搅拌机设计计算

合集下载

搅拌设备的工艺设计计算

搅拌设备的工艺设计计算

搅拌设备的工艺设计计算搅拌设备的工艺设计计算卢赤杰(河北省石油化工规划设计院)摘要文中给出T -艟搅拌设备的工艺设计计算程序,介绍了常用备的谩计有一定的参考价值 .及墨堕拳型,及箕工艺足寸的计算,净功率的计算.井附有经验参教与图表 .对于化工工艺谩计人员进行托拌设刖蓦浓缩、加工系统化,并给出其一般设计程序,力图使化工工艺人员在设计常用搅拌是化工生产中常见的单元操作之一搅拌设备时,能采用较简便的方法及程序,快速地选择搅拌器型式,正确地确定搅拌设备的工艺尺寸及需要的功率.一,通过搅拌可以加快两种或两种以上具有不同性质的物质相互问的分散速度,从而达到快速均匀混合的目的,因此搅拌设备在传质及传热过程中有着广泛的用途 . 搅拌过程是一个涉及流体力学、传质、传热等多学科的复杂过程,至今对其理论研究还进行得很不够,对于某一搅拌、搅拌装置的分类(一)依据搅拌器结构型式的不同分类r平桨式――桨r平直叶过程,怎样的搅拌装置(型式及结构尺寸)是摄适宜的?至少需要多大的动力才能最经济地完成这一过程?还不能作出完全、准确地回答 .口前在设计中主要要解决的问题是尽可能选择适宜的搅拌器型式及结构尺寸,并依据介质的选择性及已确L折叶桨广开启涡轮式叶折叶嘏轮式后弯叶l锚式框式螺旋带式齿轮圆盘式其它改型式r平直叶L后弯叶推进式L圃盘涡轮T斗折叶定的转速来求取需要的功率 .即使这样 . 各种文献“ j ”中报道的关于搅拌功率的计算式或图表搅拌器型式的选择依据、以及其它工艺尺寸的计算式,都很零碎、不系统,且不完全一致,这样就给化工工艺设汁人员快速合理地确定搅拌型式、正确地计算搅拌功率,以致确定整个搅拌设尽管搅拌器的型式多种多样,但最常用的有三种:平直叶桨式、平直叶圆盘涡备的_ J二艺尺寸都带来很多不便. 。

本文结合前人总结的计算公式及图表,进一步将之轮式和推进式,其主要参数与结构型式见表l表l常见搅拌器的结构型式及重要参数S/ d j:IZ 3 n= I O 0~ 5 ̄r pm产生的作用主要为轴向流 .循环速推最大可达进n。

