高中数学2.1.2指数函数及其性质教案新人教A版必修1
新人教A版必修1高中数学2.1.2-3指数函数及其性质导学案

高中数学 2.1.2-3指数函数及其性质导学案 新人教A 版必修1学习目标:深入学习指数函数的性质学习重点:能解决与指数函数有关的综合应用问题 学习过程:一、 关于定义域:求下列函数的定义域 1、1621-=xy2、191-⎪⎭⎫ ⎝⎛=xy3、x y 416-=二、 关于值域: 1、求下列函数的值域(1)3121+⎪⎭⎫ ⎝⎛=x y(2)xy ⎪⎭⎫⎝⎛=32(3)212225.0+-=x x y(4)231-=+x y ,[]0,2-∈x (5)121-=x y2、函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值大2a ,则a 的值为______三、 关于单调性:1、 求下列函数的单调区间 (1)12.01-=xy(2)322-+=x x a y )(1,0≠>a a2、 已知x x a a a a -++>++122)2()2(,则x 的取值范围是_____________四、 关于奇偶性 1、判断函数xx f 2121)(+-=的奇偶性2、已知函数x x eaa e x f +=)( )0(>a 是R 上的偶函数,求a 的值 一、选择题1、 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<<a B 、 -<<10a C 、 a =-1 D 、 a <-12、已知310x =,则这样的( )A 、 存在且只有一个B 、 存在且不只一个C 、 存在且x <2D 、 根本不存在 3、函数f x x ()=-23在区间()-∞,0上的单调性是( ) A 、 增函数 B 、 减函数C 、 常数D 、 有时是增函数有时是减函数4、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11115、函数f x x ()=-21,使f x ()≤0成立的的值的集合是( )A 、 {}x x <0B 、 {}x x <1C 、 {}x x =0D 、 {}x x =16、函数f x g x x x ()()==+22,,使f x g x ()()=成立的的值的集合( ) A 、 是φ B 、 有且只有一个元素 C 、 有两个元素 D 、 有无数个元素7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( )A 、1a >且1b <B 、01a <<且1b ≤C 、01a <<且0b >D 、1a >且0b ≤ 8、F(x)=(1+)0)(()122≠⋅-x x f x是偶函数,且f(x)不恒等于零,则f(x)( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数 二、填空题9、 函数y x =-322的定义域是_________。
高中数学2.1.2指数函数及其性质教学设计1新人教A版必修1

指数函数及其性质教学设计教材:普通高中课程标准实验教科书人教社A 版,数学必修1教学内容:第二章,基本初等函课题:2.1.2指数函数及其性质(第1课时) 教学目标1.知识目标:理解指数函数的概念,初步掌握指数函数的影象和性质2.能力目标:经过定义的引入,影象特点的观察,培养先生的探求发现能力,在学习过程中领会从具体到普通及数形结合的方法3情感目标:经过先生的参与过程,培养他们手脑并用、多思勤练的良好学习习气和勇于探求、锲而不舍的治学精神。
学情分析:先生曾经学习了函数的知识,指数函数是函数知识中重要的一部分内容.但先生普遍基础不好,乃至有些先生放弃数学,对解决一些数学成绩有必然的难度。
针对这类情况,经过教师启发式与课前预习相结合,引导先生自主探求完成本节课的学习,同时浸透一些数学思想、方法,从而更好的掌握本节知识。
教学重点﹑难点重点:指数函数的概念和影象难点:用数形结合的方法从具体到普通地探求﹑概括指数函数的性质 教法:质疑探求,讲练结合。
教具:多媒体演示教学流程设计(一)指数函数概念的构建1.创设情境,引出课题先生朗读棋盘上麦粒故事,引出本节课题。
2.交流讨论,构成概念本节成绩1中函数的解析式x y 2=与成绩2中函数x y )21(=的解析式有甚么特点?设计意图:充实实例,突出底数a 的取值范围,让先生领会到数学来源于消费生活理论。
函数y =2x 、y =)21(x 分别以0<a<1或a>1的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
