小学数学速算巧算

合集下载

小学三年级数学:乘、除法速算巧算精要+专项练习!孩子练题需要它

小学三年级数学:乘、除法速算巧算精要+专项练习!孩子练题需要它

小学三年级数学:乘、除法速算巧算精要+专项练习一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。

⑵在连除时,可以交换除数的位置,商不变。

⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。

⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。

②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。

添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。

竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。

三年级速算与巧算

三年级速算与巧算

学科培优数学速算与巧算知识定位本讲知识点属于计算板块的部分,难度并不大。

要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。

重点难点:找出题目中可以进行“凑整”的数。

利用运算律或者公式调整运算顺序。

考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。

适当调整运算顺序。

知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。

2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。

其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a +c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

小学六年级数学速算与巧算试题

小学六年级数学速算与巧算试题

小学六年级数学速算与巧算试题数学速算与巧算在小学六年级的数学学习中占据着重要的地位,它不仅能够提高计算的速度和准确性,还能培养同学们的思维能力和创新意识。

下面,让我们一起来看看一些有趣的速算与巧算试题吧!一、加法的速算与巧算1、凑整法例:23 + 89 + 77分析:我们可以先将 23 和 77 相加,得到 100,再加上 89,计算就变得简单多了。

解:23 + 89 + 77 =(23 + 77)+ 89 = 100 + 89 = 1892、基准数法例:97 + 98 + 99 + 100 + 101 + 102 + 103分析:这些数都接近 100,可以把 100 作为基准数。

解:97 + 98 + 99 + 100 + 101 + 102 + 103= 100×7 +(-3 2 1 + 1 + 2 + 3)= 700 + 0= 700二、减法的速算与巧算1、凑整法例:256 89 11分析:先将 89 和 11 相加得到 100,再用 256 减去 100。

解:256 89 11 = 256 (89 + 11)= 256 100 = 1562、交换律和结合律例:378 127 78 73分析:可以先交换减数的位置,再结合进行计算。

解:378 127 78 73=(378 78)(127 + 73)= 300 200= 100三、乘法的速算与巧算1、乘法分配律例:25×(40 + 4)分析:根据乘法分配律,将 25 分别乘以 40 和 4,然后相加。

解:25×(40 + 4)= 25×40 + 25×4= 1000 + 100= 11002、乘法结合律例:25×4×8×125分析:先将 25 和 4 相乘,8 和 125 相乘,然后再将两个积相乘。

解:25×4×8×125=(25×4)×(8×125)= 100×1000= 1000003、特殊数的乘法例:125×88分析:将 88 拆分成 8×11,先计算 125×8。

小学数学《速算与巧算》ppt

小学数学《速算与巧算》ppt
-57的位置,57与减去57可以互相抵消。
三、基准数法
例7计算:78+76+83+82+77+80+79+85
解:仔细观察,各个加数的大小都接近80, 所以可以把每个加数先按80相加, 然后再把少算的加上,把多算的减去.
78+76+83+82+77+80+79+85
=80×8-2-4+3+2-3+0﹣1+5
• (2)2756-159-256
• 解:(1)5723-(723+189)

=5723-723-189

=5000-189=4811
• 这样想: 5723-(723+189),723和5723的尾数相同, 去掉括号,5723先减去723,再减189.
• 解:(2)2756-159-256

=2576-256-159=2500-159=2341
速算与巧算
一、“凑整”先算
例1、计算:(1)24+53+18+76+82
(2)(1450+47+21)+(53+39+1550)
解(1) 24+53+18+76+82=(24&#;100+53=253 这样想:因为24+76=18+82=100是个整百的数,所 以先把它们的和算出来
• 这样想:2576-119-256,2576和256尾数相同,交换 119与256的位置,2576先减去256,再减去119.
• 例6
• 57+62-57+45 • 解: 57+62-57+45 • =57-57+62+45 • =62+45