搅拌机的水力计算公式

搅拌机的水力计算公式

搅拌机的水力计算公式是搅拌机设计和优化过程中的重要工具。

通过这一公式,工程师们可以精确地计算出搅拌机在不同工作条件下的水力性能,从而确保搅拌机能够高效、稳定地运行。

水力计算公式主要涉及到搅拌机的功率、流量、扬程等关键参数。

这些参数不仅关系到搅拌机的运行效率,还直接影响到搅拌效果和产品质量。

因此,正确应用水力计算公式对于提高搅拌机性能具有重要意义。

在实际应用中,水力计算公式需要根据搅拌机的具体类型和工作条件进行调整和优化。

不同类型的搅拌机,如强制式搅拌机、自落式搅拌机等,其水力特性各有特点,因此需要针对性地制定相应的计算公式。

同时,搅拌机的工作条件也会对水力性能产生影响,如搅拌物料的性质、搅拌速度、搅拌时间等,这些都需要在计算中加以考虑。

随着技术的不断进步和应用需求的不断提高,搅拌机水力计算公式的准确性和适用性也在不断提升。

现代水力计算公式不仅考虑了传统因素,还引入了更多的影响因素和修正系数,以提高计算的精度和可靠性。

此外,随着计算机技术的发展,水力计算公式的应用也更加便捷和高效,可以通过计算机软件进行快速计算和模拟分析。

总之,搅拌机的水力计算公式是搅拌机设计和优化过程中不可或缺的重要工具。

通过正确应用这一公式,我们可以更好地了解搅拌机的水力性能,为搅拌机的设计、制造和运行提供有力支持。

搅拌器设计计算

搅拌器设计计算

搅拌器设计计算(作者:纪学鑫)一、设计数据:1、混合池实际体积V=1.15m ×1.15m ×6.5m ≈8.60m ³∴设混合池有效容积V=8m ³2、混合池流量Q=0.035m ³/s3、混合时间t=10s4、混合池横截面尺寸1.15m × 1.15m ,当量直径D=πω4L =π15.115.14⨯⨯=1.30m 5、混合池液面高度H =24πD V =m ..π036301842≈⨯⨯ ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m6、挡板结构及安装尺寸()m 54.0036.0m 241361~)(~≈⎪⎭⎫ ⎝⎛D ;数值根据《给水排水设计手册》表4-28查得,以下均已此手册作为查询依据。

7、取平均水温时,水的粘度值()s a ⋅P μ=1.14×10-3s a ⋅P取水的密度3/kg 1000m =ρ8、搅拌强度1)搅拌速度梯度G ,一般取500~1000s -1。

混合功率估算:N Q =K e Q(kw)K e --单位流量需要的功率,K e 一般=4.3~173/s kw m ⋅∴混合功率估算:3/s kw 17~3.4m N Q ⋅=1-3-3e e )30.1365~65.686(s8s a 1014.1m /s kw 17~3.41000t 1000t 1000s P K Q Q K G ≈⨯⋅⨯⋅===⇒)(μμ 取搅拌速度梯度1-s 740=G2)体积循环次数'Z搅拌器排液量'Q ,213.08.008.1385.0)/(333'=⨯⨯==s m nd k Q q折叶桨式,片,245=︒=Z θ,流动准数385.0k q 取,见表4-27查取;---n 搅拌器转速)(s /r ;d 搅拌器直径(m) 转速d 60n πν=;---线速度v ,直径d ,根据表4-30查取。

立式搅拌机功率计算方法详解

立式搅拌机功率计算方法详解

立式搅拌机功率计算方法详解立式搅拌机是化工、食品加工等行业常用的设备之一,其功率计算是使用者在选择设备、设计工艺时必不可少的环节。

本文将详细介绍立式搅拌机功率计算方法,帮助读者更好地理解和应用这一知识。

一、计算公式立式搅拌机功率的计算一般可采用下面的公式:\[ P = ρ * V * g * H \]其中,P为搅拌机功率;ρ为物料密度;V为搅拌物料的流量;g为重力加速度;H为搅拌机搅拌高度。

二、物料密度的确定在进行功率计算时,首先需要确定物料的密度。

物料的密度可以通过实验测定或参考相关文献获得。

不同物料的密度差异较大,因此正确确定物料密度对功率计算结果的准确性至关重要。

三、搅拌物料流量的测量搅拌物料的流量是功率计算中的关键参数之一。

在实际应用中,可以通过流量计等设备进行测量,也可以根据搅拌槽的设计参数估算出流量值。

确保流量数据的准确性对功率计算结果的可靠性起着决定性作用。

四、重力加速度的取值重力加速度g的取值通常为9.81m/s²,这是一个标准数值。

在功率计算中使用标准重力加速度可以简化计算过程,提高计算效率。

五、搅拌高度的确定搅拌高度H是指搅拌机搅拌时搅拌元件与搅拌物料间的垂直距离。

搅拌高度的大小对功率计算结果有着直接影响,因此在进行功率计算时需要准确确定搅拌高度的数值。

六、实例分析以某化工企业使用的立式搅拌机为例,其搅拌机功率计算公式为:\[ P = 800 * 5 * 9.81 * 2 = 78480W = 78.48KW \]根据给定的物料密度、流量、搅拌高度等参数,计算得出该搅拌机的功率为78.48KW。

