(人教版)八年级数学上册(全册)精品学案汇总
八级上册数学教案人教版(全册)

八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。
2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。
3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。
二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。
2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。
三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。
2. 教学难点:函数的图像、几何图形的复杂计算和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。
3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。
4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。
八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。
七、教学资源1. 教材:使用人教版八级上册数学教材。
2. 教辅资料:提供相应的教辅资料,辅助教学。
部编人教版八年级数学上册优秀教案(全册)

部编人教版八年级数学上册优秀教案(全册)部编人教版八年级数学上册优秀教案(全册完整版)概述本文档是一份部编人教版八年级数学上册的优秀教案集合。
该教案全册完整,内容包括了八年级数学上册的所有章节和知识点。
教案列表以下是本文档包含的教案列表:1. 第一章:有理数的乘法与除法- 教案1:乘法和除法的基本概念- 教案2:乘方和除法的基本性质- 教案3:有理数的乘除法混合运算2. 第二章:代数式的等值变形- 教案1:代数式的基本概念和性质- 教案2:等式与等值变形的基本规律- 教案3:解一元一次方程式3. 第三章:图形的相似与尺度- 教案1:相似图形的基本概念和性质- 教案2:相似图形的判定和构造- 教案3:相似图形的尺度及应用4. 第四章:初识函数- 教案1:函数的概念和性质- 教案2:函数的表示和读图- 教案3:函数图象的平移和伸缩5. 第五章:一次函数与方程- 教案1:一次函数的概念和性质- 教案2:一次函数的图象和性质- 教案3:一次方程的解与应用6. 第六章:图形的平移和旋转- 教案1:平移的概念和性质- 教案2:平移的表示和图像- 教案3:旋转的概念和性质7. 第七章:数据的搜集、整理与表示- 教案1:数据的搜集和整理- 教案2:数据的图表表示- 教案3:数据的分析和应用8. 第八章:统计与概率- 教案1:统计调查和数据分布- 教案2:概率与事件- 教案3:概率的计算和应用使用说明本文档可以作为教师备课参考,提供了八年级数学上册的优秀教案,可以帮助教师更好地授课和引导学生研究。
每个教案都包括了基本概念、性质、规律和应用等内容,帮助学生深入理解数学知识。
注意事项请在使用教案时,根据具体教学需求进行调整和适应,并注意教学过程中的差异化教学和个性化指导。
新课标人教版八年级上册数学全册学案汇编

人教版初中数学八上全册导学案第十一章:全等三角形导学案11.1《全等三角形》导学案【使用说明与学法指导】1.课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。
2 .组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4.人人参与,合作学习,人人都有收获,人人都有进步。
5.带﹡的题要多动脑筋,展示你的能力。
一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。
三、学习过程《课前预习案》(一)、自主预习课本2—3页内容,回答下列问题:1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形。
3、把两个全等的三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做。
“全等”用“”表示,读作。
4、如图所示,△OCA≌△OBD,对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____;对应边有:____和____,____和____,_____和_____.5、全等三角形的性质:全等三角形的相等,相等。
D BA CO(二)、练一练1.如图,△AB C ≌△CDA ,AB 和CD ,BC 和DA 是对应边。
写出其他对应边及对应角。
2如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB与AC 是对应边。
