线性卷积与圆周卷积演示程序的设计

合集下载

线性卷积与圆周卷积的计算

线性卷积与圆周卷积的计算
周三晚上
数字信号处理实验报告
实验名称:线性卷积与圆周卷积的计算(实验四)
专业班 级: 学生姓名: 学 号: 指导教师:
二○一 年 月 日
1
一、 实验原理 1.线性卷积
当系统输入序列为 x(n),系统的单位冲激响应为 h(n),输出序列为 y(n),则线性时不变系统 y(n) = x(n)*h(n). 2.圆周卷积
圆周移位代替线性移位的好处: 时域圆周卷积在频域上相当于两序列的 DFT 的相乘,而计算 DFT 可 以采用它的快速算法——快速傅立叶变换(FFT),因此圆周卷积和线 性卷积相比,计算速度可以大大加快。
7
调试中所遇到的问题: 图形输出与算得的不符,经过结果逆推回去,发现计算圆周卷积的一 个矩阵没有转置。 圆周卷积与线性卷积的关系: 根据实验结果,可以发现,当 N>=L+P-1 时,圆周卷积等于线性卷积; 而当 N<L+P-1 时,圆周卷积等于两个序列的线性卷积加上时间的混 叠。
6
线性卷积的运算步骤: 求 x1(n)与 x2(n) 的线性卷积:对 x1(m)或 x2(m)先进行镜像移 位 x1(-m),对移位后的序列再进行从左至右的依次平移 x(n-m),当 n=0,1,2.…N-1 时,分别将 x(n-m)与 x2(m)相乘,并在 m=0,1,2.… N-1 的区间求和,便得到 y(n)。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
圆周卷积通用程序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function yc = circonv(x1,x2,N) % 定义函数 if length(x1)>N

数字信号处理实验线性卷积圆周卷积

数字信号处理实验线性卷积圆周卷积

数字信号处理实验线性卷积圆周卷积⼤连理⼯⼤学实验报告学院(系):电信专业:⽣物医学⼯程班级:**1101姓名:**** 学号:201181*** 组:___实验时间:实验室:实验台:指导教师签字:成绩:实验⼀线性卷积和圆周卷积⼀、实验程序1.给出序列x=[3,11,7,0,-1,4,2],h=[2,3,0,-5,2,1];⽤两种⽅法求两者的线性卷积y,对⽐结果。

a)直接调⽤matlab内部函数conv来计算。

b)根据线性卷积的步骤计算。

clear;clc;x=[3 11 7 0 -1 4 2];n1=0:1:length(x)-1;h=[2 3 0 -5 2 1];n2=0:1:length(h)-1;y=conv(x,h);n3=0:1:length(x)+length(h)-2;figure(1);subplot(121);stem(n1,x,'.');axis([0 6 -15 15]);title('x(n)序列');grid;subplot(122);stem(n2,h,'.');axis([0 5 -10 10]);title('h(n)序列');grid;figure(2);subplot(121);stem(n3,y,'.');axis([0 12 -60 60]);title('调⽤conv函数的线性卷积后序列');grid;N=length(x);M=length(h);L=N+M-1;for(n=1:L)y1(n)=0;for(m=1:M)k=n-m+1; if(k>=1&k<=N)y1(n)=y1(n)+h(m)*x(k); end; end; end;subplot(122);stem(n3,y1,'*');axis([0 12 -60 60]);title('按步骤计算的线性卷积后序列');grid; 结果2.卷积后结果y=[ 6 , 31 , 47 , 6 , -51 , -5 , 41 , 18 , -22 , -3 , 8 , 2]。

实验二 利用DFT计算线性卷积

实验二  利用DFT计算线性卷积

实验二 利用DFT 计算线性卷积一、实验目的1.掌握利用FFT 计算线性卷积的原理及具体实现方法。

2.加深理解重叠相加法和重叠保留法。

3.考察利用FFT 计算线性卷积各种方法的适用范围。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论1、线性卷积与圆周卷积设)(n x 为L 点序列,)(n h 为M 点序列,)(n x 和)(n h 的线性卷积为:∑∞-∞=-==m m n h m x n h n x n y )()()(*)()()(n y 的长度为:L+M-1,)(n x 和)(n h 的N 点圆周卷积为:)())(()()(10n R m n h m x n y N N m N -=∑-= 其中:1-+≥L M N此时圆周卷积等于线性卷积,而圆周卷积可利用FFT 计算。