这个数值将帮助企业确定设备的功率配置,以确保搅拌过程的高效、稳定进行。

七、总结立式搅拌机功率计算方法需要综合考虑物料密度、流量、重力加速度、搅拌高度等多个因素,通过正确应用公式计算得出准确的功率数值。

正确的功率计算可以帮助企业合理选择设备、设计工艺,提高生产效率,保障产品质量。

搅拌器设计计算精选文档

搅拌器设计计算精选文档

搅拌器设计计算精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-搅拌器设计计算(作者:纪学鑫)一、设计数据:1、混合池实际体积V=××≈3∴设混合池有效容积V=8m32、混合池流量Q=3/s3、混合时间t=10s4、混合池横截面尺寸×,当量直径D=πω4L =π15.115.14⨯⨯= 5、混合池液面高度H =24πD V =m ..π036301842≈⨯⨯ ∴混合池高度H '=+(~)m=~ (m);取6、挡板结构及安装尺寸()m 54.0036.0m 241361~)(~≈⎪⎭⎫ ⎝⎛D ;数值根据《给水排水设计手册》表4-28查得,以下均已此手册作为查询依据。

7、取平均水温时,水的粘度值()s a ⋅P μ=×10-3s a ⋅P取水的密度3/kg 1000m =ρ8、搅拌强度1)搅拌速度梯度G ,一般取500~1000s -1。

混合功率估算:N Q =K e Q(kw)K e --单位流量需要的功率,K e 一般=~173/s kw m ⋅∴混合功率估算:3/s kw 17~3.4m N Q ⋅=1-3-3e e )30.1365~65.686(s8s a 1014.1m /s kw 17~3.41000t 1000t 1000s P K Q Q K G ≈⨯⋅⨯⋅===⇒)(μμ 取搅拌速度梯度1-s 740=G2)体积循环次数'Z搅拌器排液量'Q ,213.08.008.1385.0)/(333'=⨯⨯==s m nd k Q q折叶桨式,片,245=︒=Z θ,流动准数385.0k q 取,见表4-27查取;---n 搅拌器转速)(s /r ;d 搅拌器直径(m) 转速d 60n πν=;---线速度v ,直径d ,根据表4-30查取。

()266.03===⇒Vt nd k V t Q Z q ''容积 3)混合均匀度U ,一般为80%~90%。

搅拌机设计

搅拌机设计

第一节 罐体的尺寸确定及结构选型 (一)筒体及封头型式选择圆柱形筒体,采用标准椭圆形封头 (二)确定内筒体和封头的直径发酵罐类设备长径比取值范围是 1.7~2.5,综合考虑罐体长径比对搅拌功率、传热以及物料特性的影响选取/ 2.5i H D =根据工艺要求,装料系数0.7η=,罐体全容积39V m =,罐体公称容积(操作时盛装物料的容积)390.7 6.3g V V m η=•=⨯=。

初算筒体直径iii D H D H D V 442ππ=≈34ηπi gi D H V D ≈即m D i 66.17.05.214.33.643≈⨯⨯⨯=圆整到公称直径系列,去mm DN 1700=。

封头取与内筒体相同内经,封头直边高度mm h 402=, (三)确定内筒体高度H当mm h mm DN 40,17002==时,查《化工设备机械基础》表16-6得封头的容积30.734v m =224(90.734)3.643.14 1.74i V vH m D π--===⨯,取 3.7H m = 核算/i H D 与η/ 3.7/1.7 2.18i H D ==,该值处于1.7~2.5之间,故合理。