写出其他对应边及对应角。
《课内探究》1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗? 为什么?N M CB ADC B ANMG H F EC3.本节课小结(我的收获) (1)知识方面:(2)学习方法方面:《课后训练》1. 如图所示,若△OAD ≌△OBC,∠O=65°,∠C=20°,则∠OAD= .第1题图 第2题图2. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm (2)若∠A =50°,∠E=75°,则∠B=3. 如图,△AOB ≌△COD ,那么∠ABD 与∠CDB 相等吗?为什么?第3题图﹡4. 如图:Rt △ABC 中,∠ A=90°,若△ADB ≌△EDB ≌△EDC ,则∠C=B D O AC F EDCBADA ECADBO课题:《11.2三角形全等的判定》(SSS)导学案【使用说明与学法指导】:1.学生利用自习先预习课本第6、7页完成《课前预习案》(15分钟)。
(人教版)八年级数学上册全册精品学案汇总

(人教版)八年级数学上册(全册)精品学案汇总11.1 与三角形有关的线段一.学习目标1.了解三角形的性质;学会按边划分三角形。
2.应用已掌握的三角形知识解决生活中的实际问题。
3.培养学生热爱数学, 热爱生活的情感。
二.学习重难点三角形的性质和分类及应用三.学习过程第一课时三角形的边(一)构建新知1.阅读教材2~4页(1)三角形由_____条线段_____相连组成的几何图形。
(2)长度分别是1.2,3,4,5,6的6根木条能组成_____个不同的三角形。
(3)一根6米长的铁丝围成的三角形, 若每边均为整数值, 可以围城的三角形有_____________________;若是9米的铁丝呢?(二)合作学习1.已知△ABC的周长为21cm, 边AB=xcm, 边BC比AB的2倍长3cm。
(1)用含x的代数式表示AC的长。
(2)求x的取值范围。
(3)x求何值时是等腰三角形。
(三)课堂检查BCA1.若一个三角形三边长分别为2, 3, x, 则x 的值可以为 ____(只需填一个整数)。
2.设a, b, c 为三角形的三边长度, 则|a +b -c|+|a -b -c|=________。
3.若等腰三角形的两条边长分别为23cm 和10cm, 那么第三边的长为 ____cm 。
4.用7根火柴棒首尾顺次连接摆成一个三角形, 能摆成的三角形有( )。
A .三边不等的三角形 B .只两边相等的三角形 C .三边相等的三角形 D .不等边三角形和等腰三角形 5.如图, 用四个螺丝将四条不可弯曲的木条围成一个木框, 不计螺丝大小, 其中相邻两螺丝的距离依序为2、3、4、6, 且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏 此木框, 则任两螺丝的距离之最大值为( )。
A .5 B .6 C .7 D .106.已知△ABC 的两边长(3-x ), 第三边长为2x, 若△ABC 的边长均为整数, 试判断此三角形的形状。
八年级数学上册教案人教版(汇集5篇)

八年级数学上册教案人教版(汇集5篇)八年级数学上册教案人教版(1)一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。
而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
人教版数学八年级上册全册学案

2、等腰三角形的两边长分别为 3cm,5cm.
(1) 求这个三角形的周长。
(2)若两边分别为 2cm,5cm 呢?
四、小结:
本节课的收获:
你还有什么疑惑?
五、当堂清
1.用木棒钉成一个三角架,两根小棒分别是 7cm和10cm,第三根小棒可取( )
∴∠A+∠B+ =180°(
) ) )
⒊三角形内角和定理:三角形的内角和等于 180°
二、三角形内角和定理的应用: ⒈利用三角形内角和定理来直接计算角度. ⑴△ABC 中,若①若∠A=50°,∠B=70°,则∠C= ; ②若∠A=30°,∠B∶∠C=3∶2,则∠B= ; ⑵在直角三角形中,两锐角之差为20°,则这两个锐角的度数分别
学习活动 2、 师生合作解决问题 (1)探究---三角形具有稳定性 (2)探究---四边形不具有稳定性 四、归纳总结巩固新知(约15 分钟) 1、知识点的归纳总结: ◆三角形具有稳定性,四边形不具有稳定性。 2、运用新知解决问题:(重点例习题的强化训练) (1)课本练习 (2)学练优课堂练习 五、课后反思: 1、学习目标完成情况反思:
4、 边都相等的三角形叫做等边三角形;有 条边相等的三角形叫做等腰三角
形。
问题:那么等边三角形是否属于等腰三角形呢? 三角形的分类: ①按三个内角的大小分类: 、 和 。 ②按边进行分类。
三角形
5、自主探究 (1)任意画一个△ABC,从点B出发,沿边到点 C,有几条路线?
