智能家居监测控制系统的设计方案
2024年智能家居控制系统设计施工方案(系统设计与功能实现)

《智能家居控制系统设计施工方案》一、项目背景随着科技的不断进步,人们对生活品质的要求越来越高。
智能家居控制系统作为一种新型的家居生活方式,能够为用户提供更加便捷、舒适、安全的居住环境。
本项目旨在为某高档住宅小区设计并施工一套智能家居控制系统,实现对家居设备的智能化管理和控制。
该住宅小区共有[X]栋住宅楼,每栋楼有[X]个单元,每个单元有[X]层。
小区业主对家居智能化的需求较高,希望通过智能家居控制系统实现灯光控制、窗帘控制、家电控制、安防监控等功能。
二、系统设计1. 系统架构智能家居控制系统采用分布式架构,由中央控制器、传感器、执行器和通信网络组成。
中央控制器负责整个系统的管理和控制,传感器负责采集环境信息,执行器负责执行控制指令,通信网络负责各设备之间的数据传输。
2. 功能设计(1)灯光控制:实现对室内灯光的开关、调光、调色等控制,可根据不同场景自动调节灯光亮度和颜色。
(2)窗帘控制:实现对窗帘的开合控制,可根据光线强度自动调节窗帘的开合程度。
(3)家电控制:实现对电视、空调、音响等家电设备的远程控制,可通过手机 APP 或语音控制家电设备的开关、调节等操作。
(4)安防监控:实现对室内外的视频监控,可通过手机 APP 实时查看监控画面,当有异常情况发生时,系统会自动发送报警信息。
(5)环境监测:实现对室内温度、湿度、空气质量等环境参数的监测,可根据环境参数自动调节空调、新风系统等设备的运行状态。
3. 通信方式智能家居控制系统采用无线通信方式,包括 ZigBee、Wi-Fi、蓝牙等。
其中,ZigBee 用于传感器和执行器之间的通信,Wi-Fi 用于中央控制器和手机 APP 之间的通信,蓝牙用于近距离设备之间的通信。
三、施工步骤1. 施工准备(1)技术准备:熟悉施工图纸和技术规范,制定施工方案和施工进度计划。
(2)材料准备:根据施工图纸和材料清单,采购所需的设备和材料,并进行检验和验收。
(3)人员准备:组织施工人员进行技术培训和安全教育,明确施工任务和职责。
智能家居监控系统的设计与实现

智能家居监控系统的设计与实现智能家居监控系统是指通过传感器、摄像头、智能设备等技术,实现对家庭环境的远程监控和智能控制的系统。
本文将介绍智能家居监控系统的设计与实现,包括系统架构、功能模块、技术原理等方面的内容。
一、系统架构智能家居监控系统的典型架构包括三个层次:物联网层、应用层和管理平台。
1. 物联网层:该层负责感知和采集家庭环境数据,包括温度、湿度、烟雾等传感器数据以及摄像头的视频图像。
通过无线通信技术,将数据传输到应用层。
2. 应用层:该层是系统的核心部分,负责数据的处理和智能控制。
通过数据分析算法,对传感器数据进行实时监测和分析,判断是否存在异常情况。
当监测到异常情况时,系统会自动发出警报,并向用户发送通知。
同时,用户也可以通过手机端或Web端应用程序,实现对家庭环境的远程控制,如打开灯光、调节温度等。
3. 管理平台:该平台用于系统的管理和维护,包括用户账户管理、设备管理、系统配置等。
用户可以通过管理平台添加、删除或修改设备,同时也可以查看历史数据和日志。
二、功能模块智能家居监控系统的功能模块包括传感器模块、视频监控模块、数据处理模块、通信模块和用户界面模块。
1. 传感器模块:负责感知和采集家庭环境数据,包括温度、湿度、烟雾等传感器数据。
传感器模块需要具备高精度、低功耗和稳定性的特点,以确保数据采集的准确性和可靠性。
2. 视频监控模块:通过摄像头实时采集家庭环境的视频图像,并进行实时传输和存储。
视频监控模块需要具备高清晰度和稳定性,以实现对家庭环境的全方位监控。
3. 数据处理模块:负责对传感器数据和视频图像进行实时分析和处理。
数据处理模块需要具备强大的计算能力和智能算法,以实现对异常情况的判断和处理。
