工程光学英文作业详解(郁道银版 十五章全)
工程光学作业讲解(郁道银)

Solution. According to the law of rectilinear propagation, we get, So the building is 100m tall.
x 2 = 170 3.4
x=100 (m)
2.Light from a water medium with n=1.33 is incident upon a water-glass interface at an angle of 45o. The glass index is 1.50. What angle does the light make with the normal in the glass? Solution. According to the law of refraction, We get,
and l’=14
f’=9
l=-25.2(cm)
The stop is one-half that distance is front of the lens, so ls=12.6(cm) ∴ls’=31.5(cm)
Θβ =
Dex l′ 31.5 = s =− 25 .2 Dstop l s 2
∴
Dex = 2.5 × 0.8 = 2(cm)
2. Two lenses, a lens of 12.5cm focal length and a minus lens of unknown power, are mounted coaxially and lenses: 1) Where is the entrance pupil? 2) Where is the exit pupil? 8 cm apart. The system is a focal, that is light entering the system parallel at one side emerges parallel at the other. If a stop 15mm in diameter is placed halfway between the
工程光学_郁道银_光学习题解答[1]
![工程光学_郁道银_光学习题解答[1]](https://img.taocdn.com/s3/m/299f87cca1c7aa00b52acbe1.png)
n0sinI1=n2sinI2(1)
而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:
(2)
由(1)式和(2)式联立得到n0sinI1.
5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
当光在火石玻璃中,n=1.65时,v=1.82 m/s,
当光在加拿大树胶中,n=1.526时,v=1.97 m/s,
当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:
解:
3.一显微物镜的垂轴放大倍率 ,数值孔径NA=0.1,共轭距L=180mm,物镜框是孔径光阑,目镜焦距 。
(1) 求显微镜的视觉放大率;
(2) 求出射光瞳直径;
(3) 求出射光瞳距离(镜目距);
(4) 斜入射照明时, ,求显微镜分辨率;
(5) 求物镜通光孔径;
设物高2y=6mm,渐晕系数K=50%,求目镜的通光孔径。
解:
8.已知一透镜 求其焦距、光焦度。
解:
9.一薄透镜组焦距为100 mm,和另一焦距为50 mm的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置。
解:
10.长60 mm,折射率为1.5的玻璃棒,在其两端磨成曲率半径为10 mm的凸球面,试求其焦距。
光学工程(郁道银)第三版课后答案_物理光学

n 1 2 0.52 2 ) ( ) 0.0426 n 1 2.52 n 1 2 1 1.52 2 经过第三面时,反射比为3 ( ) ( ) 0.0426 n 1 1 1.52 经过第二面时,1 =45,sin 2 1.52 sin 45 2 90
9. 电矢量方向与入射面成 45 度角的一束线偏振光入射到两介质的界面上, 两介质的折射率 分别为 n1 1, n2 1.5 ,问:入射角 1 50 度时,反射光电矢量的方位角(与入射面所成
的角)?若 1 60 度,反射光的方位角又为多少? 解:
() 1 1 50,由折射定律 2 sin 1 ( rs
得证。亦可由 rs , rp 求证.
n玻
11. 光束垂直入射到 45 度直角棱镜的一个侧面,并经斜面反射后由底二个侧面射出(见图 10-40) ,若入射光强为 I 0 ,求从棱镜透过的出射光强 I?设棱镜的折射率为 1.52,且不考 虑棱镜的吸收。
I0
45
I
图 10-40 习题 11 图
解:
经过第一面时,反射比为1 (
u r
r r
r r k r kx x k y y kz z
k x 2, k y 3, k z 4 r uu r uu r u u r uu r uu r u u r k k x x0 k y y0 k z z0 2 x0 3 y0 4 z0 u u r r r u r 2 uu 3 uu 4 u k0 x0 y0 z0 29 29 29
7. 太阳光(自然光)以 60 度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解:
sin 2 sin ocs 2 6
工学光学工程郁道银第三版课后答案 物理光学