小学数学四年级奥数第20讲速算与巧算(一)

小学数学四年级奥数第20讲速算与巧算(一)

小学数学四年级奥数第20讲速算与巧算(一)一、知识要点速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。

这一讲我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。

在巧算方法里,蕴含着一种重要的解决问题的策略。

转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。

乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。

二、精讲精练【例题1】计算9+99+999+9999练习1:计算(1)99999+9999+999+99+9 (2)9+98+996+9997(3)19999+2998+396+497 (4)198+297+396+495【例题2】计算489+487+483+485+484+486+488练习2:计算(1)50+52+53+54+51 (2)262+266+270+268+264(3)89+94+92+95+93+94+88+96+87 (4)381+378+382+383+379【例题3】计算下面各题。

(1)632-156-232 (2)128+186+72-86练习3:计算下面各题(1)1208-569-208 (2)283+69-183(3)132-85+68 (4)2318+625-1318+375【例题4】计算下面各题。

(1)248+(152-127)(2)324-(124-97)(3) 283+(358-183)练习4:计算下面各题(1)348+(252-166)(2)629+(320-129)(3)462-(262-129) (4) 662-(315-238)【例题5】计算下面各题。

二年级趣味数学--速算与巧算

二年级趣味数学--速算与巧算

课堂练习题
• (1)98+25-15 =98+(25-15) =98+10 =108
• (2)46+45-16 =46-16+45 =30+45 =75
小结
• 先观察,发现让哪个数带着符 号搬家能使计算简便或者能够 凑出整十整百,就搬哪个数。
课后作业
• 1.计算: (1)17+27+23 (3)43+44+57
⑵52+69= (21+31)+69 =21+(31+69)
把52拆成 50+2,69拆分成
70-1 是因为 50+70是整十数
52+69=(50+2)+(70-1) =(50+70)+(2-1)
1、 “凑整”先算
3、计算
把63拆成60+2+1 是因为 18+2与19+1能凑成整十
⑴63+18+19= 60+2+1+18+19
=60+(2+18)+(1+19)
⑵28+28+28= (28+2)+ (28+2)+ (28+2)练习题
• (1)96+18 =96+(4+14) =(96+4)+14 =100+14 =114
• (2)13+28+29 =10+2+1+28+29 =10+(2+28)+(1+29) =10+30+30 =70

四年级思维拓展-速算与巧算(一)

四年级思维拓展-速算与巧算(一)

速算与巧算(一)☜知识要点速算与巧算是学习数学、解决生活中数学问题的基础,只有掌握了速算与巧算才能又快又准的计算出正确的结果。

如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。

1.找互补数:两个数相加和是10、100、1000、10000、、、、、、我们就称这两个数互为补数。

☜精选例题【例1】(1)72+28 ;(2)654+346;(3)8742+42+1258;(4)2345+3243+7655+6757;☝思路点拨:对于算式(1)72+28 、(2)654+346,同学们会很快得出答案为100、1000。

对于算式(3)、(4)我们可以运用加法交换律:a+b=b+a 和加法结合律:(a+b)+c=a +(b+c),先把相加能得到10000的加起来再和其它数相加。

☝标准答案:解:(1)72+28=100 (2)654+346=1000(3)8742+42+1258 (4)2345+3243+7655+6757=8742+1258+42 =(2345+7655)+(3243+6757)=10000+42 =10000+10000=10042 =20000✌活学巧用1. 327+43+6732. 8973+342+1027+6583. 785342+________=10000004. 3270+______=10000总结:找互补数的方法:知道一个互补数求另一个互补数,如果知道的这个互补数个位不为零,它的互补数就等于用10来减去这个数的最高位与最低位,其它位上的数字用9来减。

