地震勘探原理总结
地震勘探原理

地震勘探原理地震勘探是一种利用地震波在地下传播的物理现象,通过地震波在地下不同介质中的传播速度和反射、折射等特性来获取地下结构信息的方法。
地震勘探原理是基于地震波在地下传播的特性,利用地震波在不同介质中传播速度不同的特点,来推断地下介质的性质和结构。
地震勘探原理的研究对于地下资源勘探、地质灾害预测、地下水资源调查等具有重要的意义。
地震波是一种机械波,它在地下的传播受到地下介质的影响,不同介质对地震波的传播速度和传播路径都有不同的影响。
当地震波遇到地下介质的边界时,会发生反射和折射现象,这些现象可以被记录下来,并通过地震勘探仪器进行分析,从而推断地下的结构信息。
地震勘探原理主要包括地震波的产生、传播和接收三个基本过程。
首先,地震波的产生通常是通过地震仪器或爆炸物等方式产生的,产生的地震波会向地下传播。
其次,地震波在地下的传播受到地下介质的影响,不同介质对地震波的传播速度和传播路径都有不同的影响。
最后,地震波会被地震勘探仪器接收到,并记录下地震波在地下传播的路径和特性,通过对这些数据的分析,可以推断地下的结构信息。
地震勘探原理的研究对于地下资源勘探具有重要的意义。
例如,在石油勘探中,地震勘探可以通过分析地下介质的反射特性,来推断地下是否存在油气藏;在矿产资源勘探中,地震勘探可以通过分析地下介质的反射特性,来推断地下是否存在矿产资源。
此外,地震勘探原理还可以应用于地质灾害预测、地下水资源调查等领域,对于科学研究和工程应用都有重要的意义。
总之,地震勘探原理是一种利用地震波在地下传播的物理现象,通过地震波在地下不同介质中的传播速度和反射、折射等特性来获取地下结构信息的方法。
地震勘探原理的研究对于地下资源勘探、地质灾害预测、地下水资源调查等具有重要的意义,是地球物理勘探领域的重要组成部分。
希望通过对地震勘探原理的深入研究,可以更好地利用地震波这一物理现象,为人类社会的发展和资源利用做出更大的贡献。
地震勘探原理总结

油气勘探方法1.地质方法:通过观察研究出露地表的地层,岩石对地质资料综合解释分析了解生储盖运移条件进行远景评价.重力勘探、磁法勘探、电法勘探、地震勘探、地球物理测井2.地球化学勘探方法3.钻探方法一、地震勘探:是利用人工的方法引起地壳振动,在用精度仪器按一定的观测方式记录爆炸后地面上各接收点的振动信息,利用对原始记录信息经一系列加工处理后得到的成果资料推断地下地质构造的特点。
二、地震勘探的环节:1)野外资料收集2)室内资料处理3)地震资料解释三、地震波:弹性振动在地球中的传播统称地震波。
四、波前:地震波在介质中传播时,某时刻刚刚开始位移的质点构成的面,称为波前。
五、波后:某一时刻介质中各点的振动刚好停止,这一曲面叫波后,也叫波尾。
六、波面:把某一时刻介质中所有相同状态的点连成曲面,这个曲面就叫做这个时刻的波面,也叫等相面。
七、射线:是表示地震波能量传播路径的曲线。
八、振动图:每个检波器所记录的便是那个检波器所在位置的地面振动,它的振动曲线习惯称作该点的振动图。
九、波剖面:在地震勘探中,把沿着测线画出的波形曲线叫做波剖面。
十、地震子波:地震波在地面附近的疏松层中传播的速度非常低,一般为每秒数百米,称为低速带。
十一、地震传播规律反射定律:反射线位于入射平面内,反射角等于入射角。
透射定律:透射线位于入射平面内,入射角的正弦与透射角的正弦之比等于第1、第2两种介质中的波速之比费马原理:(射线原理)/时间最小原理。
波沿射线传播的时间是最小的――费马时间最小原理。
惠更斯――菲列涅耳原理:波传播时,任一点处质点的新扰动,相当于上一时刻波前面上全部新震源所产生的子波在该点处相互干涉叠加形成的合成波。
慧更斯原理:波在传播过程中,任一时刻的波前面上的每一点都可以看作是一个新的点震源,由它产生二次扰动,形成子波前,这些子波前的包络面(envelope) ,就是新的波前面。
十二、时距曲线:指地震波走时与距离的关系曲线,即地震波到达各检波点的时间同检波点到爆炸点的距离之间的关系曲线,曲线上各段的斜率就是各地震波视速度的倒数。
地震勘探原理

地震勘探原理地震勘探是一种利用地震波在地下传播的特性来获取地下结构信息的方法。
它是一种非破坏性的地质勘探方法,广泛应用于石油、天然气、地质灾害等领域。