4. 通信模块:负责将采集到的数据和处理结果传输到应用层。
通信模块可以采用无线通信技术,如Wi-Fi、蓝牙等,以实现数据的远程传输和控制。
5. 用户界面模块:提供给用户的交互界面,包括手机端和Web 端应用程序。
智能家居控制系统工程设计方案

智能家居控制系统工程设计方案一、项目背景随着科技的飞速发展,人们生活水平的不断提高,对家居舒适度、安全性和便捷性的需求也越来越高。
智能家居系统作为一种新兴的家居生活方式,将现代信息技术、网络通信技术、自动控制技术等应用于家居领域,为用户带来智能化、舒适化、安全化的家居体验。
本项目旨在为客户提供一套全面、实用的智能家居控制系统,实现家居设备的智能化管理,提升生活质量。
二、系统目标1. 实现家居设备的远程控制和本地控制,提高家居便捷性和舒适度;2. 实现家居设备的数据采集和状态监测,提高家居安全性和可靠性;3. 实现家居设备的智能化管理,节省能源,降低能耗;4. 实现与第三方服务平台(如物业、安防等)的对接,提供更多增值服务。
三、系统设计原则1. 安全性:确保系统稳定可靠,防止数据泄露和设备损坏;2. 实用性:充分考虑用户需求,提供切实可行的功能和服务;3. 兼容性:考虑与其他家居设备、平台和系统的兼容性,便于后期拓展和升级;4. 易用性:界面友好,操作简便,易于用户上手和普及。
四、系统架构本智能家居控制系统分为四个层次:感知层、传输层、平台层和应用层。
1. 感知层:包括各种智能设备传感器、控制器等,负责收集家居环境和设备状态信息;2. 传输层:包括有线和无线通信模块,负责将感知层收集到的数据传输至平台层;3. 平台层:包括数据处理、分析和存储模块,负责对传输层发送的数据进行处理和分析,实现智能控制;4. 应用层:包括用户界面和应用程序,负责与用户互动,提供便捷的操作体验。
五、系统功能1. 家电控制:通过手机APP、语音助手等方式,实现家电的开关、调节等功能;2. 环境监测:实时监测家居环境的温度、湿度、空气质量等参数,并在异常时发出警报;3. 安全监控:通过摄像头、门磁、窗磁等设备,实现家居安全监控,防止非法入侵;4. 能源管理:对家居设备的能耗进行实时监测和分析,实现节能降耗;5. 智能场景:根据用户需求和家居环境,实现智能场景的切换,提高生活品质;6. 远程控制:通过互联网实现家居设备的远程控制,方便用户随时随地管理家居设备。
智能家居中的环境监测与控制系统设计与实现

智能家居中的环境监测与控制系统设计与实现智能家居是指应用信息技术、网络通信技术以及控制技术等手段,实现对家庭环境的智能化管理和控制的一种家居模式。
环境监测与控制是智能家居中的核心功能之一,它通过传感器检测家庭环境数据,并通过控制器对各种设备进行智能调控,提供舒适、安全、节能的居住环境。
本文将详细介绍智能家居环境监测与控制系统的设计与实现。
一、智能家居环境监测系统设计智能家居环境监测系统需要满足以下要求:1. 传感器选择与布置:环境监测系统的性能取决于传感器的选择和布置。
常用的传感器有温湿度传感器、光照传感器、烟雾传感器、CO2传感器等。
在设计之初,需要根据实际需求确定传感器的类型和数量,并合理布置在家庭各个关键区域,以获取准确的环境数据。
2. 数据采集与传输:环境监测系统需要实时采集传感器的数据,并传输至控制中心。
可以采用有线或无线方式进行数据传输。
有线方式可以通过网络线连接控制中心和传感器节点,无线方式可以利用无线通信技术,如Wi-Fi、Zigbee、蓝牙等。
3. 数据处理与分析:传感器采集的数据需要经过处理和分析,从中提取有用的信息。
可以使用嵌入式系统或云计算技术进行数据处理与分析。
嵌入式系统具有实时性强、功耗低、可扩展性好等特点,适用于对环境数据进行实时处理。
云计算技术可以实现大数据处理和分析,用于挖掘环境数据背后的规律和趋势。