师生活动:教师提出成绩引导先生把对应关系概括到x a y =的方式,先生考虑归纳概括共同特点3.给出指数函数的概念普通地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R4.剖析概念(1)成绩:为甚么规定底数a 大于零且不等于1?设计意图:教师首先提出成绩:为甚么要规定底数大于0且不等于1呢?这是本节的一个难点,为打破难点,采取讨论的方式,达到互相启发,补充,活跃气氛,激发兴味的目的。
高中数学2.1.2指数函数及其性质教案新人教A版必修1

指数函数及其性质一、【教学目标】1.知识与技能:理解指数函数的概念,画出具体指数函数图象,能经过观察图象得出两类指数函数图象的地位关系;在理解函数概念的基础上,能运用所学知识解决简单的数学成绩;2.过程与方法:在教学过程中,利用画板作图加深对指数函数的认识,让先生在数学活动中感受数学思想方法之美、领会数学思想方法之重要;3.情感、态度、价值观:经过本节课自主探求研讨式教学,使先生获得研讨函数的规律和方法;培养先生自动学习、合作交流的认识。
二、【学情分析】指数函数式在先生零碎学习了函数概念,基本掌握函数性质的基础上进行研讨的,是先生对函数概念及其性质的第一次运用.教材在之前的学习中给出链各个理论的例子(GDP的增长成绩和碳14的衰减成绩),曾经让先生感遭到了指数函数的理论背景,但这两个例子的背景对于先生来说有些陌生.本节课先设计两个看似简单的成绩,但能经过得到超出想象的结果来激发先生学习新知的兴味和愿望。
三、【教材分析】本节课是《普通高中课程标准实验教科书·数学1》(人教A版)第二章第一节第二课【(2.1.2)《指数函数及其性质》.根据理论情况,将《指数函数及其性质》划分为三节课指数函数及其性质、指数函数及其性质的运用(1)、指数函数及其性质的运用(2)】,这是第一节“指数函数及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及消费理论中有着广泛的运用,所以指数函数应重点研讨。
四、【教学重难点】1.教学重点:指数函数的概念、底数互为倒数的指数函数的图象关于y轴对称。
2.教学难点:底数a的范围讨论,自变量的取值范围和由函数的图象归纳指数函数的性质。
五、【教学方法】自主预习、合作探求、体验践行。
六、 【教学装备】多媒体装备。
七、 【课时安排】第一课时(新知课)。
八、 【教学过程】(一) 创设情境,引出成绩(约3分钟)师:观察图片,你能说出这是甚么吗?生:国际象棋师:这盘象棋隐含了这么一个故事?生:....师:国王为了奖励发明者达依尔特许愿满足他提的任意一个请求,那么达伊尔提出如下要求在棋盘第一格放2粒大米,第二格放4粒大米,第三格放8粒大米,…按这个规律.最初一格棋盘上的大米数就是我要的.请问:最初一格的大米数是多少呢?生:642师:那么国王能否满足他的要求呢?【学情预设】先生会说能.也有说不能的.教师公布数据领会指数函数的爆炸增长,642粒大米是每年全世界粮食产量的1000多倍,明显国王是满足不了他的请求.师:请写出米粒数与棋盘格数的函数关系式.生:{}2,1,2,,64x y x =∈师: “一尺之棰,日取其半,万世不竭.”这句话来自著名的《庄子·天下篇》,哪位同学能用数学言语来表述它的含义?生:。
人教版高中数学必修一2.1.2《指数函数及其性质》word教材分析1

《指数函数及其性质》一、教材分析(一)教材的地位和作用人民教育出版社《普通高中课程标准实验教科书••数学(1)》(人教A版)$2.1.2“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。
作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用, 又对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,也为今后研究其他函数提供了方法和模式。
指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究。
(二)课时划分指数函数的教学在中共分三个课时完成。
指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)。
这是第一课时“指数函数的图象及其性质”。
“指数函数”第一课时是在学习了指数与指数幂的运算基础上学习指数函数的概念和性质,通过学习指数函数的定义,图象及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