地震勘探原理是基于地震波在地下介质中传播的特性,通过记录地震波的传播时间和反射、折射等现象,来推断地下介质的性质和结构。
地震勘探原理的核心是地震波的传播。
当地震波传播到地下介质时,会发生折射、反射和透射等现象。
这些现象会受到地下介质的性质和结构的影响,因此可以通过记录地震波的传播路径和传播时间,来推断地下介质的性质和结构。
地震波在地下介质中传播的速度、方向和路径都会受到地下介质的性质和结构的影响,因此可以通过地震波的传播特性来获取地下结构信息。
地震勘探原理的实施需要利用地震仪器来记录地震波的传播情况。
地震仪器通常包括地震震源和地震接收器。
地震震源可以是人工震源,也可以是自然地震。
地震接收器用于记录地震波的传播情况。
通过分析地震波的传播时间和路径,可以推断地下介质的性质和结构。
地震勘探原理在实际应用中有着广泛的应用。
在石油勘探中,地震勘探可以帮助勘探人员确定油气藏的位置、形状和规模,从而指导钻探工作。
在地质灾害预测中,地震勘探可以帮助科研人员了解地下岩层的情况,从而预测地震、滑坡等地质灾害的发生概率。
在地质调查中,地震勘探可以帮助地质学家了解地下地质构造和构造特征,为地质勘探和工程建设提供重要信息。
总之,地震勘探原理是一种通过记录地震波的传播情况来推断地下结构信息的地质勘探方法。
它在石油、天然气、地质灾害等领域有着广泛的应用,为相关领域的工作提供了重要的技术支持。
随着科学技术的不断发展,地震勘探原理也在不断完善和发展,将为地质勘探和工程建设提供更加精准的地下结构信息。
地震勘探的基本原理

地震勘探的基本原理地震勘探的基本原理地震勘探是一种利用地震波在地下传播的速度、反射、折射和衍射等特性,来研究地下构造和物性的方法。
其基本原理是将人工产生的地震波通过地表或井口传播到地下,经过不同介质的反射、折射和衍射后,再由接收器记录到地面上,并通过对记录数据的处理与解释,获得关于地下构造和物性的信息。
一、地震波的产生1.1 人工震源人工震源是指人类利用各种手段产生的能量大、频率宽、时间短暂、方向可控制且具有重复性等特点的振动源。
常见的人工震源包括爆炸物、振动器和压缩空气枪等。
1.2 自然震源自然震源是指自然界中产生的能量大而频率宽广,时间持续较长且不可控制且不具有重复性等特点的振动源。
常见自然震源包括火山喷发、海啸和地球内部运动等。
二、地震波在介质中传播2.1 地震波的类型地震波包括纵波、横波和面波等。
其中,纵波是指地震波在介质中传播时,颗粒沿着传播方向来回振动的一种波动形式;横波是指地震波在介质中传播时,颗粒垂直于传播方向来回振动的一种波动形式;面波是指地震波在介质表面上发生反射、折射和衍射等现象后,沿着介质表面传播的一种复杂的振动形式。
2.2 地震波在介质中的速度地震波在不同介质中传播的速度不同。
例如,在固体岩石中,纵波单向速度通常高于横波单向速度,而在液态岩石或水中,则不存在横向速度。
同时,不同类型的地震波也具有不同的速度特性。
三、地震勘探数据采集3.1 接收器接收器是指用于记录地震信号并将其转化为电信号输出的设备。
常见接收器包括地震仪、加速计和压电传感器等。
3.2 数据采集系统数据采集系统是指将接收器记录的地震信号进行放大、滤波和数字化等处理,并存储到计算机或数据采集仪中的设备。
常见的数据采集系统包括模拟型和数字型两种。
四、地震勘探数据处理与解释4.1 数据处理数据处理是指将采集到的地震信号进行滤波、去除噪声、提取地震波到时等预处理工作,以及进行成像和反演等后续分析工作。
常见的数据处理方法包括叠加法、偏移法、共振法和反演法等。
地震勘探原理

地震勘探原理
地震勘探是一种常用的地质勘探方法,通过地震波在地下介质
中的传播特性,可以获取地下结构和地层信息。
地震勘探原理主要
包括地震波的产生、传播和接收三个过程。
首先,地震波的产生是地震勘探的第一步。
一般采用地震震源
来产生地震波,地震震源可以是人工产生的爆炸或者地震仪器产生
的振动,也可以是自然地震。
地震波产生后,会在地下介质中传播,根据地震波在不同介质中的传播速度和衰减规律,可以获取地下介
质的结构和性质信息。
其次,地震波在地下介质中的传播是地震勘探的核心过程。
地
震波在地下介质中传播时会受到地层的反射、折射和透射等现象的
影响,这些现象会改变地震波的传播路径和传播速度。
通过分析地
