地下水位监测系统、地下水位自动监测系统
地下水与地表水联合调度智能监控系统

地下水与地表水联合调度智能监控系统在水资源管理领域,地下水与地表水联合调度智能监控系统正逐渐成为保障水资源合理利用和可持续发展的关键手段。
这一系统通过先进的技术手段,实现对地下水和地表水的实时监测、分析和调度,从而提高水资源的利用效率,保障供水安全,保护生态环境。
一、系统的构成与工作原理地下水与地表水联合调度智能监控系统通常由监测设备、数据传输网络、数据处理中心和调度决策平台等部分组成。
监测设备是系统的“眼睛”,包括安装在地下水位观测井中的传感器、河流和湖泊中的水位和流量监测仪器等。
这些设备能够实时采集地下水和地表水的水位、流量、水质等数据,并将其转化为电信号。
数据传输网络则是系统的“神经”,负责将监测设备采集到的数据快速、准确地传输到数据处理中心。
目前,常用的传输方式包括有线网络(如光纤)和无线网络(如4G/5G),确保数据的及时性和可靠性。
数据处理中心是系统的“大脑”,对接收的数据进行存储、整理、分析和计算。
通过运用各种数学模型和算法,对地下水和地表水的动态变化进行预测,评估水资源的供需状况,为调度决策提供依据。
调度决策平台是系统的“指挥中心”,工作人员根据数据处理中心提供的分析结果和决策建议,制定合理的水资源调度方案,并通过远程控制设备实现对取水、输水和排水等设施的精准调控。
二、系统的主要功能1、实时监测与数据采集系统能够实现对地下水和地表水的 24 小时不间断监测,及时获取水位、流量、水质等关键数据。
这些数据不仅反映了水资源的当前状态,也为后续的分析和决策提供了基础。
2、数据分析与预测利用历史数据和实时监测数据,系统可以建立数学模型,对未来一段时间内地下水和地表水的变化趋势进行预测。
这有助于提前做好水资源的调配准备,应对可能出现的干旱或洪涝等情况。
3、水资源评估与供需平衡分析通过对监测数据的深入分析,系统能够评估水资源的总量、可利用量以及不同区域、不同行业的用水需求,从而确定水资源的供需平衡状况。
地下水资源监测系统实施方案

地下水资源监测系统实施方案一、背景介绍地下水作为重要的水资源之一,在人类生活和生产中发挥着重要作用。
为了科学、有效地管理和保护地下水资源,建立一套完善的地下水资源监测系统是必不可少的。
本方案旨在设计和实施一个功能齐全、可靠且可持续的地下水资源监测系统,帮助相关部门进行地下水资源的动态监测和管理。
二、目标与任务1.目标:建立地下水资源监测系统,实现对地下水资源的全面、准确监测,助力科学的水资源管理决策。
2.任务:(1)设计并构建监测系统硬件平台,包括传感器、数据采集装置、通信设备等。
(2)开发监测系统软件平台,包括数据采集、分析、存储和展示功能。
(3)建立地下水监测网点,分布在环境敏感地区和水资源重要保护区域。
(4)对监测数据进行分析和评估,撰写监测报告。
(5)提供监测数据支持水资源管理部门的决策制定。
(6)定期维护和更新监测系统设备和软件以确保其正常运行。
三、实施步骤1.系统设计与布局(1)根据地下水资源特点和监测需求,确定监测参数,包括地下水位、地下水质量等。
(2)设计并布置监测井网,确定监测井的位置和数量,确保足够的空间覆盖范围。
(3)配置传感器和数据采集装置,安装在监测井内进行数据采集。
2.硬件设备的采购与安装(1)根据系统设计需求,购买传感器、数据采集装置、通信设备等硬件设备。
(2)对硬件设备进行测试和调试,保证其正常工作。
(3)安装硬件设备,并进行防护措施,以确保其稳定运行和可靠性。
3.软件平台开发与应用(1)开发监测系统软件平台,包括数据采集、分析、存储和展示功能。
(2)配置数据库和数据服务器,存储和管理监测数据。
(3)开发数据分析和决策支持工具,帮助水资源管理部门进行地下水资源评估和决策制定。
4.监测数据采集与分析(1)配置定期采集频率,定时采集监测数据,确保数据的准确性和连续性。