2、快速卷积利用FFT 计算线性卷积步骤如下:(1)为了使线性卷积可以利用圆周卷积来计算,必须选择;同时为了能使用基2-FFT 完成卷积运算,要求γ2=N 。

采用补零的办法是)(n x 和)(n h 的长度均为N 。

(2)计算)(n x 和)(n h 的N 点FFT)()()()(k H n h k X n x FFTFFT →→(3)组成卷积 )()()(k H k X k Y =(4)利用IFFT 计算IDFT ,得到线性卷积y(n)(k)()IFFT Y y n −−−→3、分段卷积我们考察单位取样响应为)(n h 的线性系统,输入为)(n x ,输出为)(n y ,则)(*)()(n h n x n y =当输入序列时再开始进行卷积,会使输出相对输入有较大的延时,再者如果序列太长,需要大量的存储单元。

为此,我们把,分别求出每段的卷积,合在一起其到最后的总输出。

这种方法称为分段卷积。

分段卷积可细分为重叠相加法和重叠保留法。

重叠保留法:设)(n x 的长度为X N ,)(n h 的长度为M 。

我们把序列)(n x 分成多段N 点序列)(n x i ,每段与前一段重叠M-1个样本。

“数字信号处理”课程中“线性卷积”的微课设计

“数字信号处理”课程中“线性卷积”的微课设计
楚 到 底 是 如 何 实
现乘法累加计 算的。因此 ,笔者制作了

视频是微课 的关键 内容 ,目前微课
的视频 呈现形式 有摄 制型微课 、录屏型
关键词 :微课 ;线性卷积 ;教 学 微课是指按照新课程标准及教学实 践要 求 ,以视频 为主要呈现方式 ,反映
难 点 ,还能进行前置 } 生预 习,改变 了单

的由任课老师讲授的模式 ,提高 了学
看似 简单 , 实 则包 含序列的翻转 、 移位 、 相乘 和相 加 ,其运算过程比较复杂 。在 教学时采用图形解析 、f l a s h动画演 示以
生对 该课 程的学习兴趣 ,同时也 为各位
教师同仁提供了互相切磋学 习、相得 益

要 :微课作 为新的 网络学 习资源形
1 . 选 取知 识点
晰明确 ,沿着教学主题逐 步深 入 ,抓住 关键 ;对 公式 计 算 以动 画 方 式加 以 演
示 ,促 进学生对公式理解记忆 ;微课 的
式,在 国 内外迅速发 展起 来 ,微课 的理
论 、设 计也成为 网络学 习、移动学 习研 究的热 点。笔者在参加微课 培训 后 , 原 创 了微 课 “ 线性卷积”。该微课主题突 出,循序 渐进 ,设计合理 ,浅 显易懂 ,
陈文波 ( 1 9 8 3 一 ),男 ,湖 南衡 阳人 , 硕士 ,南华大学 电气工程学 院通信工程
要点 , 以图形和动画 的形式演示 出来 , 完 [ 2 ] 孟祥 增 ,刘瑞 梅 ,王广 新 。 微 课设 计 与制作 的理论 与实践 [ J ] . 远程教 育杂志 ,2 0 1 4( 0 6 ):2 4 —3 1 .
全 国 高校 教 师 网络培 训 计划 “ 微 课 的 设 计 、开发 与 应用 骨 干教 师 高级 研修 班” 后, 以“ 数字信号处理”课程 中 “ 线

