船舶螺旋桨知识
关于螺旋桨的一些知识

关于螺旋桨的一些知识螺旋桨是船舶和飞机等交通工具的重要部件,具有推动物体前进的功能。
在本文中,我们将介绍螺旋桨的工作原理、结构构造、选材等相关知识。
一、螺旋桨的工作原理螺旋桨依靠空气或水流动的原理产生推力,从而推动船舶或飞机前进。
其工作原理可简单归纳为以下几个方面:1. 流体动力学理论:根据流体动力学理论,螺旋桨叶片受到流体的作用会形成载荷,通过迎角改变和旋转速度调节,将动力转化为推进力。
2. 套氏定理:套氏定理指出,在涉及固定的螺旋桨时,液体或气体在进入螺旋桨以前,质量流率保持不变,但速度和压力会发生变化。
这种速度和压力的变化使得螺旋桨产生了推力。
二、螺旋桨的结构构造螺旋桨的结构构造通常由叶片、轴、轴套等组成。
1. 叶片:螺旋桨叶片是螺旋桨的最重要部分,其形状和数量会直接影响推力的大小和效率的高低。
通常,螺旋桨叶片会根据具体设计要求进行定制,以达到最佳的推进效果。
2. 轴和轴套:螺旋桨的轴起到支撑和固定作用,通常由高强度合金钢或碳纤维材料制成,以确保其在高速旋转时的安全可靠性。
轴套则用于固定轴与螺旋桨叶片的连接。
三、螺旋桨的选材螺旋桨的选材对于其使用寿命和推进效果有着重要影响。
常见的螺旋桨选材有以下几种:1. 铝合金:铝合金螺旋桨具有重量轻、制造成本低的优点,适用于速度较低的船舶和小型飞机。
2. 不锈钢:不锈钢螺旋桨在耐蚀性、强度和硬度方面表现出众,适用于海洋环境和高速航行的船舶和飞机。
3. 青铜:青铜螺旋桨具有较好的耐腐蚀性和抗磨损性能,适用于大型船舶和高负荷工况下的飞机。
四、螺旋桨的维护保养为了确保螺旋桨的正常运行和延长其使用寿命,维护保养工作至关重要。
以下是一些建议:1. 定期清洗:螺旋桨表面容易附着赘物,定期清洗可以减少其阻力,提高推进效率。
2. 检查叶片状态:定期检查螺旋桨叶片的变形、裂纹和磨损情况,及时修复或更换叶片,以确保其正常工作。
3. 螺母紧固:定期检查螺旋桨的连接螺母是否紧固,防止因螺母松动而导致螺旋桨脱落或异常运转。
船螺旋桨原理

船螺旋桨原理
船螺旋桨原理是指利用螺旋线的切割面积不同,产生的剪切力和反作用力,使船只能够行进和转向的原理。
船螺旋桨一般由几片可旋转的螺旋状叶片组成,其安装在船体的尾部或者底部。
当螺旋桨旋转时,螺旋状叶片将水从前方吸入,然后通过旋转将水喷射到后方。
根据牛顿第三定律,喷射水甩出的同时会给船体一个反作用力,从而推动船只向前。
船螺旋桨的原理可以解释为以下几个步骤:
1. 吸入水:当螺旋桨旋转时,螺旋状叶片在水中形成一个负压区,吸引周围水体进入。
这样一来,船螺旋桨前方的水体被吸入到叶片中间的螺旋线空间内。
2. 推动水:当螺旋桨旋转时,叶片随之旋转,并将吸入的水体推向后方。
在螺旋桨旋转的过程中,由于螺旋线所切割面积的变化,水体会感受到不同的阻力,从而形成剪切力。
3. 产生反作用力:根据牛顿第三定律,船螺旋桨喷射水时会产生一个向后的反作用力,也就是推动船只向前的力。
这是因为喷射水甩出的同时会给船体一个反作用力,根据动量守恒定律,反作用力与推进力相等且反向,推动了船体向前移动。
船螺旋桨的原理适用于各种大小的船舶,包括商船、军舰和个人游艇等。
螺旋桨的设计和旋转速度可以根据船只的需求进行调整,以实现最佳的推进效果。
船螺旋桨的原理是航海工程和
船舶设计中的重要基础,对于船只的推进性能和操控能力有着重要的影响。
船舶推进螺旋桨基础理论课件

螺旋桨性能测试案例分析
案例一
某型船用螺旋桨在实验水池中的性能测试,分析推力系数、效率系数、空泡系数 和振动系数的变化规律。
案例二
某大型油轮在实际航行中的螺旋桨性能测试,结合数值模拟和理论分析,评估其 实际运行性能。
05
船舶推进螺旋桨的应用与发展趋 势
螺旋桨在船舶推进中的应用
螺旋桨作为船舶推进器,能够将主机 产生的动力转化为船舶前进的推力, 是船舶航行中的重要组成部分。