注意个位为零时看前一位。

2.凑整:把相加能得到整十、整百、整千、整万、、、、、、的数先加起来有利于我们的计算简便。

【例2】简便计算:(1)48+54;(2)3999+5+456+539+5+6;(3)79998+7998+798+78+8;☝思路点拨:题目中没有能够凑成整十、整百、整千、、、、、的数,但是有些数很接近,我们可以把(1)的48分成2+46,这样46就可以和54凑成整百了,(2)中的5可以分解成1+4,分别加到前后的数上凑整,(3)式可以分别给这五个数添加上他们凑整所需的2,最后再减去5个2就行了。

小学数学三年级巧算、速算

小学数学三年级巧算、速算

乘除法中的速算、巧算一、一、1、一个数与10、100、1000……相乘,就是往这个数后面加0、00、000…………2、巧算一个数与99相乘,99×1=99 99×2=198 99×8=792 通过观察发现一个数与99相乘就是在这个数后面加上00,然后减去此数,即可,然后减去此数,即可 99×1=100—1=99 99×2=200—2=198 99×8=800—8=792 3、通过以上规律,那么一个数与999相乘呢?相乘呢?999×2=2000—2=1998 999×8=8000—8=7992 二、二、巧算两位数与11的乘积。

的乘积。

12×11=132 35×11=385 47×11=517 69×11=759 观察上面每一组题,观察上面每一组题,发现俩位数与发现俩位数与11相乘,只要把这个俩位数拉开,只要把这个俩位数拉开,个位数字做积的个位,个位数字做积的个位,十位数字做积的百位;个位数字与十位数字相加的和做积的十位,如果满十的话要向百位进一。

概括为口诀:俩边一拉,中间相加。

一。

概括为口诀:俩边一拉,中间相加。

三、三、1、巧算三位数与11相乘。

相乘。

432×11=4752 168×11=1848 口诀:俩边一拉,中间俩加。

口诀:俩边一拉,中间俩加。

注意哦,也是要满十进一的。

注意哦,也是要满十进一的。

2、巧算俩位数与101相乘。

相乘。

101×45=4545 101×67=6767 规律就是积把这个俩位数连续写俩遍。

规律就是积把这个俩位数连续写俩遍。

那么三位数与1001相乘呢?相乘呢?1001×782=782782 自己总结规律自己总结规律四、四、例题:根据37×3=111,简算下面各题。

,简算下面各题。

37×9=37×3×3=333 37×12=37×3×4=444 37×33=37×3×11=1221 37×36=37×3×12=1332 五、五、41×41×49=49=?【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用"头同尾合十"的巧算法进行简便计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学速算与巧算方法例解速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。

2.互补数先加。

例1 巧算下面各题:①36+87+64②99+136+101③1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。

例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。

如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。

例3①300-73-27②1000-90-80-20-10解:①式= 300-(73+27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。

例4①4723-(723+189)②2356-159-256解:①式=4723-723-189=4000-189=3811②式=2356-256-159=2100-159=19413.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。

例 5 ①506-397②323-189③467+997④987-178-222-390解:①式=500+6-400+3(把多减的3再加上)=109②式=323-200+11(把多减的11再加上)=123+11=134③式=467+1000-3(把多加的3再减去)=1464④式=987-(178+222)-390=987-400-400+10=197三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+a+d)=a-b-c-da-(b-c)=a-b+c例6 ①100+(10+20+30)②100-(10+20+3O)③100-(30-10)解:①式=100+10+20+30=160②式=100-10-20-30=40③式=100-30+10=80例7 计算下面各题:①100+10+20+30②100-10-20-30③100-30+10解:①式=100+(10+20+30)=100+60=160②式=100-(10+20+30)=100-60=40③式=100-(30-10)=100-20=802.带符号“搬家”例8 计算325+46-125+54解:原式=325-125+46+54=(325-125)+(46+54)=200+100=300注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。

3.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-9+3解:原式=9-9+2+3=54.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”。

例10 计算78+76+83+82+77+80+79+85=6401.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1 计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3 计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4 计算①123×101 ②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

相关文档
最新文档