排列有 关
的化学反应才显出差异。顺反异构体在 生
理活性或药理作用上往往表现出很大差 异。
HO
OH
C2H5
OH
CC
C2H5
C2H5
HO
CC C2H5
顺-己烯雌酚
反-己烯雌酚
又如,维生素A分子中的 双键全部为反式构型;具有降血 脂作用的花生四烯酸则全部为顺 式构型。若改变上述化合物的构 型,将导致生理活性的降低甚至 丧失。
第十章 立体异构
有机化合物普遍存在同分异构现 象,简称异构现象,这是有机化 合物的结构特点之一。各种异构 的相互关系归纳如下:
同分异构
碳链异构 碳架异构
碳环异构
构造异构
位置异构 官能团异构 互变异构
顺反异构
立体异构
构型异构 对映异构
构象异构
生命过程本身包含着复杂的立体 化学问题。生物体在新陈代谢过 程中所产生的化学物质具有高度 的立体专一性;一切具有生物活 性物质的功能,都与其构型或构 象紧密地联系着。如药物的构型 与受体之间的构效关系,生物反 应过程中的立体选择性,都需从 立体化学的角度来理解和阐明。