薄膜电容器与应用

合集下载

薄膜电容作用

薄膜电容作用

薄膜电容作用
薄膜电容是一种具有广泛应用场景的电容器件。

它由两个电极之
间夹着一层薄膜组成,能够存储电荷,将电能转化为其他形式的能量。

薄膜电容的作用十分广泛,它可以用于存储电能,在电路中起到
滤波和耦合的作用,还可以作为传感器来检测物理量的变化。

下面我
们来看看每种应用场景下,薄膜电容都有哪些重要作用。

首先,薄膜电容作为电能的存储器,能够在电路中储存一定量的
电荷,以供后续使用。

例如在电子钟、遥控器等电子产品中,通过充
电电路和薄膜电容的组合来实现对电量的储存。

有些电容器还具有稳压、稳流、脉冲输出等特殊功能,能够使得电路更加复杂和高效。

其次,在电路中,薄膜电容可以起到滤波和耦合的重要作用。


滤波方面,薄膜电容可被使用于限制信号的频率范围或降低信号中的
噪声。

同时,薄膜电容作为耦合器件,可以将不同的信号传递到相应
的回路中,从而实现数据交互和信号传输。

最后,薄膜电容还可以用于制作传感器。

通过在薄膜电容片中添
加灵敏度不同的感应物质,可以实现对光、声、压力等物理量的检测。

例如,在智能家居、智能交通、医疗等领域,薄膜电容传感器已经成
为了重要的检测手段之一。

在这些应用场景中,薄膜电容发挥着不可替代的作用。

作为一种
小巧、高效、灵敏的电容器件,它为人们的生产生活带来了巨大的便
利。

在现代科技领域,薄膜电容具有非常重要的指导意义,它在创新中的应用将会成为未来科技发展的支柱之一。

薄膜电容器选型与应用

薄膜电容器选型与应用

薄膜电容器选型与行业应用————光伏逆变器行业变频器行业 风电行业 交流滤波电容 其他场合一、光伏行业DC-link电容DC-link电容(大功率27μF-30μF/KW 薄膜电容)二、变频器行业DC-link电容输入电压等级 DC-Link 电容 吸收电容 LC 交流滤波电容 220V.AC-440V.AC 薄膜电容电压Un=700V.DC 0.1-2μF/1200V.DC Un=450V.AC 660V.AC-690V.AC薄膜电容电压 Un=1100V.DC 0.47-2.5μF/1600V.DC Un=850V.AC 1140V.AC薄膜电容电压 Un=2000V.DC0.47-3μF/3000V.DCUn=1140V.AC2000μF/1200VDCSVG客户的选型420/470 uf –1100/1200V .DC500/1200/2000/3000 uf –1200V .DC功率P DC-Link 电容 吸收电容 交流滤波电容500KW 园柱SCREW 型400μF-500μF/1100V .DC 27-30只并联 采用6只 方块铜片型0.47-1.5μF/1600V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 250KW 园柱SCREW 型200-420 多只并联总容量在6000uf采用3只 方块铜片型0.47-1.5μF/1600V .DC金属盒三角接法SCREW 型 3×200μF/450V .AC 100K 园柱SCREW 型 420uf 6只并联方块铜片型 1μF/1200V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC50K 方块导针型 10μF-50μF 多只并联方块铜片型0.47μF/1200V .DC20μF/450V .AC (自己采用三角接法),会选园柱SCREW 型的备注 采用容量小,多只并联,这样同等容量流过DC-LINK 电容有效电流大, I 总rms≥nI 输出电流容量选取不是容量越大越好,主要通过IGBT 开关频率和功率选取容量 选择交流电容设计电容的有效电流多少,这主要载波频率有关系逆变器输出总功率对应470UF电容折算数量6kv/250A =1.5兆瓦10kv/200A/400A/600A/800A/1000A,=2/4/6/8/10兆瓦1.5MW2MW4MW6MW8MW 10MW180只198只429只648只864只1080只――-依470 uf –1100/1200V.DC折算出的电容数量;---风电变流器行业容量选取可参照此案,但务必对电压考虑裕量; 三、IGBT 保护电容(snubber)IGBT 实际工作电流每 100A 使用容量大约 1UF。