4. 用户界面设计与交互:环境监测系统需要提供友好的用户界面,方便用户实时了解家庭环境的各项指标,并进行操作和控制。
用户界面可以通过手机App、电脑软件或智能终端进行展示。
用户可以通过界面查看环境数据、设置温度、湿度等参数,并对设备进行远程控制。
二、智能家居环境控制系统设计智能家居环境控制系统需要实现以下功能:1. 自动设备控制:通过环境监测系统采集的数据,智能家居系统可以根据用户的需求自动控制各种设备,如空调、灯光、窗帘等。
例如,在温度过高时,系统可以自动打开空调调节室温;在光照不足时,系统可以自动打开窗帘或灯具。
智能家居控制系统技术方案

智能家居控制系统技术方案智能家居控制系统是指通过各种科技手段将家居设备、家居设施和家居安全功能进行互联互通和自动化管理,提高居住的舒适度、便利性和安全性。
在智能家居控制系统中,核心是建立一个稳定可靠的智能家居控制中心,通过传感器、执行器和网络通信设备,实现家居设备的远程监控和控制。
一、系统硬件设计1.智能家居控制中心2.传感器为了感知家居环境的状态和变化,系统需要安装各种类型的传感器,如温湿度传感器、光照传感器、烟雾传感器、气体传感器等。
传感器需要与控制中心进行通讯,传输相关数据。
3.执行器执行器是指能够实现家居设备远程控制的设备,如智能插座、智能灯具、智能窗帘、智能门锁等。
执行器需要与控制中心进行通讯,接收指令并执行相应的操作。
4.网络通信设备为了实现智能家居设备之间的互联互通,控制系统需要选择合适的通信方式,常见的有Wi-Fi、蓝牙、ZigBee、Z-Wave等。
选择网络通信设备时,需要考虑其传输速率、通信距离和抗干扰能力等因素。
二、系统软件设计1.用户界面2.设备控制算法3.数据存储和分析三、系统安全性设计为了保障用户的隐私和家居系统的安全,智能家居控制系统需要加入合适的安全措施,如数据加密、身份验证、访问权限管理等。
系统需要使用安全协议和加密算法来保护数据传输和存储的安全,同时还需要定期更新系统软件和固件来修补漏洞。
四、系统拓展性设计综上所述,智能家居控制系统的技术方案需要兼顾硬件设计、软件设计、安全性设计和拓展性设计,以提供用户便捷的居住体验和安全保障。
随着科技的不断发展,智能家居控制系统将会越来越普及,并且将不断迭代和完善。
《智能家居自动控制与监测系统的设计与实现》范文

《智能家居自动控制与监测系统的设计与实现》篇一一、引言随着科技的飞速发展,智能家居系统逐渐成为现代家庭生活的重要组成部分。
智能家居自动控制与监测系统,通过将先进的自动化技术与互联网技术相结合,实现了对家庭环境的智能控制与实时监测。
本文将详细阐述智能家居自动控制与监测系统的设计与实现过程。
二、系统设计(一)设计目标本系统设计旨在实现家庭环境的智能化控制与监测,提高居住者的生活品质和安全保障。
系统应具备易用性、可扩展性、安全性和稳定性等特点。
(二)系统架构本系统采用分层设计,分为感知层、网络层和应用层。
感知层负责采集家庭环境数据,网络层负责数据的传输与处理,应用层负责用户界面的展示和控制指令的发送。
(三)硬件设计1. 传感器:包括温度传感器、湿度传感器、烟雾传感器等,用于采集家庭环境数据。
2. 控制设备:包括灯光控制器、窗帘控制器、空调控制器等,用于执行用户的控制指令。
3. 中枢控制器:负责数据的处理与传输,采用高性能的微处理器,具备强大的计算能力和稳定的运行性能。
(四)软件设计1. 数据采集与处理:通过传感器采集家庭环境数据,进行数据清洗和预处理,提取有用的信息。
2. 数据传输:通过网络将数据传输至中枢控制器,实现数据的实时传输和存储。
3. 控制指令发送:根据用户的操作或预设的规则,向控制设备发送控制指令,实现智能家居的自动化控制。
三、系统实现(一)传感器与控制设备的连接与配置传感器和控制设备通过总线或无线方式与中枢控制器连接。
连接完成后,进行设备的配置和参数设置,确保设备能够正常工作。
