《概率论与随机过程》习题
北邮概率论与随机过程—学学期期末A卷

北京邮电大学2010——2011学年第2 学期3学时《概率论与随机过程》期末考试(A )一. 填空题.1 设随机事件,A B 满足()( )P AB P A B =, 且()P A p =, 则()P B = 1-p2. 设每次实验中事件A 出现的概率为p ,在三次独立重复试验中, A 至少出现一次的概率为1927, 则p = 1/3 3. 随机变量X 服从参数为1的泊松分布(1)π,则2(())P X E X ==112e - 4. 设随机变量X 服从正态分布2(10,0.02)N ,记22()u xx du -Φ=⎰,且已知(2.5)0.9938Φ=,则((9.95,10.05))P x ∈= 0.98765. 已知随机变量X 服从均匀分布(1,6)U ,则矩阵20001010A X⎛⎫⎪=- ⎪ ⎪-⎝⎭的特征值全为实根的概率为 4/56. 已知随机变量X 的密度函数为||1(),2x f x e x -=-∞<<+∞,则(01)P X <<= 11(1)2e -- 7. 设连续型随机变量X 的分布函数为()F x ,则0y >时,2ln(())Y F X =-的概率密度函数()Y f y = 212y e - 8. 已知随机变量X 服从均值为1的指数分布,则min{,2}Y X =的分布函数()F y =0,0,1,02,1, 2.xx e x x -≤⎧⎪-<<⎨⎪≥⎩9. 已知随机变量(,)X Y 服从二维正态分布22(1,2,1,2,0.5),则21Z X Y =++的概率密度函数()f z 2(5)x --10. 设,X Y 的联合概率密度为(2)2,0,0,(,)0,x y e x y f x y -+⎧>>=⎨⎩其它,, 则概率(1,2)P X Y ><=14(1)e e --- 11. 设随机过程2()X t X Yt Zt =++, 其中,,X Y Z 是相互独立的随机变量, 且均值都为零, 方差都为1, 则相关函数(,)X R s t = 221st s t ++12. 设{(),0}W t t ≤<+∞是参数为2σ的维纳过程, 则[((3)(1))((4)(1))]E W W W W --=22σ13. 设平稳高斯过程{().0}X t t ≥的均值为零, 相关函数为2||1()4X R e ττ-=, 则对任意固定的0t , 0()X t 的概率密度函数()f x 22x - 14. 设离散时间离散状态齐次马尔可夫链{}n X 的状态空间是{0,1,2},平稳分布为111,,244π⎧⎫=⎨⎬⎩⎭, 若000111(0),(1),(2)244P X P X P X ======, 则方差100()D X = 11/1615. 设}),({+∞<<-∞t t X 为平稳随机过程,功率谱密度为212)(ωω+=X S , 则其平均功率为 1二. (15分)设某餐厅每天接待300名顾客, 并设每位顾客的销费额(元)服从均匀分布(40,100)U , 且顾 客的消费相互独立. 求:(1) 该餐厅的日营业额的期望和方差; (2) 平均每天有多少位顾客消费额超过50元;(3) 用中心极限定理估计该餐厅日营业额超过21750的概率. 解. (1) 设,1,2,...,300i X i =是第i 位顾客的消费额, 则由题意,1,40100,()600,ix X f x ⎧<<⎪=⎨⎪⎩其它, 设X表示该餐厅的日消费额, 则3001.ii X X ==∑ 因为 ()70i E X =, 则21300300(60/12)90000.DY DX =⨯==21000EX =(5’) (2 ) 设Y 是消费额超过50元的顾客数. 则1(300,(50))(300,5/6)YB P X B >=, 所以300(5/6)250.EY =⨯= (5’)(3) 由中心极限定理得12300(...21750)1(2.5)0.0062.P X X X P +++>⎛⎫=>=-Φ= (5’) 三.(15分)设二维随机变量(,)X Y 具有概率密度(1), 0,0,(,)3x y k ex y f x y -+⎧>>⎪=⎨求(1)系数k ; (2)边缘概率密度(),()X Y f x f y ,并问,X Y 是否独立, 为什么? (3)求条件概率密度|(|)Y X f y x ,|(|)X Y f x y . 解.(1) 0,01(,)3x Y f x y dxdy k >>=⇒=⎰⎰(3’)(2) (1)0,0,()(,)0,0,x y x X xedy e x f x f x y dy x +∞-+-+∞-∞⎧=>⎪==⎨⎪≤⎩⎰⎰(1)201,0,(1)()(,)0,0,x y Y xe dx y y f y f x y dx y +∞-++∞-∞⎧=>⎪+==⎨⎪≤⎩⎰⎰(6’)由于(,)()()X Y f x y f x f y ≠,所以不独立.(3) 当0x >时, (1)|(,)(|)()x y xy Y X xX f x y xe f y x xe f x e-+--===, 当0y >时, (1)2(1)|2(,)(|)(1)1()(1)x y x y X Y Y f x y xe f x y y xe f y y -+-+===++ (6’)四.(15分)设齐次马氏链}0,{≥n X n 的状态空间为}2,1,0{=E ,一步转移概率矩阵为110221102211022P ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 初始分布为0001{0}{1}{2}3P X P X P X ====== (1) 求124 {1,1,2}P X X X ===;(2) 求02,X X 的相关系数02X X ρ;(3) 证明马氏链}0,{≥n X n 具有遍历性,并求其极限分布.