人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。
2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。
依据教学大纲安排,重点讲解第一种状况问题的解决。
安排一个课时讲授。
教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。
2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。
(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。
3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。
三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。
教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。
由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。
四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。
教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。
八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 认识一元一次方程了解一元一次方程的定义和形式掌握一元一次方程的解法1.2 解一元一次方程学习使用代入法、加减法解一元一次方程练习解不同系数的一元一次方程1.3 应用一元一次方程运用一元一次方程解决实际问题练习列方程解应用题第二章:不等式与不等式组2.1 认识不等式了解不等式的定义和性质学会解不等式2.2 解一元一次不等式学习一元一次不等式的解法练习解不同系数的一元一次不等式2.3 不等式组了解不等式组的概念和解法学会解不等式组第三章:整式的加减3.1 同类项理解同类项的定义和性质学会合并同类项3.2 整式的加减学习整式的加减法则练习整式的加减运算3.3 乘法公式掌握完全平方公式和平方差公式学会应用乘法公式进行整式乘法第四章:函数及其图象4.1 认识函数了解函数的定义和性质学会用图象表示函数4.2 一次函数学习一次函数的定义和图象掌握一次函数的性质和图象的变换4.3 一次函数的应用运用一次函数解决实际问题练习列方程解应用题第五章:平面直角坐标系5.1 平面直角坐标系的定义了解平面直角坐标系的定义和构成学会在坐标系中确定点的位置5.2 坐标轴上的点学习坐标轴上点的特点和表示方法练习坐标轴上点的运算5.3 象限内的点掌握象限内点的坐标特征学会象限内点的坐标运算第六章:数据的收集、整理与描述6.1 数据的收集学习调查方法,掌握收集数据的方式练习使用调查问卷、观察等方法收集数据6.2 数据的整理学习数据的整理方法,如分类、排序等练习使用图表对数据进行整理和展示6.3 数据的描述学习利用统计量描述数据,如平均数、中位数等练习计算和解读统计量,了解数据分布特征第七章:多边形的面积7.1 多边形的定义了解多边形的概念和性质学会多边形的分类和识别7.2 三角形的面积学习三角形面积的计算方法练习计算不同类型的三角形面积7.3 平行四边形和梯形的面积掌握平行四边形和梯形面积的计算方法练习计算平行四边形和梯形面积第八章:概率初步8.1 概率的概念了解概率的定义和性质学会计算简单事件的概率8.2 随机事件的概率学习利用频率估计概率练习计算不同随机事件的概率8.3 概率的加法法则和乘法法则掌握概率的加法法则和乘法法则练习应用概率法则解决实际问题第九章:函数的性质9.1 函数的性质学习函数的单调性、奇偶性、周期性等性质学会运用函数性质解决实际问题9.2 反比例函数学习反比例函数的定义和图象掌握反比例函数的性质和应用9.3 二次函数学习二次函数的定义和图象掌握二次函数的性质和应用第十章:综合复习10.1 复习要点梳理梳理本册书的主要知识点和技能巩固重点,解决疑难问题10.2 复习题训练完成不同难度的复习题,提高解题能力10.3 总复习测试进行全面的复习测试,检验学习成果根据测试结果,制定针对性的改进计划重点和难点解析一、认识一元一次方程:重点关注学生对于方程概念的理解,特别是对“未知数”、“等式”这两个关键词的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(人教版)八年级数学上册(全册)精品学案汇总11.1 与三角形有关的线段11.1.1三角形的边1.通过具体实例,认识三角形的概念及其基本要素.2.学会三角形的表示及根据“是否有边相等”对三角形进行分类.3.掌握三角形的三边关系.阅读教材P2~4,完成预习内容.知识探究(一)三角形1.定义:由不在____________的三条线段首尾________所组成的图形叫做三角形.2.有关概念如图,线段AB,BC,CA是三角形的________,点A,B,C是三角形的________,∠A,∠B,∠C是相邻两边组成的角,叫做三角形的________,简称三角形的角.3.