(二)数据采集与处理模块的实现通过编程实现数据采集与处理模块,包括传感器的数据读取、数据的清洗和预处理、有用信息的提取等。
将处理后的数据存储到数据库中,以供后续分析和使用。
(三)数据传输模块的实现采用网络通信技术实现数据传输模块,将处理后的数据实时传输至中枢控制器。
同时,中枢控制器能够接收用户的操作指令或预设的规则,向控制设备发送控制指令。
基于ZigBee的智能家居监测控制系统的设计

基于ZigBee的智能家居监测控制系统的设计一、本文概述随着科技的不断进步和人们生活水平的提高,智能家居的概念逐渐深入人心。
智能家居通过集成先进的通信技术、控制技术、传感器技术等多种技术,实现了家庭环境的智能化管理和控制。
其中,ZigBee 技术作为一种低功耗、低成本、低复杂度的无线通信协议,在智能家居领域具有广泛的应用前景。
本文旨在探讨基于ZigBee技术的智能家居监测控制系统的设计,旨在为读者提供一个全面、系统的了解,并希望为智能家居领域的发展提供一些有益的参考。
本文首先介绍了ZigBee技术的基本原理和特点,包括其通信机制、网络拓扑结构以及优势等。
然后,文章详细阐述了基于ZigBee 的智能家居监测控制系统的总体设计方案,包括系统架构、硬件选择、软件设计等方面。
接下来,文章将重点介绍系统中的各个功能模块,如环境监测模块、安防监控模块、家电控制模块等,以及它们之间的协同工作机制和实现方法。
本文还将对系统的性能和稳定性进行分析和测试,以验证设计的可行性和有效性。
文章将总结整个设计过程中的经验教训,并对未来的发展方向进行展望。
通过本文的阅读,读者可以深入了解基于ZigBee的智能家居监测控制系统的设计理念、实现方法和应用前景,为相关领域的研究和开发提供有益的参考和借鉴。
二、ZigBee技术概述ZigBee是一种基于IEEE 4标准的低功耗局域网协议,主要用于近距离无线通信。
其名称源自蜜蜂的“ZigZag”舞蹈,寓意着该技术在通信中的灵活性和高效性。
ZigBee技术专为低数据速率、低功耗、低复杂度和低成本的应用场景设计,因此在智能家居监测控制系统中具有广泛的应用前景。
ZigBee技术的核心优势在于其低功耗和低成本。
由于其采用了休眠机制,设备在不进行数据传输时可以进入低功耗的休眠状态,从而显著延长了设备的使用寿命。
ZigBee网络的构建成本相对较低,使得其成为智能家居领域理想的通信协议之一。
在智能家居监测控制系统中,ZigBee技术可以实现设备间的无线连接和数据传输。
智能家居中的环境监测与控制系统设计

智能家居中的环境监测与控制系统设计随着科技的发展和智能化的需求不断增长,智能家居也逐渐成为了人们生活中的重要组成部分。
智能家居中的环境监测与控制系统是智能家居的核心之一,它可以帮助人们实时感知和控制家居环境,提供更加智能便捷的生活体验。
本文将详细介绍智能家居环境监测与控制系统的设计。
一、系统架构设计1.传感器部分:传感器部分用于感知家居环境的各种参数,包括温度、湿度、光照强度、气体浓度等。
传感器可以采用多种通信方式与控制器进行数据传输,如无线传感器网络(WSN)或者物联网(IoT)技术。
2.控制器部分:控制器部分负责对传感器获取到的环境参数进行处理和控制,实现对家居环境的智能调节。
控制器可以采用嵌入式系统或者微型计算机,具备较强的计算和控制能力。
3.用户界面部分:用户界面部分提供给用户一个可视化的界面,用于实时查看和控制家居环境。
用户可以通过手机、平板电脑或者电视等终端设备进行远程监控和控制。
二、环境监测与控制算法设计为了实现对家居环境的智能监测与控制,需要设计合适的算法来对环境参数进行分析和处理。
以下是一些常用的环境监测与控制算法:1.温度控制算法:根据家居环境的温度参数和用户设定的温度值,通过控制空调、暖气或者风扇等设备的运行状态,实现对温度的智能调节。