薄膜电容的作用

薄膜电容的作用

薄膜电容的作用
电容器是一种元件,它可以储存电能,可以用于调整和过滤电路的工作状态,并且可用于提高系统的效率和可靠性。

薄膜电容是一种常见的电容器,它由多层薄膜制成,其工作原理是,卷膜构件可以储存和释放电能,因此,薄膜电容在电气电子领域应用广泛。

下面,我们将讨论薄膜电容的作用。

首先,薄膜电容可以用于过滤和调节电路,其功能是储存和释放电能,以实现电路的抑制和过滤,从而改变电路工作的状态和谐波的影响,从而提高系统的效率和可靠性。

其次,薄膜电容可以用于调整和保护电路。

薄膜电容可以储存和释放电能,可以与另一电路有效地调节交流电压,平衡电路的功率,以及向电路中添加必要的延时。

另外,由于薄膜电容可以用作放电电导,因此,它可以放置在多个点上,用于保护电路免受高压冲击和暂态损伤。

此外,薄膜电容还可以用于供应电源谐波抑制,以增强电路的稳定性。

薄膜电容由多层薄膜组成,其特性具有可靠性,容量,电阻等特征,因此,它们可以用于增强谐波抑制效果,从而改善电路稳定性。

最后,薄膜电容可以用于改善功率因数和节能减排。

节能减排是指减少电力的消耗,这将产生经济和环境的好处,而原理是电容器可以储存和释放电能,因此,可以通过将视在功率转换为有效功率,从而改善电路的效果。

另外,薄膜电容也可以用于改善功率因数,即将混合功率转换为有效功率。

总结而言,薄膜电容可以用于过滤和调节电路,调整和保护电路,改善功率因数和节能减排,以及改善谐波抑制效果,因此,它是电气电子领域非常重要的元件之一。

聚乙烯薄膜电容

聚乙烯薄膜电容

聚乙烯薄膜电容
聚乙烯薄膜电容器是一种使用聚乙烯作为电介质的电容器,具有一系列的优点适用于多种电子设备。

以下是聚乙烯薄膜电容器的一些关键特点:
1. 高绝缘电阻:聚乙烯薄膜电容器通常具有较高的绝缘电阻,意味着它们在电路中可以很好地保持电荷。

2. 低介质损耗:与其他类型的电容器相比,聚乙烯薄膜电容器具有较低的介质损耗,这使得它们特别适合于高频电路应用。

3. 温度稳定性:尽管聚苯乙烯薄膜电容器的温度系数较大,但聚乙烯薄膜电容器通常能够在不同的温度下保持稳定的性能。

4. 无极性:聚乙烯薄膜电容器没有极性,因此可以在直流和交流电路中使用,这提供了更大的灵活性。

5. 长寿命和少故障:由于其结构和材料的特性,聚乙烯薄膜电容器通常具有较长的使用寿命和较少的故障率。

6. 适用性:聚乙烯薄膜电容器可用于各种电子设备,包括音频设备、电源电磁干扰抑制、电动机启动运行和功率因素补偿等。

综上所述,聚乙烯薄膜电容器因其独特的电气特性和可靠性,被广泛应用于电子行业中,尤其是在需要高频率响应和高稳定性的应用场合。

5种薄膜电容的性能

5种薄膜电容的性能

5种薄膜电容的性能及参数介绍1、碳酸酯薄膜电容此电容性能比聚酯电容好,耐热与聚酯电容相同,可替代聚酯,纸介电容,广泛应用于直流交流,脉动电路中。

型号:CQ10 容量:0.1-0.68uf 额定工作电压:40V 绝缘性能:500mohm./uf 损耗角正切:(正常气候条件下)<0.015 试验电压: 60V2、复合薄膜电容器:此电容选择了两种不同的薄膜(或纸与薄膜)复合做介质。