螺旋桨的安装角度、位置和数量等参 数需要根据船舶的具体需求进行合理 配置,以实现最佳的推进效果。
螺旋桨的设计和制造需考虑船舶的航 速、航程、载重量等要求,以及水域 、气候等环境因素,确保推进效率和 使用寿命。
螺旋桨的修复与更换
修复
对损坏的螺旋桨进行修复 ,如焊接、填补等。
更换
若螺旋桨损坏严重或无法 修复,需更换新的螺旋桨 。
注意事项
更换或修复后需进行动平 衡测试,确保船舶安全。
04
船舶推进螺旋桨的性能评价与测 试
螺旋桨性能评价指标
推力系数
衡量螺旋桨推力与流体动力的比值, 用于评估螺旋桨推力性能。
效率系数
铸造法
适用于大型螺旋桨,但精度较低 。
锻造法
适用于小型螺旋桨,精度高,但工 艺复杂。
焊接法
适用于大型螺旋桨,成本低,但易 产生焊接缺陷。
螺旋桨的维护与保养
定期检查
检查螺旋桨的表面磨损、裂纹等情况。
润滑
定期润滑螺旋桨的轴承和轴套,减少磨损。
清洗
定期清洗螺旋桨,去除附着物和腐蚀产物。
防腐处理
对螺旋桨进行涂层保护,防止腐蚀。
新型船舶推进系统的研究与发展
船舶螺旋桨形式ppt课件

叶片裂纹或断裂
由于材料缺陷、超载或交变应力等原 因,导致螺旋桨叶片出现裂纹或断裂 。
螺距误差
由于螺旋桨桨叶的螺距制造误差或运 转时的变形等原因,导致螺旋桨螺距 与设计值不符。
螺旋桨故障的诊断方法
振动分析法
通过分析船舶的振动情况,判断螺旋桨是否 存在故障。
温度检测法
通过检测螺旋桨附近的温度,判断是否存在 过热或异常升温。
创新设计
通过数值模拟和实验研究,探索新型螺旋桨的设计理念和方 法,以适应未来船舶航行需求的变化。
THANKS
感谢观看
螺旋桨的作用
通过旋转螺旋桨,产生向前的推 力,使船舶得以前进、后退或保 持静止状态。
螺旋桨的种类与特点
种类
根据不同的分类标准,螺旋桨可分为 多种类型。如按桨叶数目可分为单桨 和双桨;按推进方式可分为前置推进 、后置推进和侧置推进等。
特点
不同类型的螺旋桨具有不同的特点和 应用场景。例如,单桨适用于中低速 航行的大中型船舶,双桨则适用于高 速航行的小型船舶。
在维修或更换螺旋桨时,需遵循相关安全操作规程,确保人员
和设备安全。
04
船舶螺旋桨的故障诊断与排除
螺旋桨的常见故障及原因分析
振动过大
由于螺旋桨桨叶的安装误差、制造缺 陷或螺旋桨运转时的不平衡等原因, 导致船舶振动过大。
效率下降
由于螺旋桨的表面腐蚀、水生物附着 或泥沙磨损等原因,导致螺旋桨的推 进效率下降。
声音诊断法
通过听螺旋桨运转时的声音,判断是否存在 异常。
压力检测法
通过检测螺旋桨附近的水流压力,判断是否 存在异常。
螺旋桨故障的排除与修复
清洗和修复
更换损坏的叶片
对螺旋桨表面的水生物和泥沙进行清洗, 修复腐蚀和磨损部分。
轮船螺旋桨运行原理

轮船螺旋桨运行原理
螺旋桨通常由一个或多个螺旋形的叶片组成,它们位于船舶尾部的水
下部分。
当螺旋桨旋转时,水流被叶片推动,产生一个与螺旋桨旋转方向
相反的反作用力。
根据牛顿第三定律,这个反作用力将推动整个船体向前
移动。
螺旋桨运行原理的核心是流体动力学。
在运行过程中,螺旋桨通过改
变水流的方向和速度来产生推进力。
水流从船舶头部进入螺旋桨的进气段,在进气段内水流的流速逐渐加速,同时水流方向开始转动。
接着,流经螺
旋桨的水流继续加速,压力降低,产生一种向后推动的力。
最后,水流经
过螺旋桨的出气段,速度降低,重新进入正常的航行流场。
螺旋桨的推进力取决于多种因素,包括螺旋桨的尺寸、形状和叶片的
倾斜角度等。
螺旋桨的尺寸越大,推进力越大。
叶片的形状和倾斜角度也
会影响推进力的大小和转速的选择。
为了实现高效的航行,轮船通常配备多个螺旋桨,可以通过控制每个
螺旋桨的转速和方向来实现船体的转向和操纵。
这种多桨系统可以提供更
好的机动性和舵效果,提高船舶的操纵能力。