表示方法:顶点是A,B,C的三角形,记作“________”,读作“____________”.(1)三角形的表示方法中“△”代表“三角形”,后边的字母为三角形的三个顶点,字母的顺序可以自由安排,即△ABC,△ACB ,△BAC ,△BCA ,△CAB ,△CBA 为同一个三角形.(二)三角形的分类1.等边三角形:三条边都________的三角形.2.等腰三角形:有两边________的三角形,其中相等的两条边叫做________,另一边叫做________,两腰的夹角叫做________,腰和底边的夹角叫做________.3.不等边三角形:三条边都________的三角形. 4.三角形按边的相等关系分类三角形⎩⎪⎨⎪⎧ 三角形 三角形⎩⎪⎨⎪⎧ 三角形 三角形等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形.(三)三角形的三边关系1.三角形任意两边之和________第三边.2.推论:由于a+b>c,根据不等式的性质,得c-b<a,即三角形两边之差________第三边.3.利用三角形________,可以确定在已知两边的三角形中,第三边的取值范围,以及判断任意三条线段能否构成三角形.自学反馈1.小强用三根木棒组成的下列图形,其中符合三角形概念的是( )2.下列长度的三条线段能否组成三角形?为什么?(1)3,4,8 (________);(2)2,5,6 (________);(3)5,6,10 (________);(4)5,6,11 (________).问题:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才的解题经验,你有没有更简便的判断方法?用较短的两条线段之和与最长的线段比较,若和大,能组成三角形;反之,则不能.活动1小组讨论例1若三角形的两边长分别是2和7,第三边长为奇数,求第三边的长.解:设第三边的长为x,根据两边之和大于第三边,得x<2+7,即x<9.根据两边之差小于第三边,得x>7-2,即x>5.∴x的值大于5小于9.又∵它是奇数,∴x只能取7.例2用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?解:(1)设底边长为x厘米,则腰长为2x厘米.则x+2x+2x=18.解得x=3.6.∴三边长分别为3.6厘米,7.2厘米,7.2厘米.(2)①当4厘米长为底边,设腰长为x厘米,则4+2x=18.解得x=7.∴等腰三角形的三边长为7厘米,7厘米,4厘米;②当4厘米长为腰长,设底边长为x厘米,则4×2+x=18.解得x=10.∵4+4<10,∴此时不能构成三角形,即可围成等腰三角形,且三边长分别为7厘米,7厘米和4厘米.活动2跟踪训练1.现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取( )A.10 cm的木棒B.20 cm的木棒C.50 cm的木棒D.60 cm的木棒2.已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9 B.12 C.15 D.12或153.若五条线段的长分别是1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成________个三角形.4.若等腰三角形的两边长分别为3和7,则它的周长为________;若等腰三角形的两边长分别为3和4,则它的周长为________.5.找一找,图中有多少个三角形,并把它们写下来.活动3课堂小结1.三角形的表示方法,三角形的基本要素.2.三角形按边的分类.3.三角形的三边关系,如何判断三条线段能否组成三角形.【预习导学】知识探究(一)1.同一条直线上顺次相接 2.边顶点内角3.△ABC 三角形ABC (二)1.相等 2.相等腰底边顶角底角 3.不相等 4.不等边等腰底边和腰不相等的等腰等边(三)1.大于 2.小于 3.三边关系自学反馈1.C 2.(1)不能(2)能(3)能(4)不能【合作探究】活动2跟踪训练1.B 2.C 3.3 4.17 10或11 5.图中有5个三角形.分别是△ABE、△DEC、△BEC、△ABC、△DBC.11.1.2 三角形的高、中线与角平分线1.认识三角形的高、中线与角平分线.2.会画一个三角形的高、中线与角平分线.阅读教材P4~5,完成预习内容.知识探究1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做____________.2.在三角形中,连接一个顶点与它对边中点的线段,叫做这个________________.三角形三条中线的交点叫做三角形的________.3.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫________________.自学反馈1.三角形的高:如图1,从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的________.AD是△ABC的高,则AD⊥________.2.三角形的中线:如图2,连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的________.AD是△ABC的中线,则BD=________.3.