二、学情分析(一)有利因素通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个层面:知识层面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能层面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
情感层面:学生对数学新内容的学习有相当的兴趣和积极性。
(二)不利因素本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度。
人教版高中数学必修一《指数函数及其性质》教案

指数函数及其性质教案一、教学目的1、使学生掌握指数函数的概念、图象和性质;能初步简单应用。
2、使学生理解数形结合的基本数学思想方法,培养学生观察、联想、类比、猜测、归纳的能力。
3、使学生体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题。
4、通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力。
二、教学重点、难点教学重点:指数函数的定义、图象、性质.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。
三、教具、学具准备:多媒体课件:使用多媒体教学手段,增大教学容量和直观性,提高教学效率与质量。
四、教学方法遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。
依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
五、学法指导1.再现原有认知结构。
在引入两个实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。
2.领会常见数学思想方法。
在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。
3.在互相交流和自主探究中获得发展。
在实例的课堂导入、指数函数的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
4.注意学习过程的循序渐进。
在概念、图象、性质、应用的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
[教案精品]新课标高中数学人教A版必修一全册教案2.1.2指数函数及其性质(一
![[教案精品]新课标高中数学人教A版必修一全册教案2.1.2指数函数及其性质(一](https://img.taocdn.com/s3/m/9832720e1eb91a37f1115cd7.png)
-4
-2
-3 -2 -1 0
1 22 3 44 5
6
8
比较函数 y= 2 x 1 、 y= 2 x 2 与 y= 2 x 的关系:将指数函数 y= 2 x 的图象向右平行移动 1 个
单位长度, 就得到函数 y= 2x 1的图象,将指数函数 y= 2x 的图象向右平行移动 2 个单位长度,
就得到函数 y= 2x 2 的图象
用计算机完成以下表格,并且用计算机画出
函数 y 2 x 的图象x深化xy23.001 8
2.50
2.00
1 4
1.50
通过列
表、计算使
学生体会、
感受指数函
数图象的化
趋势,通过
描点,作图
学生列表计算, 描点、作图.培养学生的
动手实践能
教师动画演示.
力.
概念
1.00 0.00 0.50 1.00 1.50 2.00
1
不同情况进
1
2
4
2
学生观察、 归纳、 总结, 教师诱 行对照,使
再研究先来研究
y
a
x
(
0<
a
<
1)的图象,导、点评.
学生再次经
用计算机完成以下表格并绘出函数 的图象 .
y ( 1)x 2
x
y (1)x 2
2.50 2.00 1.50 1.00 0.00
1
1
4
2
1
历从特殊到 一般,由具 体到抽象的 思维过 程.培养学
生 对本节
归纳
学生先自回顾反思, 教师点 课 所 学 知
总结
评完善.
识 的结构
2、解题利用指数函数的图象, 可有利于清晰 地分析题目,培养数型结合与分类讨论的数学思 想.
人教A版 数学必修一 2.1.2 指数函数及其性质教案

2.1.2 指数函数及其性质教案一、教学目标1.通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质,体会特殊到一般的数学学习方法及数形结合的思想.2.让学生了解数学来自生活,数学又服务于生活的哲理.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力.3.通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.二、重点难点教学重点:指数函数的概念和性质及其应用.教学难点:指数函数性质的归纳、概括及其应用.三、教学过程导入新课问题一: 一张纸的厚度大约是1毫米,把一张纸对折一次,厚度变为2毫米,对折两次,厚度为4毫米,对折三次为8毫米,对折30次之后,你敢站在上面往下跳吗?对折x 次之后,纸的厚度y 变为多少?y 是x 的函数吗?问题二:设棰(棍)的长度为1,写出x 天后剩下的长度y 的表达式。