解 (1) 2111244111(2)424111442P P ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,124 {1,1,2}P X X X ====20111120()(2)0i i P X i p p p ===∑ (5’)(2) 2X 的分布率(2)(0)(2)(1/3,1/3,1/3)p p P ==02,X X 的联合分布率02021,2/3EX EX DX DX ==== 027/6EX X =1/4ρ== (5’)(3) 由P(2)知马氏链遍历,由01210,0,1,2,iP i ππππππ=⎧⎪++=⎨⎪≥=⎩得平稳分布为(1/3,1/3,1/3). (5’) 五.(10分)设某线性系统的脉冲响应函数为22,0()0,0t e t h t t -⎧≥=⎨<⎩,将平稳过程{})()(∞+-∞∈,,t t X 输入到该系统后, 输出平稳过程{})()(∞+-∞∈,,t t Y 的谱密度为424()1336Y S ωωω=++,求:(1)输入平稳过程的{})()(∞+-∞∈,,t t X 的谱密度)(ωX S ; (2)自相关函数)(τX R ; (3)输入与输出的互谱密度)(ωXY S .解: 2222,024()(),|()|240,0t e t h t H H i t ωωωω-⎧≥=↔==⎨++<⎩,(1) 22()1(),|()|(9)Y X S S H ωωωω==+ (4分) (2) 3||11()(),26i X X R S e d e ωτττωωπ+∞--∞==⎰ (3分) (3) 22()()()(2)(9)X Y X S H S i ωωωωω==++. (3分)。
北邮概率论与随机过程试题参考-3学分

3学时《概率论与随机过程》试题参考考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效。
一. 简答(40分,每题4分)1.设A,B 为相互独立的随机事件,P(A)=0.2,P(B)=0.6,求P(A ⋃B).2.设X ~B(1,0.5),Y ~B(1,0.5),且X 与Y 相互独立,求P{X +Y =2}.3.已知随机变量X 的分布率为X−1012p k0.20.10.50.2 设Y=3X 2,求P {Y =3}.4.设随机变量ξ,η和X,Y 满足ξ=−2X +1,η=−3Y +2,已知X 与Y 的相关系数为ρXY =0.5,求ξ与η的相关系数为ρξη.5.已知随机变量X 服从正态分布N(μ,σ2),且二次方程y 2+4y +X =0无实根的概率为1/2,求μ.6. 设随机变量X 的概率密度函数为f(x)={1−|x |,−1<x <1,0,其他求随机变量Y =X 2+1的概率密度函数f Y (y)7.设随机变量X 1,X 2,…,X 100是相互独立的服从均值为10的指数分布,记Y =∑X i 100i=1,利用中心极限定理近似计算P(Y ≥1000)8.设{N(t),t ≥0}是强度为λ的泊松过程,求P (N (2)=2,N (3)=3|N (1)=1)= .在此处键入公式。
9.设平稳过程{X(t),t ≥0}的功率谱密度S X (ω)=11+ ω2,求其平均功率.10.设马氏链{X n ,n ≥0}的状态空间E ={0,1}, 转移矩阵为(14341323), 求lim n→∞p 11(n)一个系统中有三个相互独立的元件,元件损坏的概率都是0.2.当一个元件损坏时,系统发生故障的概率为0.25; 当两个元件损坏时,系统发生故障的概率为0.6; 当三个元件损坏时,系统发生故障的概率为0.95; 当三个元件都不损坏时,系统不发生故障. 求系统发生故障的概率.三.(15分)设随机变量X与Y相互独立,X在(0,1)上服从均匀分布,Y的密度函数为f Y(y)={12e−y2 , y>0 0,其它,(1)求X和Y的联合分布密度函数;(2)设关于a的二次方程为a2+2aX+Y=0,试求此方程有实根的概率(用标准正态分布的分布函数表出结果)。
南京邮电大学概率论与随机过程答案

南京邮电大学概率论与随机过程答案1、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、42、4.已知第二象限的点P(-4,1),那么点P到x轴的距离为( ) [单选题] * A.1(正确答案)B.4C.-3D.33、若39?27?=321,则m的值是()[单选题] *A. 3B. 4(正确答案)C. 5D. 64、若(x+m)(x2-3x+n)展开式中不含x2和x项,则m,n的值分别为( ) [单选题] *A. m=3,n=1B. m=3,n=-9C. m=3,n=9(正确答案)D. m=-3,n=95、若a=-3 ?2,b=-3?2,c=(-)?2,d=(-)?,则( ) [单选题] *A. a<d<c<bB. b<a<d<cC. a<d<c<bD. a<b<d<c(正确答案)6、已知二次函数f(x)=2x2-x+2,那么f(1)的值为()。