第十一章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。
(2)波传播方向沿z 轴,电矢量振动方向为y 轴。
(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。
解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。
解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。
假设太阳光发出波长为600nm λ=的单色光。
解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。
工程光学第十五章 课后答案【khdaw_lxywyl】

E出 向检偏器的投影为 A1 cos 20o A2 e
i ( ) 2
da
解:设
光轴,再把检偏器沿顺时针方向转过 20 就完全消光。试问(1)该椭圆偏振光是右旋还是
o
课
根据题意:椭圆偏光的短轴在 x 轴上
A1
1,0 ,快轴在 x 方向上 波片的琼斯矩阵 G i 4 0, i A2 e
da
1,0 0, i
1 2
后 答
1
| no ne | d
1 1 | 1.54424 1.55335 | 1.618 10 2 106 589.3 4
1 1
ww
③ E30o
3 cos 30 o 2 o sin 30 1 2
p=
sin 2 1.54 sin 33o
ww
2 cos 1 sin 2 1.4067 sin(1 2 )
tp
2 sin 2 cos 1 2 cos 33o sin 57 o = =1.54 sin(1 2 ) cos(1 2 ) sin 90 o cos 24 o
tg 2, 63.43o 再通过 波片,使Ax , Ay的位相差相差 4 2
16.通过检偏器观察一束椭圆偏振光,其强度随着检偏器的旋转而改变。当检偏器在某一位 置时,强度为极小,此时在检偏器前插一块
后 答
4
左旋?(2)椭圆的长短轴之比?
70 o
kh
20
o
设 E
ww
w.
1,0 A1 A1 E出=GE i i ( ) i 0 , A e 2 2 A2 e
工程光学课后解答-第二版-郁道银

工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学_郁道银_光学习题解答[1]
![工程光学_郁道银_光学习题解答[1]](https://img.taocdn.com/s3/m/5edf90ada76e58fafab003df.png)
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学习题郁道银解答样本

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n, 求光纤的数值孔径( 即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角) 。
解: 位于光纤入射端面, 满足由空气入射到光纤芯中, 应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射, 使得光束能够在光纤内传播, 则有:(2)由( 1) 式和( 2) 式联立得到nsinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上, 求其会聚点的位置。
如果在凸面镀反射膜, 其会聚点应在何处? 如果在凹面镀反射膜, 则反射光束在玻璃中的会聚点又在何处? 反射光束经前表面折射后, 会聚点又在何处? 说明各会聚点的虚实。
解: 该题能够应用单个折射面的高斯公式来解决,设凸面为第一面, 凹面为第二面。
( 1) 首先考虑光束射入玻璃球第一面时的状态, 使用高斯公式:会聚点位于第二面后15mm处。
( 2) 将第一面镀膜, 就相当于凸面镜像位于第一面的右侧, 只是延长线的交点, 因此是虚像。
还能够用β正负判断:( 3) 光线经过第一面折射: , 虚像第二面镀膜,则:得到:( 4) 再经过第一面折射物像相反为虚像。
6、一直径为400mm, 折射率为1.5的玻璃球中有两个小气泡, 一个位于球心, 另一个位于1/2半径处。
沿两气泡连线方向在球两边观察, 问看到的气泡在何处? 如果在水中观察, 看到的气泡又在何处?解: 设一个气泡在中心处, 另一个在第二面和中心之间。
( 1) 从第一面向第二面看( 2) 从第二面向第一面看( 3) 在水中7、有一平凸透镜r1=100mm,r2=,d=300mm,n=1.5,当物体在时, 求高斯像的位置l’。
在第二面上刻一十字丝, 问其经过球面的共轭像在何处? 当入射高度h=10mm, 实际光线的像方截距为多少? 与高斯像面的距离为多少?解:8、一球面镜半径r=-100mm,求=0 , -0.1 , -0.2 , -1 , 1 , 5, 10, ∝时的物距像距。