[Matlab]线性卷积圆周卷积代码实现

[Matlab]线性卷积圆周卷积代码实现

[Matlab]线性卷积圆周卷积代码实现1、线性卷积周期卷积圆周卷积的关系:2、Matlab实验及现象圆周卷积:1 %% 圆周卷积实例程序2 %% Alimy 2014年11⽉21⽇20:19:123 clc;4 clear;5 %%准备数据6 N = 5;7 M = 5;8 L = N + M -1;9 x1n = [1,2,3,4,5];10 x2n = [1,5,9,7,3];11 kn_x1 = 0:1:N-1;12 kn_x2 = 0:1:M-1;13 kn_y = 0:1:L-1;14 %%画原始有限长序列15 subplot(4,2,1);16 stem(kn_x1,x1n);17 xlabel('n','FontSize',15);18 ylabel('x1n','FontSize',15);19 subplot(4,2,2);20 stem(kn_x2,x2n);21 xlabel('n','FontSize',15);22 ylabel('x2n','FontSize',15);2324 x1n_t = [x1n, zeros(1,L-N)]; %%补零25 x2n_t = [x2n, zeros(1,L-M)];26 kn_x1t = 0:1:(N+M-1)-1;27 kn_x2t = 0:1:(N+M-1)-1;28 %%画补0后序列29 subplot(4,2,3);30 stem(kn_x1t,x1n_t);31 xlabel('n','FontSize',15);32 ylabel('x1n补0后','FontSize',15);33 subplot(4,2,4);34 stem(kn_x2t,x2n_t);35 xlabel('n','FontSize',15);36 ylabel('x2n补0后','FontSize',10);3738 x1n_t = [x1n_t,x1n_t,x1n_t,x1n_t]; %沿拓39 x1n_t = fliplr(x1n_t); %翻转40 [x1t_x,x1t_y] = size(x1n_t);41 x1t_numbers = x1t_x * x1t_y;42 kn_x1t = -17:1:18;43 %%画沿拓翻转后的周期序列44 subplot(4,2,5);45 stem(kn_x1t,x1n_t);46 xlabel('t','FontSize',15);47 ylabel('x1n_t补0后再沿拓翻转后','FontSize',10);4849 x2n_t = [zeros(1,L),zeros(1,L),x2n_t,zeros(1,L)];50 kn_x2t = -18:1:17;51 subplot(4,2,6);52 stem(kn_x2t,x2n_t);53 xlabel('t','FontSize',15);54 ylabel('x2n_t补0后沿拓翻转后','FontSize',15);555657 %% 乘加移位58 yn = zeros(1,2*L);59for I = 1:1:1860 x1n_t = circshift(x1n_t,[0,1]);61 yn(I) = x2n_t*x1n_t';62 end6364 kn_yn = 0:1:2*(N+M-1)-1;65 subplot(4,2,7);66 stem(kn_yn,yn);67 xlabel('n','FontSize',15);68 ylabel('圆周卷积结果','FontSize',15);6970 %%取主值序列71 ynmain = zeros(1,L);72for I = 1:1:973 ynmain(I) = yn(I);74 end75 kn_ynm = 0:1:8;76 subplot(4,2,8);77 stem(kn_ynm,ynmain)78 xlabel('n','FontSize',15);79 ylabel('主值序列','FontSize',15);8081 %%cycleConv.m线性卷积:1 %% 线性卷积2 clc;3 clear;4 %%5 N = 5;6 M = 5;7 L = N + M - 1;8 x1n = [1,2,3,4,5];9 kx1 = 0:1:N-1;10 x2n = [1,5,9,7,3];11 kx2 = 0:1:M-1;1213 %% 线性卷积14 yn = conv(x1n,x2n);15 kyn = kx1(1)+kx2(1):1:kx1(end)+kx2(end); % 0:1:(N+M-1)-11617 %% 循环卷积 To do 2014年11⽉20⽇ 15:25:36 循环卷积怎么做1819 %% 画图20 subplot(2,2,1);21 stem(kx1,x1n);22 xlabel('n');23 ylabel('x1n');24 title('信号1');2526 subplot(2,2,2);27 stem(kx2,x2n);28 xlabel('n');29 ylabel('x1n');30 title('信号2');3132 subplot(2,2,3);33 stem(kyn,yn);34 xlabel('n');35 ylabel('yn');36 title('线性卷积结果');37 yn %% 1 7 22 44 69 88 82 47 15 linConv.m结果如下:当 L = N + M -1时,圆周卷积和线性卷积的结果⼀致:yn =1 7 22 44 69 88 82 47 15圆周卷积:线性卷积:。