总结起来,轮船螺旋桨的运行原理是通过将动力传递到水中产生推进力。
通过改变水流的方向和速度,螺旋桨产生的反作用力推动船体向前移动。
螺旋桨的尺寸、形状和叶片的倾斜角度等因素都会影响推进力的大小
和船舶的性能。
多螺旋桨系统可以提供更好的操纵能力和机动性。
船舶原理(螺旋桨 螺距)

第一章绪论第二章螺旋桨的几何特征一、主要内容1、本课题的主要研究内容;2、有效马力、机器马力、收到马力和传送效率、推进效率和推进系数的概念;3、螺旋桨的外形和名称及几何特征的有关专业术语。
二、重点内容1、有效马力、机器马力、收到马力和传送效率、推进效率和推进系数的概念;2、桨叶数、桨的直径、螺距比和盘面比等概念。
三、教学方法多媒体授课、结合螺旋桨模型组织教学四、思考题1、什么是有效马力、机器马力、收到马力和传送效率、推进效率和推进系数?2、表征螺旋桨几何特征的主要参数有哪些?三、下讲主要内容理想推进器理论。
第一章绪论一、本课题的研究对象和内容1、船舶快速性船舶在给定主机马力(功率)情况下,在一定装载时于水中航行的快慢问题。
2、推进器将能源(发动机)发出的功率转换为推船前进的功率的专门装置或机构。
常见的推进器为螺旋桨。
3、主要内容1)推进器在水中运动时产生推力的基本原理及其性能好坏;2)螺旋桨的图谱设计方法。
二、马力及效率1、有效马力P E1)公制有效马力(本教材常用)2)英制有效马力式中,Te 为有效推力(kgf ),R 为阻力(kgf ),v 为船速(m/s )E ()7575P v Rv UShp =e=或hp T E ()7676P v Rv UKhp =e =T 思考:在船舶专业中常用的速度单位还有哪些?2、主机马力和传送效率推进船舶所需要的功率由主机供给,主机发出的马力称为主机马力,以PS表示。
主机马力经减速装置、推力轴承及主轴等传送至推进器,在主轴尾端与推进器联接处所量得的马力称为推进器的收到马力,以PD表示。
传送效率ηs =PD/ PS,它反映了推力轴承、轴承地、尾轴填料函及减速装置等的摩擦损耗。
2、推进效率和推进系数推进效率ηD =P E / P D ,它反映了推进器在操作时有一定的能量损耗,及船身与推进器间的相互影响的能量损耗。
推进效率也称为似是推进系数或准推进系数QPC 。
推进系数PC =P E / P S ,它反映了用某种机器及推进器以推进船舶的全面性能。
螺旋桨工作原理

螺旋桨工作原理螺旋桨是船舶和飞机等交通工具中常见的推进装置,其工作原理是通过螺旋桨的旋转来产生推力,从而推动交通工具前进。
本文将详细介绍螺旋桨的工作原理及其相关知识。
一、螺旋桨的结构和组成螺旋桨一般由螺旋叶片、轴、轴套等部分组成。
螺旋叶片是螺旋桨的核心部分,其形状呈螺旋状,负责将水或空气推向后方。
轴是螺旋桨的支撑部分,负责将螺旋叶片与动力源相连接。
轴套则是螺旋桨的固定部分,负责固定螺旋叶片和轴。
二、螺旋桨的工作原理螺旋桨的工作原理可以分为两个方面:流体动力学和牛顿第三定律。
1.流体动力学当螺旋桨旋转时,螺旋叶片将水或空气推向后方。
根据流体动力学的原理,当螺旋叶片推动水或空气后退时,水或空气会产生相等大小的反作用力向前推动螺旋桨。
这种反作用力就是推力,它推动交通工具向前移动。
2.牛顿第三定律牛顿第三定律指出,任何作用力都会有一个同大小、反向的反作用力。
当螺旋桨旋转时,螺旋叶片向后推动水或空气的同时,水或空气也会向前推动螺旋叶片,产生一个相等大小的反作用力。
这个反作用力正是推力,用于推动交通工具前进。
三、螺旋桨的调整和优化为了使螺旋桨能够更有效地工作,需要对其进行调整和优化。
1.螺旋叶片角度的调整螺旋叶片角度的调整可以改变螺旋桨的推力大小和方向。
通过调整螺旋叶片的角度,可以使螺旋桨产生更大的推力,从而提高交通工具的速度和效率。
2.螺旋叶片数量的优化螺旋叶片数量的优化可以提高螺旋桨的效率。