例如聚苯乙烯薄膜与聚丙烯薄膜复合制作的电容器,这种电容比聚苯乙烯电容提高了抗电强度和温度,减小了体积,但是电容的温度系数和损耗稍差。

聚苯乙烯薄膜电容器:主要特点是绝缘电阻高,损耗小,容量精度高,电参数随频率温度变化小,缺点是体积大,工作温度不高(上限为70C )该电容主要应用于滤波,高频调谐器,均衡器中。

型号:CB40 容量:0.015-2uf 额定工作电压: 250-1000v 绝缘性能:引出头之间:50000mohm 引出头与外壳之间:10000S 损耗角正切:(正常气候条件下)<0.001 试验电压:2uw 容量允差:J,K,F,G型号:CB14 容量:10P-0.16uf 额定工作电压: 100—1600v 绝缘性能:引出头之间:20000mohm. 容量允差:D ,F,J,G 损耗角正切:(正常气候条件下)<0.001 试验电压:2uw3、聚丙烯薄膜电容器此电容性能和聚苯乙烯电容相似,但体积小,工作温度上限可达85-100C 损耗为 0.01-0.001 温度系数为-100*(10 负6) ---- -400*(10 负6) 容量稳定性比聚丙乙烯电容稍差。

可用于交流,激光,耦合,等电路。

型号:CBB121 容量: 0.001-0.47uf 额定工作电压:63—400v 绝缘性能:引出头之间:100000mohm 引出头与外壳之间:10000S 损耗角正切:(正常气候条件下)<0.01 试验电压:2uw 容量允差:J,K,M型号:CBB12 容量:0.001-0.39uf 额定工作电压:100—1600v 绝缘性能:引出头之间:3000mohm.UF 引出头与外壳之间:10000S 损耗角正切:(正常气候条件下)<0.001 试验电压: 2.5uw 容量允差:J,K,4、聚四氟乙烯薄膜电容器:此电容损耗小,耐热性好,工作温度可达-150---200C 电参数的温度频率特性稳定,耐化学腐蚀好,缺点是耐电晕性差,成本高,主要应用于高温高绝缘,高频的场合。

