2019-2020学年重庆八中八年级(上)期中数学试卷(含答案)
重庆市2019-2020学年八年级上学期数学期中考试试卷(I)卷

重庆市2019-2020学年八年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)化简的结果是()A . ﹣4B . 4C . ±4D . 162. (2分)有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④- 是17的平方根。
其中正确的有()A . 0个B . 1个C . 2个D . 3个3. (2分)方程,当时,m的取值范围是().A .B .C .D .4. (2分)下列运算正确的是()A . a6÷a2=a3C . (a2)3=a6D . 2a×3a=6a5. (2分) (2018八上·柘城期末) 下列因式分解正确的是()A .B .C .D .6. (2分) (2017八上·哈尔滨月考) 下列运算正确的是()A . (a+b)(a-b)=a2-b2B . a2·a3=a6C . (a+b)2=a2+b2D . a10÷a2=a57. (2分) (2016八上·鄂托克旗期末) 下列运算正确的是()A .B .C .D .8. (2分)(2018·哈尔滨模拟) 下列运算正确的是()A .C .D .9. (2分)(2017·长春模拟) 已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A . 0B . 1C . 2D . 310. (2分)下列运算正确的是()A . (ab)3=a3bB .C . a6÷a2=a3D . (a+b)2=a2+b2二、填空题 (共6题;共6分)11. (1分) (2019七下·沧县期中) 若一个正数的两个平方根分别为 2a-7 与-a+2,则这个正数等于________.12. (1分) (2019八上·玄武期末) 4的算术平方根是________,﹣64的立方根是________.13. (1分)(2017·金华) 分解因式: ________14. (1分)(2017·深圳模拟) 分解因式:a3b-9ab=________.15. (1分)计算:8x2÷(﹣2x)=________.16. (1分)已知a2+a+1=0,则a4+2a3﹣3a2﹣4a+3的值是________.三、解答题 (共9题;共59分)17. (1分) (2016七下·新余期中) 若与互为相反数,且x≠0,y≠0,求的值.18. (5分)已知(x-1)3+27=0,求x的值.19. (5分) (2018八上·南安期中) 计算:14a8b4÷2a4b4-a3×a+(2a2)220. (10分) (2018八上·大石桥期末) 分解因式:(1) 10a-5a2-5;(2) (x2+3x)2-(x-1)2.21. (5分) (2019七下·宝安期中) 计算:(1) 2﹣2+()0+(﹣0.2)2014×52014(2)(2a3b)3(﹣8ab2)÷(﹣4a4b3)(3)(2a+1)2﹣(2a+1)(﹣1+2a)(4) 20192﹣2018×2020(运用整式乘法公式进行计算)22. (10分)将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式﹣3x5﹣4x2+3x3﹣2的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“﹣”号的括号里.③说出它是几次几项式,并按x的降幂排列.23. (6分) (2017七下·扬州月考) 已知:5a=4,5b=6,5c=9,(1) 52a+b的值;(2) 5b﹣2c的值;(3)试说明:2b=a+c.24. (7分) (2017七下·东港期中) 图a是一个长为2m、宽为2n的长方形,沿图中实线用剪刀均分成四块小长方形然后按图b的形状拼成一个大正方形.(1)图b中的小正方形的边长等于________;(2)图a中四个长方形的面积和为________;图b中四个小长方形的面积和还可以表示为________.(3)由(2)写出代数式:(m+n)2,(m﹣n)2,mn之间的等量关系:________;(4)根据(3)中的等量关系,解决如下问题:若x+y=8,xy=7,则(2x﹣2y)2=________.25. (10分)对于多项式x3-5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3-5x2+x+10的值为0,由此可以断定多项式x3-5x2+x+10中有因式x-2(注:把x=a代入多项式,能使多项式的值为0,则多项式中一定含有因式(x-a),于是我们可以把多项式写成:x3-5x2+x+10=(x-2)(x2+mx+n),分别求出m,n后再代入x3-5x2+x+10=(x-2)(x2+mx+n)中,就可以把多项式x3-5x2+x+10因式分解).(1)求式子中m,n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解因式x3+5x2+8x+4.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共59分) 17-1、18-1、19-1、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、25-1、25-2、。
2020年重庆八中八年级(上)期中数学试卷

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.下列算式中,正确的是()A. 3=3B.C. D. =32.下列条件中,不能判断△ABC为直角三角形的是()A. a2=3,b2=4,c2=5B. a:b:c=3:4:5C. ∠A+∠B=∠CD. ∠A:∠B:∠C=1:2:33.下列方程中是二元一次方程的有()①-m=12;②z+1;③=1;④mn=7;⑤x+y=6zA. 1个B. 2个C. 3个D. 4个4.如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A. x<0B. x<1C. 0<x<1D. x>15.若A(m+2n,2m-n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A. (-1,-3)B. (1,-3)C. (-1,3)D. (1,3)6.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A. 3cmB. 13cmC. 14cmD. 15cm7.若方程组的解中x与y互为相反数,则m的值为()A. -2B. -1C. 0D. 18.如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27-)厘米,则底面半径为()厘米.A. 6B. 3C. 2D. 129.有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A. cmB. cmC. cmD. cm10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A. 5B.C. 9D. 611.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P第17次运动到点()A. (17,1)B. (17,0)C. (17,-1)D. (18,0)12.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,拆痕为EF,则重叠部分△DEF的面积是()cm2.A. 15B. 12C. 7.5D. 6二、填空题(本大题共8小题,共44.0分)13.直角三角形的两条直角边长分别是3cm、4cm,则斜边长是______cm.14.函数y=(m-2)x|m|-1+5是y关于x的一次函数,则m=______.15.已知实数x,y满足y=+2,则(y-x)2011的值为______.16.数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠FAB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.17.探究函数y=|x-1|-2的图象和性质.静静根据学习函数的经验,对函数y=|x-1|-2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=______,当x≥1时,y=______.(2)根据(1)的结果,完成下表,并补全函数y=|x-1|-2图象;x…______ ______ …y…______ ______ …()观察函数图象,请写出该函数的一条性质:______.18.