一般情况下,螺旋桨叶片数量越多,推力越大,效率越高。
但是过多的叶片数量也会增加螺旋桨的阻力,影响交通工具的速度和效率。
3.螺旋桨材料的选择螺旋桨材料的选择可以影响螺旋桨的耐用性和性能。
常见的螺旋桨材料有铝合金、不锈钢等。
根据实际需求选择合适的材料,可以提高螺旋桨的使用寿命和性能。
四、螺旋桨的应用领域螺旋桨广泛应用于船舶、飞机、潜水艇等交通工具中,推动这些交通工具前进。
在船舶中,螺旋桨通过推动水的力量使船舶前进;在飞机中,螺旋桨通过推动空气的力量使飞机前进;在潜水艇中,螺旋桨通过推动水的力量使潜水艇下潜或浮起。
(完整word版)船舶螺旋桨知识

船用螺旋桨的功率计算功率(W)直径(D)螺距(P)转/分(N)功率(W)=(D/10)的4次方*(P/10)*(N/1000)的3次方*0.45速度(SP)km/h=(P/10)*(N/1000)*15.24静止推力(Th)g=(D/10)的3次方*(P/10)*(N/1000)的2次方*22船用螺旋桨的工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5η=J·Ct/Cp 式中:Ct Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。
理论螺矩(HT)
设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度大于飞行速度。因而螺旋桨相对空气而言所前进的距离一理论螺矩将大于实际螺矩。
螺旋桨效率解说一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。从以上还可以看出。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。从中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。从计算公式可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。二、几何参数直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。螺距:它是桨叶角的另一种表示方法。各种意义的螺矩与桨叶角的关系。几何螺距(H):桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。它反映了桨叶角的大小,更直接指出螺旋桨的工作特性。桨叶各剖面的几何螺矩可能是不相等的。习惯上以70%直径处的几何螺矩做名称值。国外可按照直径和螺距订购螺旋桨。如64/34,表示该桨直径为60英寸,几何螺矩为34英寸。实际螺距(Hg):桨叶旋转一周飞机所前进的距离。可用Hg=v/n计算螺旋桨的实际螺矩值。可按H=1.1~1.3Hg粗略估计该机所用螺旋桨几何螺矩的数值。理论螺矩(HT):设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度大于飞行速度。因而螺旋桨相对空气而言所前进的距离一理论螺矩将大于实际螺矩。三、螺旋桨拉力在飞行中的变化1.桨叶迎角随转速的变化在飞行速度不变的情况下,转速增加,则切向速度(U)增大,进距比减小桨叶迎角增大,螺旋桨拉力系数增大。又由于拉力与转速平方成正比,所以增大油门时,可增大拉力。2.桨叶迎角随飞行速度的变化:在转速不变的情况下,飞行速度增大,进距比加大,桨叶迎角减小,螺旋桨拉力系数减小。拉力随之降低。当飞行速度等于零时,切向速度就是合速度,桨叶迎角等于桨叶角。飞机在地面试车时,飞行速度(V)等于零,桨叶迎角最大,一些剖面由于迎角过大超过失速迎角气动性能变坏,因而螺旋桨产生的拉力不一定最大。3.螺旋桨拉力曲线:根据螺旋桨拉力随飞行速度增大而减小的规律,可绘出螺旋桨可用拉力曲线。