2.湿度控制算法:根据家居环境的湿度参数和用户设定的湿度值,通过控制加湿器或者除湿器等设备的运行状态,实现对湿度的智能调节。
3.光照控制算法:根据家居环境的光照强度参数和用户设定的光照要求,通过控制窗帘或者灯光等设备的开关状态,实现对光照的智能调节。
4.气体浓度控制算法:根据家居环境中的气体浓度参数和用户设定的阈值,通过控制空气净化器、排风扇等设备的运行状态,实现对空气质量的智能调节。
三、系统实现与应用智能家居环境监测与控制系统的实现主要包括传感器的选择与布置、控制器的搭建与配置以及用户界面的设计与开发。
1.传感器的选择与布置:根据需求选择合适的传感器,如温湿度传感器、光照传感器、气体传感器等,并根据家居布局合理安置传感器节点,保证全面感知家居环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能家居监测控制系统的设计方案第一章绪论1.1智能家居监测控制系统的发展及现状由现在科技的发展可推知未来智能家居将向固定终端控制、智能手机控制、无线与有线网络控制系统方向发展。
(1)终端控制,在现在电子技术高度发达和快速发展的今天,未来智能家居控制系统走进千家万户将不只是一个设想,通过一个终端控制屏实现对家庭内部温度,湿度,气体成分等的智能监测和控制。
(2)智能手机,手机的出现实现了以前只有在小说和神话中才能实现的顺风耳和千里传音,缩短了人与人之间的距离,极大的丰富了人们的生活,特别是智能手机的出现将手机的应用提高到了另一个平台。
不论人们在何时何地在做什么事基本上都是离不开智能手机,为此将智能手机应用于智能家居是一个明智的选择而且也是智能家居发展的必然趋势,从此手机不仅仅是打电话、发信息和上网的娱乐工具,而且还是随时随地掌控家居内的一切,如防火防盗等的不二选择。
通过将智能家居的客户端软件嵌入到智能手机中,只要动动手指就可以实现对家庭内部的远程监测与控制。
(3)无线与有线控制系统有机融合。
1.1.1智能家居的国内外现状(1)国内现状我国的智能家居从1994年萌芽至今得到了快速的发展,是继房地产行业后又一大发展热潮,随着软件协议与硬件技术开始不断的融合,各大行业进军智能家居市场,我国的智能家居行业进入了发展的黄金时期。
但是较国际国外智能家居行业起步晚,还没有形成统一的国家标准,这是对我国智能家居的发展是不利的,但是总体来说,我国的智能家居还是取得了相当可观的成果的。
如:①海尔公司推出的e家庭,以电脑作为整个系统的控制中心,利用网络技术将各种家庭用电设备联系起来,利用海尔推出的手机作为远程控制器,使一些用电设备实现远程和智能控制成为可能。
②另外,清华同方研发的e-home,使用嵌入式技术和网络技术,基于国际成熟的智能家居技术,针对中国家庭的实际情况设计和制造,可谓是为整个中国家庭量身制作的。
但是就目前智能家居的发展状况来看,整个智能家居市场只适合中高消费人群,远远还未走进千家万户,中国智能家居的设计和制造技术和成本还有待改善。
随着国内各大软、硬件机构正在积极渗入智能家居行业,为智能家居行业注入新鲜的血液,可以展望我国的智能家居前途将是一片大好。
(2)国外现状国外智能家居起步较早,从1984年美国出现第一栋智能建筑以后,美国、加拿大和欧洲等一些发达国家就开始研究和退广智能家居,而且现在智能家居技术已相当成熟,最具代表性的智能家居有:①美国推出的X-10系统,该系统不是使用一般数字设备控制的信号线利用低电平传输信息,而是利用电力线作为控制的网络平台,采用集中控制方式实现。
这套的功能较为强大,而且不需要额外的布线,安装时也省去了在墙上打孔等的不便,因此实现起来是很容易被广泛的家庭接受,操作起来也相对简单。
但是在中国国内推广造价很高,因此,在我国国内未能得到很好的发展。
②德国的EIB系统,该系统采用总线技术及中央控制技术实现控制功能。