[单选题] *12283(正确答案)7、?方程x2?+2X-3=0的根是(? ? ? ??)[单选题] *A、X1=-3, X2=1(正确答案)B、X1=3 ,X2=-1C、X1=3, X2=1D. X1=-3, X2=-18、13.在数轴上,下列四个数中离原点最近的数是()[单选题] *A.﹣4(正确答案)B.3C.﹣2D.69、29.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()[单选题] * A.ab=cB.a+b=c(正确答案)C.a:b:c=1:2:10D.a2b2=c210、9.下列说法中正确的是()[单选题] *A.正分数和负分数统称为分数(正确答案)B.正整数、负整数统称为整数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数11、手表倒拨1小时20分,分针旋转了多少度?[单选题] *-480°120°480°(正确答案)-120°12、6.若x是- 3的相反数,|y| = 5,则x + y的值为()[单选题] *A.2B.8C. - 8或2D.8或- 2(正确答案)13、2.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=( ) [单选题] * A.{1,8}B.{2,5}C.{2,3,5}(正确答案)D.{1,2,3,5,7,8}14、下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()[单选题] *A. ①②(正确答案)B. ①③C. ②③D. ②④15、二次函数y=3x2-4x+5的常数项是()。
概率统计随机过程-期末试卷-参考答案

7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4
即
152
2 15 S 2 (15) 知 D 2 2 15
D S 2 2 15
2
得 D S
2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}
《概率论与随机过程》第3章习题答案

《概率论与随机过程》第三章习题答案3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。
解:由题意可得:()[]()()002121020022222002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()12021202120202120202221202022021012022022202010022222200201021212122112210212212121221212222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。
∴()t X 是平稳过程另解:()[][]0022000000[cos()][cos()][];(,)cos()cos(())cos()cos(())t E A t E A E t E A R t t E A t t E A E t t E X ωΦωΦτωΦωτΦωΦωτΦ⎡⎤=+=+=⨯=⎣⎦⎡⎤⎡⎤+=+++=+++⎣⎦⎣⎦[][][])cos()cos())cos((τωτωτωω0200022222A E t E A E =+Φ++= ∴()t X 是平稳过程3.3 设S(t) 是一个周期为T 的函数,随机变量Φ在(0,T )上均匀分布,称X(t)=S (t+Φ),为随相周期过程,试讨论其平稳性及各态遍历性。
随机过程习题

一.填空题〔每空2分,共20分〕2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t0≥对应的一个等待时间序列,则n W 服从Γ分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t2t,;e,e ⎫⎬⎭。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑。
8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,假设ii f1<,称状态i 为非常返的。
9.非周期的正常返状态称为遍历态。
三.计算题〔每题10分,共50分〕1.抛掷一枚硬币的试验,定义一随机过程:cos t H X(t)=t Tπ⎧⎨⎩ ,t (-,+)∈∞∞,设1p(H)=p(T)=2,求〔1〕{}X(t),t (,)∈-∞+∞的样本函数集合;〔2〕一维分布函数F(x;0),F(x;1)。
解:〔1〕样本函数集合为{}cos t,t ,t (-,+)π∈∞∞; 〔2〕当t=0时,{}{}1P X(0)=0P X(0)=12==, 故0x<01F(x;0)=0x<12x 11⎧⎪⎪≤⎨⎪≥⎪⎩;同理0x<-11F(x;1)=1x<12x 11⎧⎪⎪-≤⎨⎪≥⎪⎩2.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2分钟内到达的顾客不超过3人的概率。
3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。
概率论与随机过程题集

第二章 概率论与随机过程2-16 图P2-16中的电路输入为随机过程X(t),且E[X(t)]=0,xx φ(τ)=2σδ(τ),即X(t)为白噪过程。
(a )试求谱密度yy Φ(f )。
(b )试求yy φ(τ)和E[Y 2(t)]。
图P2-16解:(a )xx φ=2222)()(σττδσττφτπτπ==⎰⎰+∞∞--+∞∞--d e d e f j f j xx又系统函数)(f H =)()(f X f Y =fc j fcj R fc j πππ2112121+=+∴2222222241)2(11)()()(c f R fcR f H f f xx yy πσπσφφ+=+== (b) E [)(2t y ]=)0(yy φτπττπσπσφτφRcfj f j yy yy eRcdf ecf R df ef 122222222241)()(-∞+∞-∞+∞-=+==⎰⎰∴E [)(2t y ]=Rcyy 2)0(2σφ=2-20 一离散时间随机过程的自相关序列函数是kk )2/1()(=φ,试求其功率密度谱。