三角形的角平分线:如图3,∠BAC的平分线AD,交∠BAC的对边BC于点D,所得线段AD叫做△ABC的________.AD是△ABC的角平分线,则∠BAD=________.活动1小组讨论1.用工具准确画出三角形的高.如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.回忆并演示“过一点画已知直线的垂线”画法.分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条高线相交于1点;(2)锐角三角形的三条高线相交于三角形的内部;(3)钝角三角形的三条高线相交于三角形的外部;(4)直角三角形的三条高线相交于三角形的直角顶点.2.画三角形的中线.如图,线段AD是△ABC中BC边上的中线.分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条中线相交于1点;(2)锐角三角形的三条中线相交于三角形的内部;(3)钝角三角形的三条中线相交于三角形的内部;(4)直角三角形的三条中线相交于三角形的内部.3.画三角形的角平分线.如图,线段AD是△ABC的一条角平分线,图中∠BAD=∠CAD.分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条角平分线相交于1点;(2)锐角三角形的三条角平分线相交于三角形的内部;(3)钝角三角形的三条角平分线相交于三角形的内部;(4)直角三角形的三条角平分线相交于三角形的内部.活动2跟踪训练1.一个三角形的三条高的交点是三角形的一个顶点,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.如图,AD是△ABC的高,AE是△ABC的角平分线,AF是△ABC的中线,则图中相等的角是________________________________,相等的线段是________.3.三角形的角平分线与角的平分线有什么区别?高与垂线呢?4.一个三角形有几条高?几条中线?几条角平分线?活动3课堂小结1.三角形的高、中线、角平分线的概念及画法.2.运用三角形的高、中线、角平分线可得到相等的线段和相等的角.【预习导学】知识探究1.三角形的高 2.三角形的中线重心 3.三角形的角平分线自学反馈1.高BC 2.中线CD 3.角平分线∠CAD【合作探究】活动2跟踪训练1.B 2.∠BAE和∠CAE,∠ADB和∠ADC BF和CF 3.三角形的角平分线是线段,角的平分线是射线;高是线段,垂线是直线. 4.一个三角形有3条高,3条中线,3条角平分线.11.1.3 三角形的稳定性1.通过观察和实际操作得到三角形具有稳定性,四边形没有稳定性.2.了解稳定性与不稳定性在生产、生活中的广泛应用.阅读教材P6~7,完成预习内容.知识探究三角形________稳定性,四边形________稳定性.自学反馈1.下列图中具有稳定性的有( )A.1个B.2个C.3个D.4个2.人站在晃动的公共汽车上,若你分开两腿站立,则需伸出一只手去抓住栏杆才能站稳,这是利用了________________________.3.下列设备,没有利用三角形的稳定性的是( )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架活动1小组讨论1.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?(防止窗框变形)2.动手操作探究三角形的稳定性.(1)三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(不会)(2)四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(会)(3)在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(不会)从上面的实验过程中你能得出什么结论?与同学交流.解:三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.第一个三角形不变形,第二个四边形变形,当在四边形的木架上再钉一根木条,然后扭动它,不变形.通过对比得出三角形具有稳定性的结论.还有什么发现?解:还可以发现,斜钉一根木条的四边形木架的形状不会改变.原因是斜钉一根木条后,四边形变成两个三角形,由于三角形有稳定性,所以斜钉一根木条的四边形木架的形状不会改变.现在你知道为什么窗框未安装好之前,要先在窗框上斜钉一根木条了吧.其实就是利用了三角形的稳定性.3.四边形的不稳定性的应用四边形的不稳定性是我们常常需要克服的,那么四边形的不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?活动2跟踪训练1.下列图形中哪些具有稳定性?判断一个图形是否稳定,关键是看图形中是否都是三角形.2.如图,桥梁的斜拉钢索是三角形的结构,主要是为了( )A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮3.