(2)对采集的数据进行质量控制和处理,确保数据的可信度。
(3)进行数据分析和评估,绘制监测数据图表和报告,为水资源管理部门提供决策支持。
地下水动态监测、地下水动态监测系统

定期检测地下水水质,评估地下水污染状况及变化趋势。
详细描述
通过采集地下水样本,利用化学分析、光谱分析等手段,对地下水中的溶解氧、 浊度、总硬度、氨氮等指标进行检测,评估地下水的水质状况及变化趋势,为 地下水资源的保护和治理提供依据。
地下水流速与流向监测
总结词
测定地下水流速与流向,了解地下水流动规律。
数据分析应采用统计学、水文学等相关学科的方法和技术,对地下水动态 变化进行深入分析。
数据处理与分析技术应具备可视化功能,能够将处理后的数据以图表、报 表等形式呈现,便于理解和应用。
04
地下水动态监测系统的 应用与案例分析
城市地下水动态监测
城市地下水动态监测是保障城市供水 安全的重要手段,通过对地下水位、 水质等指标的实时监测,及时发现和 解决地下水污染、过度开采等问题。
工业区地下水动态监测
工业区地下水动态监测是保障工业生产安全的重要手段,通过对地下水位、水质等指标的实时监测, 预防和解决地下水污染、地面沉降等问题。
案例分析:上海市某工业区通过建立地下水动态监测系统,及时发现和处理了工业废水渗漏问题,避 免了地下水资源的进一步污染。
地下水污染治理中的地下水动态监测
重要性
地下水动态监测对于了解地下水资源 的状况、评估其质量和数量、预测其 未来变化趋势以及制定合理的管理措 施等方面都具有重要意义。
地下水动态监测的目的与任务
目的
地下水动态监测的主要目的是了解和掌握地下水的动态变化情况,为地下水资源的管理和保护提供科学依据。
任务
地下水动态监测的任务包括长期、连续地观测和记录地下水的各项指标,分析其变化规律和影响因素,评估其质 量和数量,预测其未来变化趋势等。
数据共享与智能化管理
水位监测报警系统、水位自动监测报警系统

五、系统功能 ◆ 水位监测报警系统可独立运行,也可并入应用行业的信息化系统。 ◆ 采集各水位监测点的水位数据,采集时间间隔可设置。 ◆ 上报各水位监测点的水位数据,上报时间间隔可设置。 ◆ 支持串口水位计、0-5V 或 4-20mA 信号输出的水位变送器。 ◆ 支持 220VAC 供电、太阳能供电、锂电池供电。 ◆ 现场监测终端具备数据存储功能。 ◆ 可远程设置终端工作参数,支持远程升级。 ◆ 水位监测报警系统监控中心可对水位数据进行存储、分析、生成必要的报表和曲线。
---系统概述--地下水水位监测报警系统(水位自动监测报警系统)是掌握地下水变化规律、了解地
下水开采状况、指导地下水资源保护的重要手段,可对地下水的水位、水温、水质等参数进 行长期监测并自动存储监测数据,地下水自动监测系统可对地下水的变化规律进行动态分析。
针对地下水监测井分布地域广、数量众多的特点,本系统依托既有的 GPRS/CDMA 无线 网络平台进行建设,具有投资成本低、建设速度快、无通信距离限制等优点。 ---系统拓扑图---
四、系统组成 水位监测报警系统(水位自动监测报警系统)主要由监控中心、通信网络、水位监测终
端设备、测量设备等四部分组成。 ◆ 监控中心:
主要硬件:服务器、客户端、移动数据专线或 GPRS 数据传输模块 DATA-6107。 主要软件:操作系统软件、数据库软件、水位监测系统软件、防火墙软件。 ◆ 通信网络:INTERNET 公网 + 中国移动公司 GPRS 网络。 ◆ 终端设备:微功耗测控终端,市电供电、太阳能供电、电池供电可选。 ◆ 测量设备:水位计或水位变送器。
• 获得“全国工业产品生产许可证”
• 取得“水文实时监测管理系统”软件著作权证书 • 取得“水文实时监测管理系统”软件产品登记证书
地下水资源监测技术的现状与发展