226.30.69'1.7 3.70.73444g gi V V V D H vηππ====+⨯⨯+该值接近0.7,故也是合理的。

(四)选取夹套直径表1 夹套直径与内通体直径的关系由表1,取10017001001800j i D D mm =+=+=。

夹套封头也采用标准椭圆形,并与夹套筒体取相同直径 (六)校核传热面积工艺要求传热面积为211m ,查《化工设备机械基础》表16-6得内筒体封头表面积23.34,3.7i A m m =高筒体表面积为21 3.7 3.14 1.7 3.719.75i A D m π=⨯=⨯⨯=总传热面积为3.1419.7523.0911A =+=>故满足工艺要求。

第二节 内筒体及夹套的壁厚计算 (一)选择材料,确定设计压力按照《钢制压力容器》(15098GB -)规定,决定选用0189Cr Ni 高合金钢板,该板材在150C 一下的许用应力由《过程设备设计》附表1D 查取,[]103t MPa σ=,常温屈服极限137s MPa σ=。

机械搅拌机设计计算

机械搅拌机设计计算

机械搅拌机设计计算
1.设计要求
-搅拌机的容积大小
-搅拌机的转速
-搅拌机的功率需求
-搅拌机的结构和材料选择
2.容积大小计算
容积大小的计算是根据所需处理物料的量来确定的。

例如,如果需要混合500升的液体,那么搅拌机的容积应该大于或等于500升。

3.转速计算
转速的选择依赖于所需的混合程度和处理物料的性质。

通常情况下,较高的转速能够更好地实现混合,但是对于一些粘稠物料来说,较低的转速可能更为合适。

根据搅拌机的工作特性和物料性质,选择合适的转速。

4.功率需求计算
搅拌机的功率需要根据搅拌工作的性质来确定。

常见的方法是通过计算转矩和功率来确定所需的电机功率。

转矩的计算是通过考虑搅拌机所需要的最大转矩来确定的。

5.结构和材料选择
搅拌机的结构和材料选择是根据搅拌物料的特点和工作条件来确定的。

例如,对于一些食品或制药行业的应用,搅拌机通常会选择不锈钢等耐腐
蚀材料制作,以满足卫生要求。

6.动力传输系统设计
7.结构强度计算
搅拌机的结构强度计算是为了确保搅拌机在工作过程中不发生结构应
力过大、变形等问题。

针对不同的结构和材料,通过应力分析和材料力学
性质计算,确定搅拌机各个部件的尺寸和结构。

8.平衡性和稳定性计算
以上是关于机械搅拌机设计计算的一些基本内容,当然,具体的设计
计算还需根据具体的实际情况来确定。

设计者需要结合所处理的物料特性、工作环境要求、结构设计要求等方面的考虑进行计算和选择,以保证机械
搅拌机能够满足实际工作需要。

2.0m3锚式搅拌机计算说明书

2.0m3锚式搅拌机计算说明书

(2.0m3)锚式搅拌机设计计算1 已知参数:反应釜尺寸φ1300X15002 搅拌器选型:搅拌介质为高黏度液体,选用锚式搅拌机;3 参数确定:介质粘度μ=10PaS介质密度ρ=1500kg/m3设定搅拌机转速n=25r/min选取桨叶直径d=1.17m3 求外缘线速度:v=nπd/60=25×π×1.17/60=1.53m/s(搅拌器的外缘线速度范围为1-5m/s)4 求雷诺数:Re=d2nρ/μ=1.172×(25/60)×1500/10=85.565 根据雷诺数,可求的功率准数Np=2.7446 求搅拌功率: N=Npρn3d5/102g=2.744×1500×(25/60)3×1.175/102×9.81=0.6524kw7 校核搅拌强度:⑴根据体积循环次数Z’(此方法根据美国凯米尼尔公司和莱宁公司有关资料)A 搅拌器排液量Q’=Kqnd3=0.77×(25/60)×1.173=0.514m3/s。