这是一个函数吗? 新知探究1、函数x y 2=与函数x y ⎪⎭⎫ ⎝⎛=21具有哪些相同的特征? 2、你能否写出类似结构的函数表达式?3、能否将上述几个具体的函数表达式统一写成一般的函数表达式呢?给出定义一般地,函数y=a x (a>0,a≠1)叫做指数函数,其中x 叫自变量,函数的定义域是实数集R.。
思考:为什么规定a>0且a ≠1? 6.0x y = 是指数函数吗? 函数的性质有哪些?可以通过什么方法研究这些性质? 画一个未知函数的图象图象常经过什么步骤?同学自主画出y=2x 和y=(21)x 的图象。
思考:把y=2x 和y=(21)x 的图象,放在同一坐标系中,你能发现这两个图象的关系吗? 能否用y=2x 的图象画y=(21)x 的图象?请说明画法的理由. 再画下列函数的图象以作比较,y=3x ,y=(31)x .观察函数图象的特点,推广到一般的情形. 一般地,指数函数y=a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:1;④在R 上是减函数,当x <0时,y >1;当x >0时,0<y <1 四、典例分析例1判断下列函数是否是一个指数函数?y=x 2,y=8x ,y=2·4x ,y=(2a-1)x (a>21,a≠1),y=(-4)x思考: .例2已知函数)1,0()(≠>=a a a x f x 的图象经过点),3(π,求)3(),1(),0(-f f f 的值。
新人教A版必修1高中数学2.1.2-1指数函数及其性质导学案

高中数学 2.1.2-1指数函数及其性质导学案 新人教A 版必修1学习目标:1、理解指数函数的定义 2、掌握指数函数的图象和性质 学习重点:指数函数性质的应用 学习过程:一、情景体验、获得新知1、一张纸对折1次,厚度变为原来的2倍;对折2次,厚度变为原来的 倍;对折3次,厚度变为原来的2倍;对折4次,厚度变为原来的____ 倍;对折次,厚度变为原来的______倍。
2、指数函数的概念____________________ 练习:1、下列函数中是指数函数的是________ ① ② ③ ④ ⑤ ⑥2、函数是指数函数,则a=_________二、指数函数的图象与性质1、图象:在直角坐标系中作出下列函数的图象(1)(2)2、指数函数的图象和性质练习:1、 若a>1,-1<b<0,则函数的图象一定在第_____象限 2、 比较大小(1) ,(2),(3) ,一、选择题(每小题5分,共20分)1.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 22.若⎝ ⎛⎭⎪⎫142a +1<⎝ ⎛⎭⎪⎫143-2a,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞ B.()1,+∞C .(-∞,1) D.⎝⎛⎭⎪⎫-∞,123.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x≥1时,f(x)=3x -1,则有( )A .f(13)<f(32)<f(23)B .f(23)<f(32)<f(13)C .f(23)<f(13)<f(32)D .f(32)<f(23)<f(13)4.如果函数f(x)=(1-2a)x 在实数集R 上是减函数,那么实数a 的取值范围是( )A .(0,12)B .(12,+∞)C .(-∞,12)D .(-12,12)5.已知集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x +1<4,x∈Z,则M∩N 等于( )A .{-1,1}B .{-1}C .{0}D .{-1,0} 6.设14<⎝ ⎛⎭⎪⎫14b <⎝ ⎛⎭⎪⎫14a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a二、填空题(每小题5分,共10分)7.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =____8.函数y =2-x 2+ax -1在区间(-∞,3)内递增,求a 的取值范围.9.设a>0,f(x)=e x a +ae x (e>1),是R 上的偶函数,则a =________.10.