地下水资源监测技术的现状与发展水是生命之源,而地下水资源作为水资源的重要组成部分,对于人类的生产生活、生态平衡以及经济社会的可持续发展都具有极其重要的意义。
为了合理开发、利用和保护地下水资源,监测技术的应用显得尤为关键。
本文将详细探讨地下水资源监测技术的现状以及未来的发展趋势。
一、地下水资源监测技术的现状(一)传统监测技术1、人工监测长期以来,人工监测是获取地下水资源信息的主要手段之一。
通过定期对监测井的水位、水温等参数进行测量和记录,为地下水资源的评估和管理提供了一定的数据支持。
然而,这种方法存在着效率低下、数据精度有限以及难以实现实时监测等明显的局限性。
2、机械式监测仪器如机械式水位计,通过机械传动的方式测量水位的变化。
虽然在一定程度上提高了监测的精度和自动化程度,但仍然需要人工定期读取数据,且仪器的维护和校准较为复杂。
(二)现代监测技术1、自动监测系统随着电子技术和传感器技术的发展,自动监测系统逐渐成为主流。
这些系统能够实时、连续地监测地下水位、水温、水质等参数,并通过无线通信技术将数据传输到数据中心,大大提高了数据的时效性和准确性。
2、地球物理勘探技术包括电法勘探、磁法勘探、地震勘探等方法,能够对地下含水层的结构、分布和性质进行探测,为地下水资源的评估和开发提供了重要的地质依据。
3、同位素技术利用同位素的示踪特性,可以研究地下水的来源、年龄和运动规律,对于深入了解地下水资源的形成和演化过程具有重要意义。
(三)监测数据处理与分析技术1、数据库管理系统用于存储和管理大量的监测数据,方便数据的查询、统计和分析。
2、地理信息系统(GIS)将监测数据与地理空间信息相结合,实现了数据的可视化展示和空间分析,有助于更直观地了解地下水资源的分布和变化情况。
二、地下水资源监测技术存在的问题(一)监测站点分布不均在一些地区,监测站点过于密集,而在另一些地区则相对稀疏,导致部分区域的地下水资源信息掌握不全面,影响了水资源的整体评估和管理。
地下水位自动监测系统在宝应站的应用及误差分析

障处理好 ,从而为淮河流域的防汛调度
( 者 单 位 : 淮 委 通 信 总 站 作
MP U板为主处理板 , 是模块 内的 提供稳定的通信保 障●
主控框负责整机的设备管理和接 板 , 负责 MP U与用户框设备及 中继框 2 3 0 ) 3 0 1
l 【 科技推广与应用1 1
现告警的几率以及是否恢复等 因素 。若
缆头是好的,但只要旋转插到配线架
P WC板为二 次电源板 , 主控框共 更换参考源 ,需 在更换前通过命令查询
上 ,电缆 头就 会缩 进 去 ,导致 不 能 接 有 四块 P WC板 , 为热 备份 , 一块 备用参考源的状态 ,确认备用参考源正 互 有 通 , 以检 查 时要 特 别 细心 ) 所 。所 以 要 正常工作即可为两框供电。 一般来说 , 常后 , 可倒换 参考源。若参 考源正常 , 方 仔细 观 察 ,轻 轻触 摸 交 换 机侧 、微 波 四 块 P WC板 同 时 损 坏 的 可 能 性 比较 则 要 检 查 C S指 示 灯 是 否有 故 障 指 示 , K
三 、 下水 位 自动 监测 系统 地 宝应 站 地 下水 位 自动 监测 系统 的
l 据采集器 数 该 部分包括 传感 器和数 据存储 器 。 传感器采用 固态压阻式元件 ,通过 测量
水 下 某 固定 点 的 静 水 压 力 ,测 得这围 : ~1m 0 0
远 程 监控 等 功 能 。
集成 了水位 、 经济快速发展 ,对地下水监测 的要求 水 位 计 的 安 装 ,0 9年 3月 2 日该 和 中心计算机三部分组成 , 20 4 向发展 ,目前江苏省正在建设 的水资 源管理信息系统也将地下水 自动监测 作为重要建设 目标。
国家地下水监测系统数据治理技术和体系