如图,工人师傅砌门时,常用木条EF和EG固定门框ABCD,使其不变形,这种做法的根据是( )A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性活动3课堂小结运用三角形的稳定性和四边形的不稳定性解释其在生活中的应用.【预习导学】知识探究具有没有自学反馈1.C 2.三角形的稳定性 3.A【合作探究】活动2跟踪训练1.图(1),(4),(6)具有稳定性. 2.C 3.D11.2 与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和1.会阐述三角形内角和定理.2.会应用三角形内角和定理进行计算(求三角形的角的度数).阅读教材第P11~13,完成预习内容.问题1揭示三角形的内角和1.幻灯片出示:解释“什么是三角形的内角”,并通过“内角三兄弟之争”的数学故事引出本节内容.数学故事:在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了…….”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?2.利用三角板的三个角之和为多少度来探索三角形的内角和.30°+60°+90°=180°45°+45°+90°=180°想一想:任意三角形的三个内角之和也为180度吗?问题2探索并证明三角形的内角和定理做一做1.在所准备的三角形硬纸片上标出三个内角的编码.2.让学生动手把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出∠BCD的度数,可得到∠A+∠B+∠ACB=180°.图1 3.剪下∠A,按图2拼在一起,从而还可得到∠A+∠B+∠ACB=180°.图2图34.把∠B和∠C剪下按图3拼在一起,用量角器量一量∠MAN的度数,会得到什么结果.想一想如果我们不用剪、拼办法,可不可以用推理论证的方法来说明上面结论的正确性呢?已知△ABC,说明∠A+∠B+∠C=180°,你有几种方法?结合图1、图2、图3说明这个结论成立.知识探究三角形三个内角的和等于________.自学反馈1.在△ABC中,∠A=35°,∠B=43°,则∠C=________.2.在△ABC中,∠A∶∠B∶∠C=2∶3∶4则∠A=________,∠B=________,∠C=________.3.①一个三角形中最多有______个直角?为什么?②一个三角形中最多有______个钝角?为什么?③一个三角形中至少有______个锐角?为什么?④任意一个三角形中,最大的一个角的度数至少为______.活动1小组讨论例1如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B 岛的北偏西40°方向,从C岛看A、B两岛的视角∠ACB是多少度?解答过程见教材P12~13.例2甲楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12点,太阳光线与水平面夹角为45°,如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应是多少?解:由题意知∠ABC=90°,∠ACB=45°.∴∠BAC=180°-∠ABC-∠ACB=180°-90°-45°=45°.∴BC=AB=16.答:两楼的距离是16米.活动2跟踪训练1.△ABC中,若∠A+∠B=∠C,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.一个三角形至少有( )A.一个锐角B.两个锐角C.一个钝角D.一个直角3.在△ABC中,∠A=80°,∠B=∠C,则∠C=________.4.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为____________.活动3课堂小结会运用三角形内角和定理求三角形中内角的度数.【预习导学】知识探究180°自学反馈1.102° 2.40°60°80° 3.1 1 2 60°【合作探究】活动2跟踪训练1.B 2.B 3.50° 4.20°、60°、100°第2课时直角三角形的两个锐角互余1.通过三角形的内角和定理推导出直角三角形的两锐角互余.2.理解并会运用直角三角形的两锐角互余及其逆定理.阅读教材P 13~14,完成预习内容.如图,在直角三角形ABC 中,∠C =90°,由三角形内角和定理,得∠A+∠B+∠C=________,即∠A+∠B+________=________. 所以∠A+∠B=________. 知识探究1.直角三角形的两个锐角________.2.直角三角形可以用符号“________”表示,直角三角形ABC 可以写成________. 3.由三角形内角和定理可得:有两个角互余的三角形是________三角形. 自学反馈1.若直角三角形的一个锐角为20°,则另一个锐角等于________. 2.在△ABC 中,∠A =60°,∠B =12∠A,则△ABC 是________三角形.判断三角形的类型,可根据已知条件推算出三个内角的度数,再进行判断,当已知两角互余时,则是直角三角形.活动1小组讨论例1 如图,DF ⊥AB ,∠A =40°,∠D =43°,则∠ACD 的度数是87°.“直角三角形的两锐角互余”常常和三角形内角和定理综合起来求角的度数.