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.三、解答题(每小题10分,共20分)11.根据下列条件确定实数x 的取值范围:a<⎝ ⎛⎭⎪⎫1a 1-2x(a >0且a ≠1).12.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性...13.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2指数函数及其性质(第一课时)教学目标:1、理解指数函数的概念2、 根据图象分析指数函数的性质3、 应用指数函数的单调性比较幕的大小教学重点:指数函数的图象和性质 教学难点:底数a 对函数值变化的影响 教学方法:.学导式(一)复习:(提问)引例1 :某种细胞分裂时,由1个分裂成2个,2个分裂成4个……1个这样的细胞分裂 x 次 后,得到的细胞个数 y 与x 的函数关系式是: y 2x .这个函数便是我们将要研究的指数函数,其中自变量 x 作为指数,而底数 2是一个大于0且不等于1的常量。
(二)新课讲解: 1 •指数函数定义:般地,函数y a x ( a 0且a 1)叫做指数函数,其中 x 是自变量,函数定义域是 R • 练习: ①y判断下列函数是否为指数函数。
1且a21 [④ y (4)2x②y 8x③ y (2 a 1)x( a⑤.yx⑥y 22x 1x5⑦y x ⑧y10x •2.指数函数 xy a(a 0且a 1 )的图象:例1 •画y 2x 的图象(图(1 ))•y 21 X1指出函数y 2x与y (3)x图象间的关系?说明:一般地,函数y f(x)与y f( x)的图象关于y轴对称。
x3例4 .比较下列各题中两个值的大小:(1)1.72.5,1.73;(2)0.8 °.1,0.8 0.2(3)1.70.3,0.93.1(教材第66页例7)小结:学习了指数函数的概念及图象和性质;练习:教材第68页练习1、3题。
作业:教材第69页习题2。
1A组题第6、7、8题2.1.2指数函数及其性质(第二课时)教学目标:1.熟练掌握指数函数概念、图象、性质;2. 能求由指数函数复合而成的函数定义域、值域;3. 掌握比较同底数幕大小的方法;4. 培养学生数学应用意识。
教学重点:指数函数性质的运用教学难点:指数函数性质的运用教学方法:.学导式(一)复习:(提问)1 •指数函数的概念、图象、性质2 •练习:(1 )说明函数y 4 x 3图象与函数y 4x图象的关系;1 2x(2)将函数y (-)图象的左移2个单位,再下移1个单位所得函数的解析式是;1 X(3)画出函数y (—)的草图。
2(二)新课讲解: 例1.某种放射性物质不断变化为其他物质, 每经过1年剩留的这种物质是原来的 84% ,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩量留是原来 的一半(结果保留1个有效数字)。
分析: 通过恰当假设,将剩留量 y 表示成经过年数x 的函数,并可列表、描点、作图,进而求得 所求。
解:设这种物质量初的质量是 1,经过x 年,剩留量是y . 经过1年,剩留量 y =1 X 84%=0.84 1; 经过2年,剩留量 y =1 X 84%=0.84 2; 剩留量y 0.84x, 1 c.e 0,4 C.2图2—2x 0 1 2 3 4 5 6y 1 0.84 0.71 0.59 0.50 0.42 0.35般地,经过x 年, 根据这个函数关系式可以列表如下: 用描点法画出指数函数 y 0.84x 的图象。
从图上看出 y 0.5,只需x 4. 答:约经过4年,剩留量是原来的一半。
例2.说明下列函数的图象与指数函数 y 2x 的图象的关系,并画出它们的示意图: (1) y 2x1 ; 解:(1 )比较函数y 231 与 y 2 21与.y 221与 y(2) y 2x2 2x 1与y 2x 的关系:22相等, 2 1相等,23相等, 由此可以知道,将指数函数y 2x的图象向左平移 个单位长度,就得到函数 (2 )比较函数y 2x 2 r 1 2 — 2 与y0 2匕 2 与yy 2x 1的图象。
与y 2x 的关系: 2 3相等, 2 2相等, 21相等, ¥ -f 17:Q5 4-// 7/ 3//I k i i i-T -b -5 -k -1 -L _niri ~~~I E R -門-3y y 2与y 由此可以知道,将指数函数y 2x的图象向右平移2个单位长度,就得到函数y 说明:一般地,当a 0时,将函数y f(x)的图象向左平移a 个单位得到y 图象;当a 0时,将函数y f(x)的图象向右平移|a|个单位,得到y f (x 练习:说出下列函数图象之间的关系: 11x x a 2(1)y与 y ;(2) y 3 与 y 3 ; (3) y x 2x 与 yx 1x例3 •求下列函数的定义域、值域:2x 2的图象。