解:由功率密度谱的定义知)(f Φ=∑+∞-∞=-k fkj e k πφ2)( =∑+∞-∞=-k fkj k e π2)21(=fkjkkeπ21)21(----∞=∑+fk jkkeπ2)21(-+∞=∑=kfjke)21(21π∑+∞=+kfjke)21(2π-+∞=∑=fjfjeeππ2221121-+fjeπ22111--∴)(fΦ=fjfjeeππ2221121-+fjeπ22111--即为所求。
2-23 试证明函数)(tfk=)2(2)]2(2sin[WktWWktW--ππ,k= 0,1±,2±,…在区间[+∞∞-,]上为正交的,即所以,抽样定理的重建公式可以看作带限信号)(ts的级数展开式,其中权值为)(ts的样值,且{)(tfk}是级数展开式中的正交函数集。
随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与随机过程》第一章习题1. 写出下列随机试验的样本空间。
(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。
(2) 同时掷三颗骰子,记录三颗骰子点数之和。
(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。
(4) 生产产品直到得到10件正品,记录生产产品的总件数。
(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。
(6) 甲乙二人下棋一局,观察棋赛的结果。
(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。
(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。
(10) 测量一汽车通过给定点的速度。
(11) 将一尺之棰折成三段,观察各段的长度。
2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1) A 发生,B 与C 不发生。
(2) A 与B 都发生,而C 不发生。
(3) A ,B ,C 都发生。
(4) A ,B ,C 中至少有一个发生。
(5) A ,B ,C 都不发生。
(6) A ,B ,C 中至多有一个发生。
(7) A ,B ,C 中至多有二个发生。
(8) A ,B ,C 中至少有二个发生。
3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式(1)B A 。
(2)B A ⋃。
(3)B A 。
(4) BC A 。
(5))(C B A ⋃。
4. 设{}20≤≤=x x S ,⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧<≤=2341x x B ,具体写出下列各式。
(1)B A ⋃。
(2)B A ⋃。
(3)B A 。
(4) B A 。
5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A ,B ,C 至少有一个发生的概率。
6. 在1500个产品中有400个次品,1100个正品,任意取200个。
(1) 求恰有90个次品的概率。
(2) 至少有2个次品的概率。
7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)?(2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?8. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。
以A ,B 分别表示甲,乙二城市出现雨天这一事件。
根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ⋃。
9. 已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。
(1) 二只都是正品。
(2) 二只都是次品。
(3) 一只是正品,一只是次品。
(4) 第二次取出的是次品。
10. 某工厂中,机器321,,B B B 分别生产产品总数的25%,35%和40%。
它们生产的产品中分别有5%,4%,2%的次品,将这些产品混在一起,今随机地取一只产品,发现是次品。
问这一次品是机器321,,B B B 生产的概率分别是多少?11. 将二信息分别编码为A 和B 传送出去,接收站接收时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01。
信息A 与信息B 传送的频繁程度为2:1。
若接收站收到的信息是A ,问原发信息是A 的概率是多少?12. 如图所示1,2,3,4,5,6表示继电器接点。
假设每一继电器接点闭合的概率为p ,且设各继电器接点闭合与否相互独立。
求L 至R 连通的概率是多少?L R13. 对飞机进行三次独立的射击,第一次射击的命中率为0.4,第二次为0.5,第三次为0.7。
飞机击中一次而被击落的概率为0.2,击中二次而被击落的概率为0.6,若被击中三次则飞机必然被击落,求射击三次而击落飞机的概率(包括射击一次、二次、三次击落)。
14. 一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取三只。