第 6 期2023 年 12 月NO.6Dec .2023水利信息化Water Resources Informatization0 引言国家地下水监测工程共建设国家级地下水自动监测站 20 469 个,建成覆盖全国的国家地下水自动监测系统,监测站网密度和频次显著提高,水位、水温、水质等自动监测信息通过地下水监测站 RTU 设备由公网每日发送至国家地下水监测系统接收平台。
2022 年,国家地下水自动监测系统共约产生 2.46 亿条数据,自运行以来累计接收及发送的数据量超过 12 亿条。
现代化水文监测技术带来了海量监测数据,数据的处理和管理面临巨大挑战[1]。
地下水监测工程虽然建设了大量站点,但监测站仍存在分布不均匀的情况,部分地下水超采区站点密度不足或密度处于 GB/T 51040—2014《地下水监测工程技术规范》[2]规定的密度下限。
另外,国家地下水监测工程要求地下水自动监测系统数据月到报率和交换率不低于 95%,完整率不低于 90%,虽然目前国家地下水监测系统实际运行“三率”高于《地下水监测工程技术规范》要求,但仍无法实现所有监测站点全部到报。
地下水自动监测在采集、传输、解析数据的过程中,虽然单站异常率较低,但由于总站数多,实时监测数据量较大,故异常数据总量仍较大。
为确保监测数据可以为治理考核、科学评价提供坚实基础,避免由于舍弃数据或数据不准确带来的成果偏差,充分发挥工程和数据效益,地下水监测数据和数据应用必须做到提质增效及精益求精。
目前,地下水数据处理还存在经验、认知、方法不足的情况,地下水数据治理尚未形成数据治理体系,存在的主要技术问题包括:1) 海量历史数据和实时数据整合处理难度大、复杂性高。
地下水监测数据来源多样,包括历史人工监测、国家站自动监测、地方站监测、外部委共享交换等数据,由于不同时期的建设标准不一致,地下水监测历史上还存在大量未整编数据,实时入库的数据须在某一规则下与历史资料在完整性、一致性、准确性、合理性、代表性[3]等维度相衔接,地下水数据治理缺少完整的治理体系且无可借鉴的规则和技术经验。
地下水监测系统方案地下水监测方案

监测指标与频次确定
监测指标
包括水位、水温、水质(如pH值、 溶解氧、浊度、总硬度等)以及其他 相关参数。
监测频次
根据地下水动态变化规律和实际需要 ,合理确定不同监测指标的采样频次 和时间间隔。
数据采集与传输方案
数据采集方式
采用自动化或半自动化的方式进行数据采集,如使用水位计、温 度计、水质分析仪等设备进行实时监测。
数据传输方式
根据实际情况选择有线或无线传输方式,确保数据传输的稳定性和 可靠性。
数据处理与存储
建立完善的数据处理和存储系统,对采集到的数据进行处理、分析 和存储,以便后续的监测数据分析和评估。
04
地下水监测系统实施
法规与标准更新
关注相关法规和标准的更新动态,确保地下水监测系统的合法性和规 范性。
05
地下水监测系统案例分析
案例一:某地区地下水监测系统建设
监测点布设
根据该地区的地理、地质和水文条件,合 理设置监测点位,确保覆盖整个区域。
监测目的
实时监测某地区地下水的水位、水 质、水温等参数,评估地下水资源 的状况,为水资源管理和保护提供
结论总结
地下水监测系统方案实施后,地下水 的水质和水量得到了有效监测,为水 资源管理和保护提供了科学依据。
地下水监测系统的建设和管理需要综 合考虑多种因素,包括技术、经济、 环境和社会等方面,以确保系统的可 持续性和有效性。
该方案采用了先进的技术手段和设备, 提高了监测的准确性和可靠性,为决 策者提供了更加全面和及时的信息。
该方案的实施对于保护地下水资源、 保障人民健康和促进可持续发展具有 重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
案例 3——湖南省地质矿产勘查开发局地下水位监测项目 为加强地质灾害防治和水环境变化监测,湖南省地质矿产勘查开发局于
2014 年为娄底市的多个地下水观测井安装了远程监测设备,实现了地下水水位 的远程监测。