震波在地下介质中的传播规律,可以获取地下介质的结构信息,比
如地层的界面位置、地层的厚度和速度等。
最后,地震波的接收是地震勘探的最后一步。
地震波在地下介
质中传播后,会被地震接收器接收到。
地震接收器可以是地震仪器
或者地面上的传感器,通过接收地震波的到达时间和振幅等信息,
可以获取地下介质的性质信息,比如地下介质的密度、泊松比和剪
切模量等。
总的来说,地震勘探原理是通过地震波的产生、传播和接收三
个过程,来获取地下介质的结构和性质信息。
地震勘探在石油勘探、地质灾害预测和地下水资源勘探等领域有着广泛的应用,是一种非
常重要的地质勘探方法。
通过对地震勘探原理的深入理解,可以更
好地应用地震勘探技术,为地质勘探和地质灾害预测提供更加准确
的地下信息。
地震勘探原理和方法

地震勘探原理和方法地震勘探是一种通过地震波的传播和反射来探测地下结构的方法。
通过地震勘探,可以获取地下地质信息,如油气资源、地下水等。
其原理是通过地震波在地下的传播和反射,来获取地下结构的信息,从而进行地质勘探。
地震勘探的原理主要包括地震波的产生和传播,以及地震波在不同媒介中的传播速度和反射、折射等现象。
地震波可以通过不同的方法产生,例如在地面上布设震源装置,如地震仪或爆炸物等,通过地面振动产生地震波。
地震波的传播是通过地下介质的传导来实现的。
地震波的传播速度取决于介质的密度、弹性模量等特性。
当地震波遇到介质边界时,会发生反射、折射和透射等现象。
反射是地震波遇到界面时一部分能量反射回来的现象;折射是地震波遇到介质边界发生方向改变的现象;透射是地震波穿过介质边界后继续传播的现象。
地震勘探的方法主要包括地震勘探测井、地震勘探剖面和地震勘探阵列等。
地震勘探测井是通过在地下钻探井口并向井内注入震源来产生地震波,然后通过井中的测震仪记录地震波。
这种方法可以获取井内和井周围的地下结构信息,用于勘探油气资源等。
地震勘探剖面是通过在地表上布设震源和接收器,在不同位置上记录地震波的传播情况。
这些记录的数据可以通过地震处理和解释来获取地下结构的信息。
这种方法可以获取地质信息和油气资源等。
地震勘探阵列是将多个地面震源和接收器布设在一定区域内,同时记录地震波的传播信息。
通过对地震波的分析和解释,可以获取地下结构的信息。
这种方法可以用于地震监测和地震研究等。
地震勘探还可以通过数据处理和解释来获取更详细的地下结构信息。
数据处理包括地震波形记录的处理、去除噪声等。
数据解释包括地震波传播路径的解释、地震反射地震震相的解释等。
总之,地震勘探是通过地震波的传播和反射来获取地下结构信息的一种方法。
通过不同的方法和技术,可以获取地质信息和油气资源等。
地震勘探具有广泛的应用领域和重要的地质意义。
地震勘探原理知识点总结

地震勘探原理知识点总结地震勘探是一种通过观察和分析地震波在地下传播的方式,来获取地下结构信息的地球物理勘探方法。
地震波是由地震事件产生的一种机械波,它在地下的传播过程中会受到不同地质体的影响而产生反射、折射等现象,从而携带着地下结构信息。
因此,地震勘探可以用来确定地下的地层结构、寻找矿藏、油气藏等目的。
在地质勘探中,地震勘探是一种非常重要的方法,本文将对地震勘探的原理知识点进行总结。
地震波的产生地震波是由地球内部的地震事件产生的,地震事件通常是由地质构造活动引起的,比如地震断裂带的发生、火山喷发等。
当地球内部发生地震事件时,会产生由地震波作为机械波向四面八方传播。
地震波在传播的过程中会受到地下不同地质体的影响,并产生不同的反射、折射现象,携带着地下结构信息。
地震波的种类地震波可以分为两种主要类型:压缩波(P波)和剪切波(S波)。
P波是一种机械波,它的传播速度相对较快,能够在固体、液体和气体中传播。
S波是一种横波,只能在固体介质中传播,不能传播在液体和气体中。
P波和S波在地下传播时会受到地质体的影响而产生反射、折射等现象,这些现象可以被记录并用来解释地下结构的特征。
地震波在地下的传播地震波在地下的传播受到地质介质的影响而产生不同的现象。
当地震波遇到介质的界面时,会发生反射现象,一部分能量会被反射回来;另外一部分能量会继续向前传播。
此外,当地震波遇到介质的界面时,也会发生折射现象,这会导致地震波的传播方向发生改变。
地震波的这些特性可以被记录下来,并通过分析来进行地下结构的解释。