线性卷积与圆周卷积的计算(杭电)

线性卷积与圆周卷积的计算(杭电)

信号、系统与信号处理实验Ⅱ实验报告实验名称:线性卷积与圆周卷积的计算一、实验目的1、通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。

2、掌握线性卷积与圆周卷积软件实现的方法,并验证两者之间的关系。

二、实验内容与要求已知两个有限长序列:x(n)= δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4);h(n)= δ(n)+2δ(n-1)+δ(n-2)+2δ(n-3)1.编制一个计算两个线性卷积的通用程序,计算x(n)*h(n)。

2.编制一个计算圆周卷积的通用程序,计算上述4种情况下两个序列x(n)与h(n)的圆周卷积。

3.上机调试并打印或记录实验结果。

4.将实验结果与预先笔算的结果比较,验证真确性。

三、实验程序与结果1、计算两个线性卷积的通用程序,计算x(n)*h(n)。

xn=[1 2 3 4 5]hn=[1 2 1 2]N=length(xn);M=length(hn);L=N+M-1;for(n=1:L)y(n)=0;for(m=1:M)k=n-m+1;if(k>=1&k<=N)y(n)=y(n)+hn(m)*xn(k);endendendy=conv(xn,hn);ny=0:L-1;stem(ny,y) ;xlabel('n ');ylabel('y(n) ');figurestem(ny,yn) ;xlabel('n ');ylabel('y ');根据定义编写循环实现线性卷积结果:01234567n y (n )Conv 函数实现线性卷积结果:01234567n y2. 计算圆周卷积的通用程序,计算上述4种情况下两个序列x(n)与h(n)的圆周卷积。

主程序:clear allN=[5 6 9 10];xn=[1 2 3 4 5];hn=[1 2 1 2];yc1=circonv(xn,hn,N(1))yc2=circonv(xn,hn,N(2))yc3=circonv(xn,hn,N(3))yc4=circonv(xn,hn,N(4))figurestem(0:N(1)-1,yc1);xlabel('时间序号n');ylabel('信号幅度');title('5点圆周卷积');figurestem(0:N(2)-1,yc2);xlabel('时间序号n');ylabel('信号幅度');title('6点圆周卷积');figurestem(0:N(3)-1,yc3);xlabel('时间序号n');ylabel('信号幅度');title('9点圆周卷积');figurestem(0:N(4)-1,yc4);xlabel('时间序号n');ylabel('信号幅度');title('10点圆周卷积');定义函数:function yc=circonv(x1,x2,N)if length(x1)>Nerror('N必须大于等于x1的长度'); endif length(x2)>Nerror('N必须大于等于x2的长度'); endx1=[x1,zeros(1,N-length(x1))];x2=[x2,zeros(1,N-length(x2))];n=[0:N-1];x2=x2(mod(-n,N)+1);H=zeros(N,N);for n=1:1:NH(n,:)=cirshiftd(x2,n-1,N);yc=x1*H';function y=cirshiftd(x,m,N)if length(x)>Nerror('x 的长度必须小于N');endx=[x,zeros(1,N-length(x))];n=[0:1:N-1];y=x(mod(n-m,N)+1);时间序号n 信号幅度5点圆周卷积00.51 1.52 2.533.54 4.55时间序号n 信号幅度时间序号n 信号幅度时间序号n 信号幅度四、仿真结果分析编写的线性卷积程序和conv 函数的结果相同,也与笔算结果相同。

(完整word版)线性卷积与圆周卷积演示程序的设计

(完整word版)线性卷积与圆周卷积演示程序的设计

实验一线性卷积与圆周卷积演示程序的设计实验报告姓名学号专业班级指导老师分数《数字信号处理课程设计》任务书实验一 线性卷积与圆周卷积演示程序的设计一、 实验目的目的:① 熟练掌握MATLAB 工具软件在工程设计中的使用;② 熟练掌握线性卷积与圆周卷积的关系及LSI 离散时间系统系统响应的求解方法。