薄膜电容的主要应用

薄膜电容的主要应用

薄膜电容的主要应用薄膜电容是一种常见的电子元件,广泛应用于各种电子设备中。

它具有体积小、重量轻、成本低、可靠性高等优点,因此在电子行业中得到了广泛的应用。

薄膜电容在通信设备中扮演着重要的角色。

在手机、平板电脑、电视等设备中,薄膜电容被用于触摸屏的制作。

通过在薄膜上涂覆导电材料,形成电容结构,当用户触摸屏幕时,电容发生变化,从而实现触摸的控制。

薄膜电容触摸屏具有高灵敏度、高分辨率、快速响应等优点,成为现代电子设备不可或缺的重要组成部分。

薄膜电容还广泛应用于电子计算机设备中。

在计算机主板、显卡、内存等电路板上,薄膜电容被用于电压稳定和滤波器的设计。

薄膜电容通过电容原理,能够稳定输出电压,提供稳定的电源给其他电子元件。

同时,薄膜电容还可以用于信号的滤波,去除电路中的干扰信号,提高设备的工作稳定性。

薄膜电容还在音频设备中发挥着重要作用。

在耳机、音响、扬声器等设备中,薄膜电容被用于声音的转换和放大。

薄膜电容通过振动薄膜产生声音,通过电容的变化将声音信号转化为电信号,再经过放大器放大输出给扬声器,使人们能够享受到高质量的音乐和声音效果。

薄膜电容的高灵敏度和快速响应能力,使得音频设备的音质更加清晰、细腻。

薄膜电容还在照明设备中得到广泛应用。

在LED灯、液晶显示屏等设备中,薄膜电容被用于电源管理和驱动控制。

薄膜电容能够稳定输出电流和电压,确保LED灯或液晶显示屏的正常工作。

同时,薄膜电容还能够通过电容的变化来控制LED灯或液晶显示屏的亮度和颜色,使得照明设备具有调光和调色的功能,满足人们不同的需求。

薄膜电容作为一种重要的电子元件,在通信设备、电子计算机设备、音频设备和照明设备中发挥着重要的作用。

它的小巧、轻便、成本低廉的特点,使得电子设备变得更加智能、便捷和高效。

随着科技的不断进步和创新,相信薄膜电容在未来的应用领域还会更加广泛,为人们的生活带来更多的便利和乐趣。

薄膜电容原理

薄膜电容原理

薄膜电容原理一、引言薄膜电容是一种常见的电子元件,广泛应用于电子设备和电路中。

在电子领域中,薄膜电容的原理和应用非常重要。

本文将介绍薄膜电容的原理、结构和特性,以及其在电子领域中的应用。

二、薄膜电容的原理薄膜电容是利用薄膜材料的两个电极之间的介电常数来存储电荷的一种电子元件。

薄膜电容的工作原理基于电容器的基本原理,即电容器的电容值与两个电极之间的距离和介电常数有关。

在薄膜电容中,薄膜材料起到了介电层的作用,两个电极之间的距离非常接近,因此电容值较小。

三、薄膜电容的结构薄膜电容通常由两个金属薄膜电极之间的薄膜材料组成。

这两个电极可以是金属箔、金属化合物或者金属薄膜。

薄膜电容的结构紧凑,占用空间小,适合于集成电路和微型电子设备中的应用。

四、薄膜电容的特性薄膜电容具有许多优良的特性,使其在电子领域中得到广泛应用。

首先,薄膜电容的电容值稳定性高,能够在广泛的温度范围内保持相对稳定的电容值。

其次,薄膜电容的频率响应特性良好,能够在高频率下保持较低的阻抗。

此外,薄膜电容的耐压能力较强,能够承受较高的工作电压。

五、薄膜电容的应用薄膜电容在电子领域中有广泛的应用。

首先,薄膜电容常用于电子设备中的滤波电路,用于滤除信号中的杂散噪声和高频噪声。

其次,薄膜电容可以用于存储电荷,常用于数字电路中的存储器元件。

此外,薄膜电容还可以用于电子设备中的稳压电路和振荡电路,起到稳定电压和产生振荡信号的作用。

六、总结薄膜电容是一种重要的电子元件,其原理基于电容器的基本原理,利用薄膜材料的介电常数来存储电荷。

薄膜电容具有结构紧凑、电容值稳定、频率响应特性良好等优良特性,因此在电子设备和电路中得到广泛应用。

薄膜电容常用于滤波电路、存储器元件、稳压电路和振荡电路中,起到滤波、存储、稳定电压和产生振荡信号的作用。

通过本文的介绍,我们了解了薄膜电容的原理、结构和特性,以及其在电子领域中的应用。

薄膜电容的发展将为电子技术的进步和创新提供更多可能性,为我们的生活带来更多便利和效益。