地震波的记录地震波在地下的传播过程中,会在地下不同深度和不同位置上产生不同的反射、折射现象。
这些现象可以通过地面上的地震波记录仪被记录下来。
地震波记录仪会记录下地震波传播时的波形和传播时间,这些记录可以被地震学家用来分析地下的结构和岩性。
地震波的解释地震波的记录可以被地震学家用来解释地下的结构和岩性。
通过分析地震波的波形和传播时间,地震学家可以确定地下的地层结构、寻找矿藏、油气藏等目的。
地震勘探原理和方法

地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。
本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。
1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。
纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。
当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。
2.地震波探测方法地震波探测方法包括折射波法和反射波法。
折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。
反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。
在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。
3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。
野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。
室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。
4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。
预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。
5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。
构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《地震勘探原理》各章节的复习要点第一章绪论(不作为考试内容)第二章地震波运动学理论§2.1 几何地震学基本概念1、基本概念,如地震子波:具有多个相位、延续60~100毫秒的稳定波形称为地震子波。
几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.波面:介质中每一个同时开始振动的曲面。
射线:在几何地震学中,通常认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,然后又沿着那条“路径”从P点传向其他位置。
这样的假想路径称为通过P点的波线或射线。
振动图:在地震勘探中,每个检波器所记录的,便是那个检波器所在点处的地面振动,它的振动曲线习惯上叫做该点的振动图。
波剖面:在地震勘探中,通常把沿着测线画出的波形曲线叫做“波剖面”。
视速度和视波长:如果不是沿着波的传播方向而是沿着别的方向来确定波速和波长,得到的结果就不是波速和波长的真实值。
这样的结果叫做简谐波的视速度和视波长。
全反射:如果V2>V1,则有sinθ2>sinθ1,即θ2>θ1;当θ1增大到一定程度但还没到90°时,θ2已经增大到90°,这时透射波在第二种介质中沿界面“滑行”,出现了“全反射”现象,因为θ1再增大就不能出现透射波了。
雷克子波:2、基本原理反射定律:反射线位于入射平面内,反射角等于入射角,即。
透射定律:透射线也位于入射面内,入射角的正弦与透射角的正弦之比等于第一、第二两种介质中的波速之比,即Snell定律:惠更斯原理:在已知波前面(等时面)上的每一个点都可视为独立的、新的子波源,每个子波源都向各方发出新的波,称其为子波,子波以所在处的波速传播,最近的下一时刻的这些子波的包络面或线便是该时刻的波前面。