其中Kq-流动准数,搅拌器的流动准数为0.77B 体积循环次数Z’=Q’t/V=0.514×30/2=6.28其中t-混合时间,V-有效容积。

在混合时间内,池内液体的体积循环次数不小于1.2,所以满足搅拌强度的要求。

⑵根据混合均匀度U (此方法根据美国凯米尼尔公司和莱宁公司有关资料)-ln(1-U)=tan(d/D)b(D/H)0.5其中t-混合时间,a,b-混合速率常数,U-混合均匀度得出U=98%,满足搅拌强度要求。

8 电机功率计算:NA=KgN/η=1.2×0.6524/0.9=0.87KW。

其中Kg-电机工况系数,η-机械传动效率。

9 选用电机功率为4KW,锡减牌减速机BLD13-59-4KW10搅拌轴计算:⑴按扭转强度计算:d1≥C1(NA/n)(1/3)=89.2×(2.2/25)(1/3)=55.52mm⑵按扭转刚度计算:d2=C2(NA/n)(1/4) =91.5×(2.2/88)(1/4)=49.83mm故按结构取搅拌轴直径d=65mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

搅拌机的设计计算
7.5kw 搅拌机设计:
雷,此时为湍流,2
K Np ==φ常数。

查表知:诺数的计算:
4
032
.08.0130010436833Re 260
85
2⨯≈===⨯⨯μραi
n 即4
10Re >蜗轮式,四平片时,5.42
=K 。

由公式5
1
3d n N N p ρ=,式中Np ——功率准数。

则,搅拌功率5
1
32d n K N ρ= 5
360
858.0)(13005.4⨯⨯⨯= W W 45.55450== 则,电机的最小功率为: η
N
N =电 ,取η=0.85
则KW N 41.685
.045.5电
==
则选用电机的功率为7.5KW 。

圆盘直径φ450mm ,选定叶轮直径φ800mm 。

桨叶的危险断面Ⅰ—Ⅰ(如上图):
该断面的弯矩值: (对于折叶蜗轮)
θSin n
N x r x Z
j M 155
.90
30⨯⨯

=-
式中n ——转速;N ——功率;
x ——桨叶上液体阻力的合力的
作用位置。

计算公式为:
32
314
2414
30r r
r r x --⨯= 3
34412.04.012.04.04
3--⨯
= =0.306(m)
则θ
Sin n
N x r x Z
j M 155.90
30⨯


=
-
03
451
85
105.7306
.0225.0306.04
55.9Sin ⨯⨯⨯=⨯- =78.86(N.m )(Z=4叶片,θ=45°倾
角)
对于Q235A 材料,MPa 240~2205

当取n=2~2.5时,[σ]=88~100Mpa. 取[σ]=90Mpa 计算,得62
bh =ω(矩形截面) 且b=200mm ,求h 值。

由][σω≥M
有6
66.810906
22.0⨯≥⨯⨯h η,
可得h ≥0.00512m, 即h ≥5.12mm
考虑到腐蚀,则每边增加1mm 得腐蚀余量。

即,需叶片厚度为≥7.12, 取8mm 厚的钢板。

叶轮轴扭转强度计算验证
叶轮轴选用φ76×5的无缝钢管,材料20号钢。

对于20号钢,其许用剪切应力[τ]=40M P a ;许用扭转角[φ]=1°/m ;G =80G P a 。

则 扭矩:
选用20号钢φ76×5无缝钢管满足强度和刚度要求。

)
(8403.855
.72.1592.159Nm n N M k =⨯==8684
.076
5
276=⨯-==D d α)(6.1411767)8684.01(7632
14
.3)1(32
44444mm D p =-⨯⨯=
-=
απ
τ)
(8.371512
766
.141176723mm D w p
n ===τMPa
MPa W M n 40][)(6.228
.37151108403
max max =<=⨯==ττ14
.36.141176710801801084018033max max ⨯⨯⨯⨯⨯=
⨯=πτϕp G M m
m
mm

=<︒
=︒
⨯=-1][426.01026.44ϕ。

相关文档
最新文档