例2 在△ABC 中,如果∠A=12∠B=13∠C,那么△ABC 是什么三角形?解:设∠A=x ,那么∠B=2x ,∠C =3x. 根据题意,得x +2x +3x =180°. 解得x =30°.∴∠A =30°,∠B =60°. ∴△ABC 是直角三角形.活动2 跟踪训练1.如图,AB、CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A=________.2.如图,Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有________个直角三角形.活动3课堂小结运用直角三角形的两锐角互余及三角形内角和定理求三角形中角度.【预习导学】180°90°180°90°知识探究1.互余 2.Rt△Rt△ABC 3.直角自学反馈1.70° 2.直角【合作探究】活动2跟踪训练1.52° 2.511.2.2 三角形的外角1.探索并了解三角形的外角的两条性质.2.利用学过的定理论证这些性质.3.利用三角形的外角性质解决与其有关的实际问题.阅读教材P14~15,完成预习内容.1.如图1,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做____________.图1 如图2,一个三角形有________个外角.每个顶点处有________个外角.图22.如图1,△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC的一个外角,则∠ACD =________.试猜想∠ACD与∠A,∠B的关系是____________.3.试结合图形写出证明过程:证明:过点C作CM∥AB,延长BC到D.则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等),所以∠1+∠2=∠A+∠B,即________=∠A+∠B.知识探究一般地,由三角形内角和定理可以推出:三角形的外角等于与它不相邻的________________.自学反馈1.判断下列∠1是哪个三角形的外角:2.求下列各图中∠1的度数.活动1小组讨论1.如图∠1+∠2+∠3=?解:∠1+∠BAC=180°,∠2+∠ABC=180°,∠3+∠ACB=180°,三个式子相加得到:∠1+∠2+∠3+∠BAC+∠ABC+∠ACB=540°. 而∠BAC+∠ABC+∠ACB=180°,所以∠1+∠2+∠3=360°.2.结论:三角形的外角和是360°.活动2跟踪训练1.求下列各图中∠1的度数.2.求下列各图中∠1和∠2的度数.3.已知三角形各外角的比为2∶3∶4,求它的每个外角的度数?4.如图,AB∥CD,∠A=40°,∠D=45°,求∠1和∠2.活动3课堂小结三角形外角的性质:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的外角和是360°.【预习导学】1.三角形的外角 6 2 2.120°∠A+∠B=∠ACD3.∠ACD知识探究两个内角的和自学反馈1.略. 2.略.【合作探究】活动2跟踪训练1.∠1=90°∠1=80°∠1=95°. 2.略. 3.设三个外角度数分别为2x、3x、4x,由三角形外角和为360°,得2x+3x+4x=360°.解得x=40°.所以三个外角度数分别为80°,120°,160°. 4.∠1=40°,∠2=85°.11.3 多边形及其内角和11.3.1多边形1.了解多边形及有关概念.2.理解正多边形及其有关概念.阅读教材P19~20,完成预习内容.知识探究1.在平面内,由一些线段首尾顺次相接组成的封闭图形叫做________.如果一个多边形由n条线段组成,那么这个多边形叫做________.(一个多边形由几条线段组成,就叫做几边形.)2.相邻两边组成的角叫做____________,多边形的边与它的邻边的延长线组成的角叫做____________.3.连接多边形的不相邻的两个顶点的线段,叫做________________.4.各个角都相等,各条边都相等的多边形叫做________.自学反馈1.下列图形不是凸多边形的是( )2.n边形有________条边,________个顶点,________个内角.在多边形的概念中,要分清以下几个方面:(1)在平面内;(2)若干线段不在同一直线上;(3)首尾顺次相接;(4)所形成的封闭图形.活动1小组讨论1.请列出生活中的一些多边形,并指出其特征.解:房屋顶是三角形,因为三角形有稳定性;螺母底面为六边形,是为了方便安装和拆卸;黑板为四边形,是为了满足教学的使用;等等.生活中存在很多的多边形,它们的形状都是为了与生活相适应.2.多边形的内角、外角及对角线.(1)多边形相邻两边组成的角叫做多边形的内角.(2)多边形的边与它的邻边的延长线组成的角叫做多边形的外角.(3)连接多边形不相邻的两个顶点的线段叫做多边形的对角线.(4)多边形用表示它的各顶点的大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针顺序.(5)正多边形各个角都相等,各条边都相等.(如下图所示)判断一个n边形是正n边形的条件:(1)各边相等,(2)各角相等.3.合作探究,完成下表,将你的思路与同学交流、分享.。