这样从前一个波前面位置移到下一个波前面位置,如法炮制,便可得到介质中的等时面系,因而得到波在该介质中传播的全部特点。
费马原理:波在各种介质中的传播路径,满足所用时间为最短的条件。
3、地震波的分类§2.2 常速单界面的反射波特征及数学表达式1、基本概念:时距曲线:所谓时(间)距(离)曲线,就是表示地震波从震源出发传播到测线上各观测点的旅行时间t同观测点相对于激发点的水平距离x之间的关系。
时距曲面:若观测面为平面,在直角坐标系中,某一波到达观测面的时间可表示为t=f(x,y),其图形是一个曲面,称为时距曲面。
时间场:在直角坐标系中某一波传播到介质中任意一点的时间可表示为t=g(x,y,z),这就确定了一个标量场,称为时间场。
自激自收:零炮检距共激发点:所有接收点具有共同的激发点。
炮检距:激发点到地面各观测点的距离,也称为偏移距。
初至时间:所有波中最先到达检波器(Geophone)并记录下来的地震波第一波峰时间。
纵测线:激发点和观测点在同一条直线上。
同相轴:各接收点属于同一相位振动的连线。
正常时差:①界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时与以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这实际上是因为炮检距不为零引起的时差;②在水平面界面情况下,各观测点相对于激发点纯粹是由于炮检距不同而引起的反射波旅行时间差。
倾角时差:由激发点两侧对称位置观测到的来自同一倾斜界面的反射波旅行时差。
动校正:在水平面界面的情况下,从观测到的反射波旅行时中减去正常时差△t ,得到x/2处的t0时间,这一过程叫做正常时差校正或称为动校正。
2、基本原理:虚震源原理:一种用于描绘射线在平面上反射情况的作图方法。
过震源作界面的垂线并延长到界面另一侧,指出震源的象,则在地面上接收到的从震源出发并在界面反射的射线,可看作从虚震源发出到达地面的直达波射线来作图。
讨论时距曲线的实际意义:①识别各种类型的地震波; ②正常时差校正必须使用时距关系,经动校正后反射波同相轴的形态与地下界面的形态是相对应的; ③利用时距曲线还可以计算波在介质中的传播速度,如直达波和折射波所对应的介质波速则为其时距曲线斜率的倒数。
直达波时距曲线及方程:在测线上距离激发点为x 的任一观测点,其到达时间是:1v x t 式中V1是直达波的传播速度;上式就是直达波时距曲线方程直达波时距曲线方程:反射波时距曲线:讨论反射波时距曲线时,按观测方法的不同分为两种情况:一种是激发一炮,在一个多道检波器组成的排列上接收并得到一张地震记录,地下存在反射界面就可以得到相应的反射波时距曲线,称为共激发点反射波时距曲线。
另一种是在许多张地震记录上,把同属于某一个反射点的道选出来,组成一个共反射点道集,于是可得到界面上某个反射点的共反射点时距曲线反射波时距曲线方程:反射波时距曲线的主要特点:§2.3 变速多界面的反射波特征及数学表达式1、基本概念:均匀介质:假设反射界面R以上的介质是均匀的,即地震波传播速度是一个常数V。
并假设界面R是平面,界面可以是水平的或倾斜的。
层状介质:假设地层剖面是层状结构的,在每一层内速度是均匀的,但各层的速度是不同的。
这些分界面可以是倾斜的,也可以是水平的,分别称为倾斜或水平层状介质。
连续介质:认为在界面上,介质I与II的速度是不相等的,有突变,但介质I内部的波速不是常数,而是连续变化的,考虑到地下岩层的这一特点,提出了连续介质模型,即认为在某个界面上,地震波速度有突变,可以产生反射。
参数方程:平均速度:地层的总厚度除以波在垂直层面方向旅行的总时间。
射线方程:等时线方程:回折波:当速度随深度线性增加时,地震波的射线是圆弧。
如果在地面上观测,可以接收到一种与均匀介质中的直达波相似的波,都是从震源出发,沿着一条圆弧形的射线,先向下到达某一深度后又向上拐回地面,称之为回折波最大穿透深度:回折波的每条射线都有各自的最大穿透深度Zmax,到达这一深度之后开始向上拐。
2、基本原理:水平层状介质和连续介质情况下讨论反射波时距曲线的基本思路(见课本P52)水平层状介质和连续介质情况下反射波时距曲线的主要特点§2.4 地震折射波运动学1、基本概念:折射波盲区:折射波在M1和M2点以外的区间接收到,在OM1或OM2范围内是接收不到折射波的,这个范围称为折射波的“盲区”。