f (x a)的 a)的图象。
2x 2x .11) •解:(1) Q2x1 0 x1 2原函数的定义域是{x x1 R,x 2,令t1则 t 0,t R2x 1•- y 次 R,t 0)得 y0,y 1,所以,原函数的值域是 {y y 0,y 1}.小结:1 •学会怎样将应用问题转化为数学问题及利用图象求方程的解;2 •学会灵活地应用指数函数的性质比较幕的大小及求复合函数的值域。
3 .了解函数y f(x)与y f(x)及函数y f (x)与y f(x a)图象间的关 系。
作业:习题2.1 第3, 5 , 6题2.1.2指数函数及其性质(第三课时) 教学目标:1•掌握指数形式的复合函数的单调性的证明方法;2•掌握指数形式的复合函数的奇偶性的证明方法; 3.培养学生的数学应用意识。
教学重点:函数单调性、奇偶性的证明通法(1) y 82x 1 (3)y 3 lx(4) y 一(a 0,aa 1(2) Q1 (!)x 0• x原函数的定义域是0,,21 x令 t 1(-)x (x0) 则0 t 1,Q y . t 在0,1是增函数 ••• 0 y所以,原函数的值域是0,1 .(3)原函数的定义域是R ,令t|x 则t 0, Q y 3t 在,0是增函数,• 0 y 1,所以,原函数的值域是0,1 •(4)原函数的定义域是R ,由 ya x 1(a 0,a 1)得 a xy 1 a 1y 1Q a x 0•—1 0,1 y 1,所以,原函数的值域是 1,1 .y 1说明:求复合函数的值域通过换元可转换为求简单函数的值域。
1,教学难点:指数函数性质的运用教学方法:学导式(一)复习:(提问)1. 指数函数的图象及性质2. 判断及证明函数单调性的基本步骤:假设T作差T变形T判断3. 判断及证明函数奇偶性的基本步骤:(1 )考查函数定义域是否关于原点对称;(2)比较f( x)与f (x)或者f (x)的关系;11) •(3)根据函数奇偶性定义得出结论。
(二)新课讲解:xa 1 xa1评析:此题证明的结构仍是函数奇偶性的证明,但在证明过程中的恒等变形用到推广的 实数指数幕运算性质。
2例2 .设a 是实数,f (x) a x (x R),2 1(1)试证明:对于任意 a, f (x)在R 为增函数; (2)试确定a 的值,使f(x)为奇函数。
分析:此题虽形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明。
还应要求学 生注意不同题型的解答方法。
(1 )证明:设 x 1, x 2 R,x 1 x 2,贝U2 2f(x 1) f (x 2) (a 2^)(a 2^)2 22^厂2(2x1 2迪) (2x1 1)(2x2 1),由于指数函数y 2x 在R 上是增函数,且% X 2,所以2x1 2x2即2x1 2 0 ,_xx 1x 1又由 20,得 2x1 0 , 2 2 0,所以,f(xj f(X 2) 0 即 f(X 1) f(X 2).因为此结论与a 取值无关,所以对于 a 取任意实数,f (x)在R 为增函数。
评述:上述证明过程中,在对差式正负判断时,禾U 用了指数函数的值域及单调性。
(2)解:若f (x)为奇函数,则f( x) f (x),练习:(1 )已知函数f (x)为偶函数,当x (0,)时,f (x)f(x)的解析式。
(2)判断y a x 4x (a 0,a1)的单调区间。
小结:灵活运用指数函数的性质,并掌握函数单调性,奇偶性证明的通法。
证明:由a x 1 0 得,x 0, f( x)xa x a1 (a x1)a x1 (a x 1)a x •• f( x)f (x),所以,函数是奇函数。
故函数定义域{x x 0}关于原点对称。
1x af(x)1x ay xa 1 是奇函数。
x a 1(a 厂),变形得:2a2 2x (2 x 1) 2x2 2x 12(2x 1) 2x 1解得: a 1,所以,当a 1时,f (x)为奇函数。
评述:此题并非直接确定 a 值。
应要求学生适应这种题型。
2x 1,求当 x ( ,0)时,例1 •当a 1时,证明函数y a 值,而是由已知条件逐步推导作业:(补充)2x 11 •已知函数f(x) -2 1(1 )判断函数f (x)的奇偶性;(2 )求证函数f (x)在x (,)上是增函数。
2 •函数y 32" 3x 6的单调递减区间是____________1 23.已知函数f (x)定义域为R,当x 0时有f(x) (-)x x,求f(x)的解析式。
3。