通信网络: 监测中心不具备可上外网的固定 IP, 系统采用了 GPRS-VPN 的专网组网模 式。 设备选择: 地下水观测井分布在全市范围内,多数位于野外,远程监测设备选用了地下 水遥测终端机 DATA-6216。 水位监测设备选用投入式水位计。 监测中心配置了 GPRS 数据传输模块 DATA-6107,用来接收多个地下水遥测 终端机传送回来的数据;服务器上安装了我司配套的地下水监测系统软件。 系统组成:
GPRS-VPN
GPRS 数据传输模块 DATA-6107
地下水监测服务器
DATA-6216 4-20mA
DATA-6216 4-20mA
投入式水位计
现场展示:
投入式水位计
DATA-6216
地下水位监测系统(地下水位自动监测系统)安装端机安装现场
案例 2——陕西省国家级地下水监测工程 近几年,陕西省各市陆续启动了国家级地下水监测工程的项目建设,新建
国控地下水观测井并配置水位计和远程监测设备,实现了全省范围内地下水状况 的远程在线监测。
通信网络: 省地下水监测中心具备可上外网的固定 IP, 系统采用 GPRS+INTERNET 的
软件主要功能
◆ 测点分布总览 ◆ 智能数据统计 ◆ 等水位线生成
◆ 实时数据监测 ◆ 趋势曲线分析 ◆ 测点信息维护
DATA86 地下水位监测系统软件
应用案例 案例 1——河北省地下水超采综合治理地下水监测项目
河北省水资源严重短缺,面临着地下水严重超采、水环境不断恶化等诸多问 题。2015 年初,河北省率先开展了“地下水超采综合治理”试点项目,对超采 严重县、市的地下水展开全面监测。
公网专线组网模式。 远程监测设备按照陕西省统一的通信协议上报地下水监测软件平台。 设备选择: 地下水观测井分布于陕西省各地,小部分在室内、大部分在室外或野外,远
程监测设备采用了自供电、IP68 防水的地下水遥测终端机 DATA-6216。 水位监测设备采用高精度投入式水位计。 现场展示:
唐山平升 地下水遥测终端机安装现场(室内)
河北省水利厅建设了专用的地下水监测中心和地下水监测软件平台,多个厂 商的监测设备通过统一的通信协议上报至该平台。
通信网络: 地下水监测中心具备可上外网的固定 IP, 因此系统采用 GPRS+INTERNET 的公网专线组网模式。 设备选择: 地下水观测井分布分散、普遍位于野外、现场无电源,因此现场监测设备选 用了自供电、IP68 防水的的地下水遥测终端机 DATA-6218。 按照项目需求,水位计选用了水位、水温双参数的投入式水位计。 现场展示:
地下水位监测系统、地下水位自动监测系统 概述:
地下水位监测系统是掌握地下水变化规律、了解地下水开采状况、指导地下 水资源保护的重要手段。地下水位监测系统可对地下水的水位、水温、水质等参 数进行长期监测并自动存储监测数据,可对地下水的变化规律进行动态分析。
地下水位监测系统依托既有的 GPRS/CDMA 无线网络进行建设,具有投资 成本低、建设速度快、无通信距离限制等优点。系统支持水利部地下水通信规约, 已在各地的国家地下水监测工程中广泛应用。
系统拓扑图
DATA-6218
DATA-9201
系统优势
● 《水文监测数据通信规约(SL651-2014)》 ● 《国家地下水监测工程(水利部分)监测数据通信报文规定》 ● 《特殊区域水文、水资源数据安全采集系统 RTU 追加测试》 ● 《四川省水文测报系统技术规约(SCSW008-2011)》 ● 《水文自动测报系统设备 遥测终端机(SL 180-2015)》 ● 全国工业产品生产许可证 ● 《地下水监测与管理系统》软件著作权证书 ● 《水文实时监测管理系统》软件著作权证书 ● 《水文实时监测管理系统》软件产品登记证书 ● 现场无电源:采用锂电池供电——定时采集、集中上报监测数据。 ● 现场无电源:采用太阳能供电——实时上报监测数据。 ● 现场有市电:采用 220V 供电——实时上报监测数据。