由图可见,在波源所在的水平面上,“盲区”是一个圆,其半径是:初至波:属于来自已知震源的第一个记录信号。
续至波:属于来自已知震源的非第一个记录信号。
交叉时:在折射波时距曲线图上,因为有盲区存在,激发点附近没有折射波,但可将折射波时距曲线人为地延伸,使之与通过激发点的纵坐标轴相交,此交点处的时间叫做交叉时,习惯上则称为折射波的t。
信噪比:某一时刻有用信号能量与其它所有能量(噪声)之比。
2、基本原理:产生折射波的条件:(1)V2>V1 ;或Vn>Vi,(i=1,2…n-1);(2)入射角等于临界角。
利用折射波法研究地下地层起伏的基本依据:利用折射波时距曲线能够方便的得到各分界面的界面速度和交叉时等量,进而可以求取各折射界面的深度值。
折射波与反射波的主要差异:(1)折射波有一个盲区,而盲区的大小取决于界面的埋藏深度,因此,在地震勘探中要观测到折射波,炮检距应该大于折射波盲区;(2)折射波法通常只能研究其速度大于上面所有各层波速的地层,在实际的地层剖面中,往往只有某些层能满足这个条件,因此折射层的数目要比反射层数目少得多,这点也正是目前石油地震勘探中广泛使用反射波法的原因之一;(3)如果地层剖面中存在速度很高的厚层,就不能使用折射波法研究更深处的低速地层,这种现象称为“屏蔽效应”。
如果高速层厚度小于地震波的波长,则实际上并不发生屏蔽作用。
3、分析理解:单界面(水平和倾斜)直达波、反射波与折射波时距曲线之间的关系:(1)直达波时距曲线是反射波时距曲线的渐近线。
这点可从数学关系上加以论证,可自行推演。
(2)折射波时距曲线与反射波时距曲线在M1点或M2点相切。
(3)直达波与折射波的时距曲线有一个交点,交点坐标为:在x<xp区间内,直达波为初至波,在x>xp的区间,折射波为初至波,而直达波为续至波,反射波总是最后接收到。
(4)时距曲线的陡缓取决于上覆介质的波速与界面的埋藏深度。
对于折射波而言,界面速度越大,时距离曲线越平缓,反之时距曲线越陡。
对于反射波来讲,同一界面的反射波时距曲线的斜率随x的不同而变化,不同界面的反射波时距曲线随界面埋深的增大,而使整条时距曲线趋于平缓。
三层介质情况下折射波的时距曲线及其特点:折射波法在地震勘探中的应用:一是用于研究深层构造,如盐丘构造的探测;二是用来确定近地表地层的特征,即确定低(降)速带和静校正参数。
§2.5 透射波和反射波的垂直时距曲线1、基本概念:上行波:在VSP或地震测井观测中,上行波是指射线向上到达各接收点的波动下行波:在VSP或地震测井观测中,下行波是指射线向下到达各接收点的波动,如直达波或透射波。
垂直时距曲线:2、基本原理:透射波、下行波和上行波垂直时距曲线:(1)水平层状介质的透射波垂直时距曲线对于非零偏移距、均匀介质情况下的直达波或透射波时距曲线方程为:(2)下行波垂直时距曲线其中(3)上行波垂直时距曲线1、两层介质,水平界面、偏移距不为零时的上行波时距曲线:2、两层介质、倾斜界面、偏移距不为零时,在界面上倾方向激发产生的上行波时距曲线:地层倾角;L:震源的法向深度;d:井源距;z:检波点深度垂直时距曲线的主要特点:它是一条折线,其中每一直线段与一个水平层对应,每段直线的斜率的倒数就是该层的层速度。
第三章地震资料采集方法与技术§3.1 野外工作概述1、基本概念:低降速带:在地表附近一定深度范围内,地震波的传播速度往往要比其下面地层的波速低得多,该深度范围的地层称为低速带。
某些地区,在低速带与相对高速地层之间,还有一层速度偏低的过渡区,称之为降速带。
群速度:一个波列能量(包络)传播的速度。
相速度:特定相位(如波谷或波峰)的传播速度。
多次波:当地下存在强波阻抗界面时,可能产生多种形式的多次反射波。
虚反射:是指从震源先到达地面或潜水面发生反射后,再向下传播到地下界面形成的反射波。
鸣震和交混回响:海面和海底是两个反射系数较大的界面,会形成多次反射;当海底起伏不平时,由于地震波的散射和水层内多次波相互干涉造成的干扰称为交混回响。
如果海底是比较平坦、反射系数比较稳定的界面,则进入水层内的能量产生多次反射造成水层共振现象,称为鸣震。
2、基本内容:试验工作内容:①干扰波调查,了解工区内干扰波类型与特性。