薄膜电容的主要应用

薄膜电容的主要应用

薄膜电容的主要应用薄膜电容是一种电子元件,常用于电路中的储能和滤波功能。

它的主要应用可以分为以下几个方面。

薄膜电容在电子产品中被广泛用于储能。

由于薄膜电容具有较高的电容值和较小的体积,因此它可以在有限的空间内存储更多的电能。

这使得它成为电子设备中的重要组成部分,例如手机、平板电脑和笔记本电脑等。

薄膜电容的储能能力可以有效地提供电子设备所需的电源,确保设备的正常运行。

薄膜电容在电路中的滤波功能中起着重要作用。

在电子设备中,信号经常受到噪声的干扰,为了保证信号的稳定和清晰,需要对信号进行滤波处理。

薄膜电容可以通过选择合适的电容值来实现对特定频率的信号进行滤波,去除噪声和杂波,使信号更加纯净和可靠。

薄膜电容还被广泛应用于传感器技术中。

传感器是一种能够将物理量转化为电信号的装置,而薄膜电容可以作为传感器中的重要部分。

通过改变薄膜电容的电容值,可以实现对不同物理量的测量和检测,例如温度、湿度、压力等。

薄膜电容传感器具有高精度、高灵敏度和快速响应的特点,被广泛应用于医疗、环境监测、工业控制等领域。

薄膜电容还可以用于电子设备中的触摸屏技术。

触摸屏是一种通过触摸屏幕来实现和设备交互的技术,而薄膜电容可以作为触摸屏的关键部件。

触摸屏上的电容传感器可以检测到触摸屏上的电容变化,从而确定触摸位置和手势。

薄膜电容触摸屏具有高灵敏度、高分辨率和多点触控等优点,被广泛应用于智能手机、平板电脑、汽车导航系统等设备中。

薄膜电容是一种应用广泛的电子元件,主要用于电子产品中的储能和滤波功能,以及传感器技术和触摸屏技术中的应用。

它的高性能和小体积使得它成为现代电子设备中不可或缺的元件,为电子产品的功能和性能提供了重要的支持。

随着科技的不断发展,薄膜电容的应用领域也将不断扩展和深化,为人们的生活带来更多的便利和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谐振式变换器电路
LLC谐振式变换器 特点:低噪声
谐振式变换器
谐振式高频感应加热功率变换器
中频感应加热功率变换器
电路详见电力电子技术教材 特点: 为了降低成本、高输出功率,晶闸管逆变 器 为了获得更高的负载电流,采用并联谐振 方式 电容器的电流接近于负载电流
中频感应加热电容器
特点: 电容量大 无功功率高 大电流 需要水冷
薄膜电容器实现平滑与直流支撑 功能
目的: 平滑整流后直流电压
旁路(吸收)逆变器的纹波电流,改善直 流母线电压质量
对性能的要求
膜电容特别适合这种应用。因为直流支撑 电容的主要标准是有效值电流的承受能力。
这意味着直流支撑电容能够以有效值电流 来设计
实例
以电瓶车为例, 要求的数据 工作电压: 120VDC 允许的纹波电压: 4VRMS 有效值电流: 80 ARMS @ 20 kHz 最小容值为 在膜电容中,很容易找到接近的容值。
如果采用铝电解电容器
与电解电容比较: 以每μF 20 mA为例,为了承受80A有效值 电流,最小容值
实际上可能需要两只4000μF的电解电容器 并联
电容器在电网供电时平滑与旁路作用
实例
容值的确定应从电网频率比逆变器频率低 入手。使用下述等式确定容值:
流过电容的有效值电流为(近似表示式), 该电流没有考虑逆变器侧的电流
电容器的电流与dv/dt的关系:
iC
C
dv dt
当dv/dt为峰值时,对应的电流为峰值电流。
电容器允许的有效值电流受流过的电流在 ESR上的损耗限制
工作温度
不同的介质,电容器的最高工作温度不同。 一般来说,聚酯电容器的最高工作温度为 +125℃;聚丙烯电容器多为+85℃。
损耗因数与频率的关系
损耗因数与温度的关系
对电容量的要求(2)
因此,对于三相,六整流管的整流器,频 率为。我们可以看到对应 1MW的曲线,需 要18.5mF的容值。与电解电容相比,如使 用膜电容方案,体积几乎可以缩小4倍,同 时有更高的可靠型。
比较低的功率情况