要求:① 动态演示线性卷积的完整过程;② 动态演示圆周卷积的完整过程; ③ 对比分析线性卷积与圆周卷积的结果。

步骤:① 可输入任意2待卷积序列x1(n)、x2(n),长度不做限定。

测试数据为:x1(n)={1,1,1,1,0,0,1,1,1,1,0,0},x2(n)={0,1,2,1,0,0,0,1,2,1,0,0};② 分别动态演示两序列进行线性卷积x1(n)﹡x2(n)和圆周卷积x1(n)⊙x2 (n)的过程;要求分别动态演示翻转、移位、乘积、求和的过程;③ 圆周卷积默认使用2序列中的最大长度,但卷积前可以指定卷积长度N 用以进行混叠分析;④ 根据实验结果分析两类卷积的关系。

⑤ 假定时域序列x1(n)、x2(n)的长度不小于10000,序列内容自定义。

利用FFT 实现快速卷积,验证时域卷积定理,并与直接卷积进行效率对比。

二、实验原理1、线性卷积:线性时不变系统(Linear Time-Invariant System, or L. T. I 系统)输入、输出间的关系为:当系统输入序列为)(n x ,系统的单位脉冲响应为)(n h ,输出序列为)(n y ,则系统输出为:∑∞-∞==-=m n h n x m n h m x n y )(*)()()()(或∑+∞-∞==-=m n x n h m n x m h n y )(*)()()()(上式称为离散卷积或线性卷积。

图1.1示出线性时不变系统的输入、输出关系。

)(n δ→ L. T. I —→)(n h —→ —→图1.1 线性时不变系统的输入、输出关系2、圆周卷积设两个有限长序列)(1n x 和)(2n x ,均为N 点长)(1n x )(1k X)(2n x )(2k X 如果)()()(213k X k X k X ⋅=则)()(~)(~)(10213n R m n x m x n x N N m ⎥⎦⎤⎢⎣⎡-=∑-=[]∑---=1021)()(N m N m n x m x)(1n x =N 10)(2-≤≤N n n x上式称为圆周卷积。

关于线性卷积及圆周卷积的简便竖式法计算

关于线性卷积及圆周卷积的简便竖式法计算

关于线性卷积及圆周卷积的简便竖式法计算
线性卷积和圆周卷积是数字信号处理中常见的两种卷积操作。

简单来说,线性卷积可以把两个信号之间的关系映射到输出上,而圆周卷积是一种更为复杂的运算,它可以寻找两个旋转的信号之间的关系。

下面就描述一下这两种卷积的简便竖式法计算。

线性卷积:
输入:
f(n)=x(n)*h(n)
f:输入信号;
x:样本函数;
h:滤波器。

步骤:
(1)将输入信号f分段;
(2)用滤波器在f的每一段输入取值上乘以x;
(3)对f的每一段结果求和,最终得到f的线性卷积输出。

圆周卷积:
输入:
F(n)=X(n)*H(n)
F:输入信号;
X:变换函数;
H:滤波器。

步骤:
(1)将输入信号F分段,每一段变换为正弦、余弦等函数;
(2)对每一段变换后的函数,用滤波器H乘以X;
(3)对每一段变换后函数结果求叠加和,以得到F的圆周卷积输出。

总结:
上述简便竖式法计算描述了两种卷积的计算步骤,即线性卷积和圆周卷积,在结果求叠加和时,用来表示信号实际上与自身的旋转有关的圆周卷积结果是不同的。

因此,这两种卷积的计算采用的步骤也有所不同。

以上就是线性卷积及圆周卷积的简便竖式法计算的长文描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一线性卷积与圆周卷积演示程序的设计实验报告学号专业班级指导老师分数《数字信号处理课程设计》任务书实验一 线性卷积与圆周卷积演示程序的设计一、 实验目的目的:① 熟练掌握MATLAB 工具软件在工程设计中的使用;② 熟练掌握线性卷积与圆周卷积的关系及LSI 离散时间系统系统响应的求解方法。