但由于系统价格较高,且实际安装不是很容易,因此在我国也未得到理想的发展。
③新加坡的8X系统,该系统也是使用总线技术和集中控制方式来实现智能家居控制的功能。
它可以利用的产品对系统进行扩展,技术较为成熟,适合中国国情。
但是由于系统架构、灵活性等方面还难以达到要求且价格也是较高,所以目前在国内也是没有得到广泛的应用。
1.2智能家居监测与控制系统研究的目的及意义1.2.1智能家居监测控制系统研究的目的火是可燃物燃烧,发生剧烈化学反应的过程,纵观人类的发展历史可知,火的使用和人工取火的发明是人类文明史进步的催化剂,而在当今人类的生产和生活活动中再也离不开火的使用。
常言道水火无情,火失控时就会发生火灾,在世界上每年因火灾丧失幸福的家庭不计其数,因此在我们在使用火的过程中还需对其进行有效的监控。
因为在产生火的同时必然会产生烟雾等物质,因此要对火灾的监控和报警就可以通过对空气中的可疑气体的监控和报警来实现。
温度和湿度是影响人们居住的最重要的因素。
研究表明最适宜人们居住的温湿度:冬天分别为18~25℃和30%~80%;夏天分别为23~28℃和30%~60%的室内,人会感到最舒适,精神状态好,思维最活跃,也就是说这种环境最适合人类的居住。
不仅如此,现代人追求的是舒适便捷的生活,因此智能家居研究的目的不只是提供安全舒适的家居环境。
随着通信技术、计算机技术和网络技术等现代科技的发展,智能家居逐步走上移动控制和远程控制的发展轨迹。
将智能家居控制系统通过网络与110、119等联系起来,当家居内出现突发事件,如发生火灾、有非法人员闯入等,家居主人和110或119第一时间收到信息通知,并且智能家居控制系统还可以做出相应的处理,例如发生火灾时,离火源最近的消防设备将自动喷水或者自动释放灭火泡沫等。
同时,互联后的智能家居可以通过手机、电脑等终端设备实现远距离控制,例如可以在回家的途中通过终端设备提前打开空调、播放背景音乐、打开电视机选择自己喜欢的节目、让热水器烧热水等等,为住户尽可能地提供舒适、安全、便捷的居住环境。
因此,对于追求高端上档次的物质生活和精神生活的现代人来说,安全的家居环境只是选择居住的最基本的要求,舒适健康安全便捷的居住环境才是现代人所向往的和追求的,所以对家庭居住环境方方面面的要求也是越来越高的,显然对家居智能化的研究就显得非常重要了。
1.2.2智能家居监测控制系统研究的意义随着社会经济和人类文明的进步发展,人们追求高端上档次的生活的渴望是越来越激烈,特别是对家居的选择要求越来越高,不仅是要追求安全,而且还要居住起来舒适,因此对现在的人来说又形成了新的社会矛盾,也就是落后的家居环境与人们日益增长的家居享受之间的矛盾。
虽然我国的智能家居从1994年萌芽至今已有近二十年的历史,智能家居技术已得到飞速的发展,但是就总体而言还是不容乐观。
并且国外成熟的智能家居在国内的推广有诸多的不便,因此我国的智能家居还亟待研究与发展。
本设计对智能家居监测与控制系统的研究可以丰富对智能家居的认识,增强自身的动手能力和发现、解决问题的能力,有利于激发智能家居研究的热情。
同时智能家居监测控制系统可以让住户安心入住,利用方便、高效的控制方案为住户提供舒适的家居环境。
1.3要达到的技术要求必须有火灾,煤气烟雾、温湿度探测的功能,能现场产生声光报警及做出相应的反应。
第二章智能家居控制系统的设计方案2.1任务分析硬件设计:首先是设计单片机的最小系统,使单片机具有一定的功能,如烧写程序的功能和复位等功能。
其次是设计显示电路,主要目的是用于温湿度的显示,使检测的电信号直观的显示出来便于程序调试、数据的理解和操作。
再次是设计传感器检测电路,采集家居环境参数用于下一步设计。
第四是设计报警电路,用于参数异常报警。
最后就是设计按键等其他电路。
软件设计:首先是设计液晶显示器的初始化程序,其次是设计温湿度传感器、烟雾传感器、红外线传感器等的驱动程序,将温湿度传感器等传感器采集的数字信号转化为液晶显示器能够显示的信号在显示器上显示出来,并且为下一步的控制设计提供数据来源。