以X 表示取出的三只球中的最大号码,写出随机变量X 的概率密度。
15. (1)设随机变量X 的概率密度为!}{k a k X P kλ==,0,,2,1,0>=λ k 为常数,试确定常数a 。
(2) 设随机变量X 的概率密度为Na k X P ==}{,1N ,,2,1,0k -= ,试确定常数a 。
16. 设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号。
(1)进行了5次独立试验,求指示灯发出信号的概率。
(2)进行了7次独立试验,求指示灯发出信号的概率。
17. 一电话交换机每分钟的呼唤次数服从参数为4的泊松分布,求:(1)每分钟恰有8次呼唤的概率。
(2)每分钟的呼唤次数大于10的概率。
18. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧<≥-=-.0,0,0,1)(x x e x F x (1) 求}3{},2{>≤X P X P , (2)求概率密度)(x f 。
19. 一工厂生产的电子管的寿命X (以小时计)服从参数为160=μ,σ的正态分布,若要求80.0}200120{≥≤<X P ,允许σ最大为多少?20.求X Y =的概率密度。
21. 设X 的概率密度为⎪⎩⎪⎨⎧<<=其它,00,2)(2ππx x x f ,求sinX Y =的概率密度。
22. 设随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=其它.,0,20,10,3),(2y x xy x y x f求}1{≥+Y X P 。
23. 设某种型号的电子管的寿命(以小时计)近似地服从)20,160(2N 分布,随机地选取4只,求其中没有一只寿命小于180 小时的概率。
24. 设随机变量X 的概率质量函数为求)(),(),(53X E X E X E +。
25. 设X 服从二项分布,其概率质量函数为{}.10.,,2,1,0,)1(<<=-⎪⎪⎭⎫ ⎝⎛==-p n k p p k n k X P k n k 求)(X E 和)(X D 。
26. 设X 服从泊松分布,其概率质量函数为{}.0,,2,1,0,!>===-λλλk k e k X P k 求)(X E 和)(X D 。
27. 设X 服从均匀分布,其概率密度函数为⎪⎩⎪⎨⎧<<-=,其它0,,1)(,b x a a b x f 求)(X E 和)(X D 。
28. 设X 服从正态分布,其概率密度函数为()+∞<<∞->⎥⎥⎦⎤⎢⎢⎣⎡-=x x f ,02-x exp 21)(22σσμσπ,。
求)(X E 和)(X D 。
29. 对于任意两个随机变量X ,Y ,证明下式成立:(1) ),(2)()()(Y X Cov Y D X D Y X D ++=+;(2) )()()(),(Y E X E XY E Y X Cov -=。
30. 设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤>=-000x ,x ,e f(x)x 。
求(1)Y=2X ,(2)x e Y 2-=的数学期望。
31. 设随机变量(X ,Y )的概率密度函数为⎩⎨⎧<<<<=其它,,x,y ,x K,y)f(x,0010 试确定出常数K ,并求)XY (E 。
32. 已知正常男性成人血液中,每一毫升白细胞数平均是7300,均方差是700。
利用契比雪夫不等式估计每毫升含白细胞数在5200~9400之间的概率。
33. 设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤>=-000x ,x ,e )x (f x λλ,其中0>λ为常数。
求)(X E 和)(X D 。
34. 设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤>-=0,00),2exp()(222x x x x x f σσ,其中0>σ为常数。
求)(X E 和)(X D 。
35. 设随机变量X 的概率质量函数为{}1-==k pq k X P , ,,k 21=。
其中p q ,p -=<<110为常数,则称X服从参数为p 的几何分布。
试求)(X E 和)(X D 。
36. 设随机变量(X ,Y)的概率密度函数为.202081≤≤≤≤+=y ,x ,)y x ()y ,x (f 。
求)(X E 、)Y (E 、)Y ,X (Cov 。
37. 计算机在进行加法时,对每个加数取整(取为接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布。
(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2) 几个数可加在一起使得误差总和的绝对值小于10的概率为0.90?38. (1)一个复杂的系统,由100个相互独立起作用的部件所组成。
在整个运行期间每个部件损坏的概率0.10。
为了使整个系统起作用,至少必需有85个部件工作,求整个系统工作的概率。
(2)一个复杂的系统,由n 个相互独立起作用的部件所组成。
每个部件的可靠性(即部件工作的概率)为0.90。
且必须至少有80%部件工作才能使整个系统工作,问n 至少为多少才能使系统的可靠性为0.95。
39. 某个单位设置一电话总机,共有200架电话分机。
设每个电话分机有5%的时间要使用外线通话,假定每个分机是否使用外线通话是相互独立的。
问总机要多少外线才能以90%的概率保证每个分机要使用外线时可供使用。