要求:① 动态演示线性卷积的完整过程;② 动态演示圆周卷积的完整过程; ③ 对比分析线性卷积与圆周卷积的结果。

步骤:① 可输入任意2待卷积序列x1(n)、x2(n),长度不做限定。

测试数据为:x1(n)={1,1,1,1,0,0,1,1,1,1,0,0},x2(n)={0,1,2,1,0,0,0,1,2,1,0,0};② 分别动态演示两序列进行线性卷积x1(n)﹡x2(n)和圆周卷积x1(n)⊙x2 (n)的过程;要求分别动态演示翻转、移位、乘积、求和的过程;③ 圆周卷积默认使用2序列中的最大长度,但卷积前可以指定卷积长度N 用以进行混叠分析;④ 根据实验结果分析两类卷积的关系。

⑤ 假定时域序列x1(n)、x2(n)的长度不小于10000,序列容自定义。

利用 FFT 实现快速卷积,验证时域卷积定理,并与直接卷积进行效率对比。

二、实验原理1、线性卷积:线性时不变系统(Linear Time-Invariant System, or L. T. I 系统)输入、输出间的关系为:当系统输入序列为)(n x ,系统的单位脉冲响应为)(n h ,输出序列为)(n y ,则系统输出为:∑∞-∞==-=m n h n x m n h m x n y )(*)()()()(或∑+∞-∞==-=m n x n h m n x m h n y )(*)()()()(上式称为离散卷积或线性卷积。

图1.1示出线性时不变系统的输入、输出关系。

)(n δ→ L. T. I —→)(n h —→ —→图1.1 线性时不变系统的输入、输出关系2、圆周卷积设两个有限长序列)(1n x 和)(2n x ,均为N 点长)(1n x )(1k X )(2n x )(2k X如果)()()(213k X k X k X ⋅=则)()(~)(~)(10213n R m n x m x n x N N m ⎥⎦⎤⎢⎣⎡-=∑-=[]∑---=1021)()(N m N m n x m x)(1n x =N 10)(2-≤≤N n n x上式称为圆周卷积。

注:)(~1n x 为)(1n x 序列的周期化序列;)()(~1n R n x N 为)(~1n x 的主值序列。

上机编程计算时,)(3n x 可表示如下:∑∑-+==-++-=1121213)()()()()(N n m nm m n N xm x m n x m x n x3、两个有限长序列的线性卷积序列)(1n x 为L 点长,序列)(2n x 为P 点长,)(3n x 为这两个序列的线性卷积,则)(3n x 为∑+∞-∞=-=m m n xm x n x )()()(213)(n x 0L. T. I∑+∞-∞=-=m m n h m x n y )()()(D F T D F T且线性卷积)(3n x 的最大长1-+P L ,也就是说当1-≤n 和1-+≥P L n 时)(3=n x 。

4、圆周卷积与线性卷积的关系序列)(1n x 为L 点长,序列)(2n x 为P 点长,若序列)(1n x 和)(2n x 进行N 点的圆周卷积,其结果是否等于该两序列的线性卷积,完全取决于圆周卷积的长度:当1-+≥P L N 时圆周卷积等于线性卷积,即)(1n x N )(*)()(212n x n x n x =当1-+<P L N 时,圆周卷积等于两个序列的线性卷积加上相当于下式的时间混叠,即⎪⎩⎪⎨⎧-≤≤+=∑+∞-∞=nN n rN n x n x r N 其它010)()(33三、实验步骤已知两个有限长序列)4(5)3(4)2(3)1(2)()(-+-+-+-+=n n n n n n x δδδδδ )3(2)2()1(2)()(-+-+-+=n n n n N H δδδδ1、实验前,预先笔算好这两个序列的线性卷积及下列几种情况的圆周卷积)()1(n x ⑤)(n h )()2(n x ⑥)(n h )()3(n x ⑨)(n h )()4(n x ⑩)(n h2、编制一个计算圆周卷积的通用程序,计算上述4种情况下两个序列)(n x 与)(n h 的圆周卷积。