在更低功率的情况下,同样能够给出相同 的结果 , 对于10kW的功率,虽然容值变得 很小,但是膜电容仍然是最好的解决方案。 甚至在100Hz整流器频率,只需要555μF的 电容,供电电压与纹波电压仍然与前面相 同。
电容器的交流电压与频率的关系
当交流电的频率很低时,流过电容器的电流也很 低,这是电容器所允许施加的交流电压为额定交 流电压。
随着频率的升高,流过电容器的电流增加。当流 过电容器的电流达到电容器的额定电流时,将不 允许继续增加电流。为了限制电流,需要电压降 额。
随着频率继续升高,电容器的介质损耗上升,由 于电容器所允许的损耗为一定值,介质损耗增加, 将要求ESR损耗降低,也就是说要进一步降低电 流有效值,来保证电容器的损耗为额定值。
薄膜电容器的特点
无极性 ESR极低 允许比较高的电流流过 工作电压可以很高 温度范围宽 基本上无寿命限制 金属化电极具有自愈功能
薄膜电容器的基本参数
额定直流电压、额定交流电压 电容量 ESR、ESL dv/dt、有效值电流、峰值电流 工作温度
额定直流电压、额定交流电压
额定直流电压:是在整个温度范围内允许 持续施加的直流电压。
电容器的电压与频率的关系
电容器可承受的交流电压、电流与频率的 系薄膜电容器电压与频率的关系
当频率升高到一定程 度时,薄膜电容器允 许施加的电压将随频 率的升高而降低。
薄膜电容器电压与温度的关系
薄膜电容器在不同温度下可承受的交流电 压
电容量的变化与温度的关系
ESR、ESL与阻抗频率特性
dv/dt 、峰值电流、有效值电流
应用薄膜电容器需要注意的问题
应用条件: 工作电压状态 电压变化速率 流过电容器的有效值电流与峰值电流
薄膜电容器在电力电子线路中的主 要作用
旁路 缓冲与箝位 谐振 平滑与直流支撑 急剧放电 电源电磁干扰抑制
薄膜电容器用作旁路
目的: 降低直流母线阻抗; 吸收来自负载的纹波 电流,抑制直流母线 电压因负载突变而出 现的波动。
10 kW逆变器对电容量的要求与频率 的关系
滤波与平滑用薄膜电容器
滤波与平滑用电容器是用来平滑整流器输 出的电压、电流,在电压低于450V时通常 应用价格低廉的铝电解电容器,当电压高 于500V低于700V时仍可以应用铝电解电容 器串联的方式,但是在需要高可靠的场合 与电压高于1000V或更高时则应用薄膜电容 器作为滤波电容器为好。
薄膜电容器与应用
薄膜电容器
1876年英国D.斐茨杰拉德发明纸介电容器。 这就是薄膜电容器的始祖。 有机介质由于其性能优异而大量应用。 有机介质可以分为聚乙烯、聚苯乙烯、聚 四氟乙烯、聚丙烯、聚酯、聚碳酸酯、聚 酰亚胺、聚砜、聚苯硫醚、漆膜等。 对于电力电子线路来说,应用最多的是聚 酯电容器、聚丙烯电容器。
薄膜电容器用于直流母线旁路
对性能的要求
尽可能低的ESR 满足要求的电容量 满足要求的额定有效值电流和峰值电流
薄膜电容器用作缓冲与箝位
目的 对性能的要求
电容器用于箝位
电容器作为缓冲电容器
电容器用于准谐振与有源箝位
薄膜电容器用于谐振式变换器
目的:与电感共同实现谐振功能 对性能的要求:在相应频率下更够承受足 够的交流电压、电流
试验电压:电容器出厂前形式试验时对电 容器施加的电压,一般在1.5~2倍,持续时 间2分钟或500小时。 介电强度:电容器的介质所能承受的电压, 这个电压高于试验电压。
额定交流电压:电容器工作在交流电压下 可以连续施加的交流电压有效值。
额定交流电压与额定直流电压关系
在一般情况下,额定交流电压与额定直流 电压关系为:
如果直流电压1000V, 纹波电压200V
I rms :(P=1MW) = 2468Arms (P=500kW) = 1234Arms (P=100kW) = 247Arms
频率与电容量的关系
频率与电容来的关系低频部分
对电容量的要求(1)
为了方便比较,我们选择电流承受能力为 20mA每μF的电解电容 考虑到 0.2Arms/μF,有效值电流为2468A 时,需要的最小容值为123.4mF。对应图 中曲线的值,我们可以看到对频率低于 100Hz的整流器,使用膜电容,该容值同样 是需要的。
相关文档
最新文档