再次是设计烟雾驱动和报警驱动。
最后是设计控制程序。
2.2设计思想健康性:做到家居控制区域自动控温、控湿,提供适宜的温湿度,保持空气清新。
安全性:自动检测家居内部空气成分,做到火灾报警和提供一定的解决措施。
方便性:设计简单,容易生产安装且容易使用,系统有一定的可扩展性。
智能性:可以根据主人的喜好进行参数设计,遇见火灾时能自动喷水灭火。
2.3 系统设计方案选择方案一:采用AT89C51单片机作为控制芯片,利用DS18B20温度传感器检测环境温度,NRG RH5空气湿度传感器检测环境湿度,其设计框图如下所示:AT89C51LCD1602显示器DS18B20 A/D转换NRG RH5按键LED灯蜂鸣器图2-1 方案一设计框图(1)单片机的选择AT89C2051是美国ATMEL生产的低电压、高性能COSM8位单片机,引脚图如下所示:图2-2 AT89C51引脚图参数:1)4K字节程序存储空间;2)工作频率:0Hz~24MHz;3)128×8位内部RAM;4)32个I/O口;5)两个16位定时器/计数器;6)5个中断源;(2)温、湿度传感器的选择采用单个的温度传感器和湿度传感器,温度传感器选择DS18B20,湿度传感器选择NRG RH5空气湿度传感器。
DS18B20温度传感器:DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式。
型号多种多样,有LTM8877,LTM8874等等。
可以根据应用场合的不同而改变其外观。
封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。
耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
图2-3 DS18B20封装图参数:温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃NRG RH5空气湿度传感器:RH-5 是低成本的可持续测量相对湿度的传感器,需外接电源才能工作。
采用聚合体电阻制成,输出线性信号,并能保持反应灵敏度和长期稳定性。
参数:1) 输出信号:线性模拟电压;2) 换算:% 相对湿度 = 电压 x 20;3) 测量范围:0~95 % 相对湿度;4)电源::10 ~36 V DC, 12V /1.2 mA;5)尺寸:115mm (4.5") * 102mm (4") * 80mm (3.1");6)重量:0.68 kg (1.5 lbs)。
方案二:使用宏晶STC增强型单片机做为控制芯片,采用温湿度模块作为环境温湿度采集传感器设计,其设计框图如图2-5所示。
(1)单片机的选择:STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,与C51单片机完全兼容,软硬件设计时基本无需较大的修改。
图2-4 STC89C52引脚图参数:1) 工作频率范围:0~40MHz,相当于普通8051单片机的两倍,实际工作频率最高可达48MHz。
2) 8KROM字节。
3) 512 字节RAM内存。
4) 增加P4口,共有32个I/O口,复位后为:P1、P2、P3、P4 是准双向口/弱上拉, P0口和传统8051单片机一样,总线扩展时,无需上拉电阻,用作I/O 口时,需加上拉电阻。
5) 具有ISP在线系统可编程功能。
6) 三个16 位定时器/计数器。
7) 4 路外部中断,下降沿中断或低电平触发电路,掉电模式可由外部中断低电平触发中断方式唤醒8) 通用异步串行口(UART),可用软件实现多个UART(2)温、湿度传感器的选择DHT11温湿度传感器,该传感器将温度传感器和湿度传感器集成在一起,而且具有较高的灵敏度。