3、上机调试并打印或记录实验结果。

4、将实验结果与预先笔算的结果比较,验证其正确性。

五、实验报告1、列出计算两种卷积的公式,列出实验程序清单(包括必要的程序说明)。

2、记录调试运行情况及所遇问题的解决方法。

3、给出实验结果,并对结果作出分析。

验证圆周卷积两者之间的关系实验结果(1)程序clear all;N1=5;N2=4;xn=[1,1,1,1,0,0,1,1,1,1,0,0];%生成x(n)hn=[0,1,2,1,0,0,0,1,2,1,0,0];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,5);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);%画图stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');题目:已知两个有限长序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4)h(n)=δ(n)+2δ(n-1)+δ(n-2)+2δ(n-3)计算以下两个序列的线性卷积和圆周卷积(1)x(n)⑤y(n) (2)x(n)⑥y(n) (3)x(n)⑨y(n) (4)x(n)⑩y(n)●调用函数circonvfunction yc=circonv(x1,x2,N)%用直接法实现圆周卷积%y=circonv(x1,x2,N)%y:输出序列%x1,x2:输入序列%N:圆周卷积的长度if length(x1)>Nerror;endif length(x2)>Nerror;end%以上语句判断两个序列的长度是否小于Nx1=[x1,zeros(1,N-length(x1))];%填充序列x1(n)使其长度为N,序列h(n)的长度为N1,序列x(n)的长度为N2x2=[x2,zeros(1,N-length(x2))];%填充序列x2(n)使其长度为Nn=[0:1:N-1];x2=x2(mod(-n,N)+1);%生成序列x2((-n))N,镜像,可实现对x(n)以N为周期的周期延拓,加1是因为MATLAB 向量下标只能从1开始。

H=zeros(N,N);%生成N行N列的零矩阵for n=1:1:NH(n,:)=cirshifted(x2,n-1,N);%该矩阵的k行为x2((k-1-n))Nendyc=x1*H';%计算圆周卷积●调用函数cirshiftdfunction y=cirshiftd(x,m,N)%直接实现序列x的圆周移位%y=cirshiftd(x,m,N)%x:输入序列,且它的长度小于N%m:移位位数%N:圆周卷积的长度%y:输出的移位序列if length(x)>Nerror('x的长度必须小于N');endx=[x,zeros(1,N-length(x))];n=[0:1:N-1];y=x(mod(n-m,N)+1);•函数(1)x(n)⑤y(n)clear all;N1=5;N2=4;xn=[1 2 3 4 5];%生成x(n)hn=[1 2 1 2];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,5);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);%画图stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');•函数(2)x(n)⑥y(n)clear all;N1=5;N2=4;xn=[1 2 3 4 5];%生成x(n)hn=[1 2 1 2];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,6);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');•函数(3)x(n)⑨y(n)clear all;N1=5;N2=4;xn=[1 2 3 4 5];%生成x(n)hn=[1 2 1 2];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,9);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');•函数(4)x(n)⑩y(n)clear all;N1=5;N2=4;xn=[1 2 3 4 5];%生成x(n)hn=[1 2 1 2];%生成h(n)yln=conv(xn,hn);%直接用函数conv计算线性卷积ycn=circonv(xn,hn,10);%用函数circonv计算N1点圆周卷积ny1=[0:1:length(yln)-1];ny2=[0:1:length(ycn)-1];subplot(2,1,1);stem(ny1,yln);ylabel('线性卷积');subplot(2,1,2);stem(ny2,ycn);ylabel('圆周卷积');六、思考题:①圆周卷积与线性卷积的关系:若有x1(n)与x2(n)两个分别为N1与N2的有限长序列,则它们的线性卷积y1(n)为N1+N2-1的有限长序列,而它们的N点圆周卷积y2(n)则有以下两种情况:1,当N<N1+N2-1时,y2(n)是由y1(n)的前N点和后(N1+N2-1-N)点圆周移位后的叠加而成;N> N1+N2-1时,y2(n)的前N1+N2-1的点刚好是y1(n)的全部非零序列,而剩下的N-(N1+N2-1)个点上的序列则是补充的零。

相关文档
最新文档