4.螺旋桨拉力随转速、飞行速度变化的综合情况:在飞行中,加大油门后固定。螺旋桨的拉力随转速和飞行速度的变化过程如下:由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉力增加。飞行速度增加,由于飞行速度增大,致使桨叶迎角又开始逐渐减小,拉力也随之逐渐降低,飞机阻力逐渐增大,从而速度的增加趋势也逐渐减慢。当拉力降低到一定程度(即拉力等于阻力)后,飞机的速度则不再增加。此时,飞行速度、转速、桨叶迎角及螺旋桨拉力都不变,飞机即保持在一个新的速度上飞行。四、螺旋桨的自转:当发动机空中停车后,螺旋桨会象风车一样继续沿着原来的方向旋转,这种现象,叫螺旋桨自转。螺旋桨自转,不是发动机带动的,而是被桨叶的迎面气流“推着”转的。它不但不能产生拉力,反而增加了飞机的阻力。螺旋桨发生自转时,由于形成了较大的负迎角。桨叶的总空气动力方向及作用发生了质的变化。它的一个分力(Q)与切向速度(U)的方向相同,成为推动桨叶自动旋转的动力,迫使桨叶沿原来方向续继旋转:另一个分力(-P)与速度方向相反,对飞行起着阻力作用。一些超轻型飞机的发动机空中停车后由于飞行速度较小,产生自旋力矩不能克服螺旋桨的阻旋力矩时螺旋桨不会出现自转。此时,桨叶阻力较大,飞机的升阻比(或称滑翔比)将大大降低。五、螺旋桨的有效功率:1.定义:螺旋桨产生拉力,拉着飞机前进,对飞机作功。螺旋桨单位时间所作功,即为螺旋桨的有效功率。公式:N桨=PV式中:N桨—螺旋桨的有效功率;P—螺旋桨的拉力;V—飞行速度2.螺旋桨有效功率随飞行速度的变化:(1)地面试车时,飞机没有前进速度(V=0),拉力没有对飞机作功,故螺旋桨的有效功率为“零”。(2)飞行速度增大时,从实际测得的螺旋桨有效功率曲线:在OA速度范围内,螺旋桨的效功率随飞行速度的增大而增大;在大于该速度范围后螺旋桨有效功率则随飞行速度的增大而减小。在OA速度范围内,当飞行速度增大时,拉力减小较慢,随速度的增大,螺旋桨有效功率逐渐提高。当飞行速度增大到A时,螺旋桨的有效功率最大。当飞行速度再增大时,由于拉力迅速减小,因此随着飞行速度的增加而螺旋桨有效功率反会降低。螺旋桨是发动机带动旋转的,螺旋桨的作用是把发动机的功率转变为拉着飞机前进的有效功率。螺旋桨有效功率与发动机输出功率之比,叫螺旋桨效率。η=N桨/N有效螺旋桨的工作原理如果巳知叶元力dP及dQ沿螺旋桨叶片长度上的分布规律,则由螺旋桨产生的总推力及回转阻力矩可分别由下列式子表示:(8-14)(8-15)式中z--螺旋桨的叶片数;R--螺旋桨的外半径;r--螺旋桨毂半径。螺旋桨的推力及回转力矩通常用无因次系数表示,应用无因次系数可以使螺旋桨的模型实验结果运用于几何相似的任何螺旋桨。对于既定几问形状的螺旋桨在给定流速的情况下,螺旋桨的推力及力矩正比于流体密度、转数n(1/s)及直径D(m)。因此存在着下列关系式:(8-16)(8-17)式中K1及K2分别称为无困次推力系数及力矩系数。推力的单位为N,而力矩的单位为,对上述公式的两边进行因次比较便可确定出上述两式中的指数,其结果为x=1,y=2,z=4,R=1,S=2,T=5,因此(8-18)(8-19)系数K1及K2仅与螺旋桨的进程有关,所谓进程是指螺旋桨旋转一周实际前进的距离,即(8-20)取进程与螺旋桨直径之比,则得到螺旋桨的相对进程,它是一个无因次量,其值为(8-21)螺旋桨的效率亦可以用无因次系数K1、K2及表示:(8-22)式中为螺旋桨的旋转角速度。图8-8表示出了K1、K2及与表的关系,这种曲线称为螺旋桨的作用曲线。该曲线表明了对于既定几何形状的螺旋桨,当其工作规范不同时,则对应的K1、K2及值也都不相同。当时,即螺旋桨原地旋转,由于这时螺旋桨的轴向速度,桨叶的攻角具有很大的值,故系数K1及K2达到最大值。随着的增大,则攻角逐渐减小,系数K1及K2亦随之减小