半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔______支.19.如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=______.20.A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地______米.三、解答题(本大题共6小题,共58.0分)21.(1)(2)22.已知函数y=kx+b(k≠0)图象经过点A(-2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.23.小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?24.材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A (-2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(-1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.25.已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.26.如图,直线L1:y=-x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH的最小值及此时点N的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.答案和解析1.【答案】C【解析】解:A、原式=2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=3-2+2=5-2,所以C选项正确;D、原式==,所以D选项错误.故选:C.根据二次根式的加减法对A、B进行判断;根据完全平方公式对C进行判断;根据二次根式的除法法则对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.【答案】A【解析】解:A、3+4=7≠5,利用勾股定理逆定理判定△ABC不为直角三角形,故此选项符合题意;B、32+42=52,根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠C=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=30°,∠B=60°,∠C=90°,可判定△ABC不是直角三角形,故此选项不合题意.故选:A.根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.【答案】A【解析】解:①-m=12,不是整式方程,不符合题意;②y=z+1,是二元一次方程,符合题意;③=1,不是整式方程,不符合题意;④mn=7,是二元二次方程,不符合题意;⑤x+y=6z,是三元一次方程,不符合题意,故选:A.利用二元一次方程的定义判断即可.此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.4.【答案】B【解析】解:当x<1时,kx+2>x+b,即不等式kx+2>x+b的解集为x<1.故选:B.观察函数图象得到当x<1时,函数y1=kx+2的图象都在y2=x+b的图象上方,所以不等式kx+2>x+b的解集为x<1;本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.5.【答案】C【解析】解:∵A(m+2n,2m-n)关于x轴对称点是A1(5,5),∴m+2n=5,2m-n=-5,解得m=-1,n=3,∴P(m,n)的坐标是(-1,3).故选:C.关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.直接利用关于x轴对称点的性质得出m,n的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.6.【答案】D【解析】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC=9cm,AB=CD=12cm.∴AE2=81,CD2=144.∴AB2=63.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=81+144=225,∴BE=15.故选:D.根据正方形的性质就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB=∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE的值,进而得出结论.本题考查的是勾股定理,正方形的性质的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.7.【答案】C【解析】解:根据题意得:,解得:,代入得:3(m+1)+3=6,解得:m=0,故选:C.根据x与y互为相反数,得到x=-y,代入方程组第一个方程求出y的值,进而求出x的值,确定出m的值即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.【答案】B【解析】解:27-(27-)=(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,=6(厘米),6÷2=3(厘米).故底面半径为3厘米.故选:B.首先得出杯子内筷子的长度,再根据勾股定理求得圆柱形水杯的直径,即可求出底面半径.此题主要考查了勾股定理的应用,正确得出杯子内筷子的长度是解决问题的关键.9.【答案】A【解析】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.根据勾股定理即可得到结论.此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.10.【答案】D【解析】解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405-225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.由已知条件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面积即可得出答案.本题考查了勾股定理,三角形的面积公式,完全平方公式,三角形的周长的计算,熟记直角三角形的性质是解题的关键.11.【答案】A【解析】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1)”,根据该规律即可得出结论.本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.12.【答案】C【解析】解:长方形ABCD中,AB=CD=3,AD=9,∠C=90°根据翻折可知:∠A′=∠C=90°,A′D=DC=3,A′E=AE,设AE=A′E=x,则DE=9-x,在Rt△A′ED中,根据勾股定理,得(9-x)2=x2+32,解得x=4,∴DE=9-x=5,∴S△DEF=DE•CD=×5×3=7.5(cm2).故选:C.根据翻折变换可得AE=A′E,∠A′=∠C=90°,即可利用勾股定理求得DE的长,进而求解.本题考查了翻折变换、三角形的面积、矩形的性质,解决本题的关键是利用翻折的性质.13.【答案】5【解析】解:∵直角三角形的两条直角边长分别是3cm、4cm,则∴斜边长=cm,故答案为:5根据勾股定理解答即可.此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.14.【答案】-2【解析】解:根据一次函数的定义可得:m-2≠0,|m|-1=1,由|m|-1=1,解得:m=-2或2,又m-2≠0,m≠2,则m=-2.故答案为:-2.根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m 的值.本题主要考查了一次函数的定义,难度不大,注意基础概念的掌握.15.【答案】-1【解析】解:∵与都有意义,∴x=3,则y=2,故(y-x)2011=-1.故答案为:-1.直接利用二次根式有意义的条件进而分析得出答案.此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.16.【答案】(1)解:如图,直角△AFB中,∠FAB=90°,AB=2,BF=4.由勾股定理知,AF===2;(2)解:如图,过点E作EG⊥AC于点G,则AF∥EG.∵∠F=30°,∴∠BEG=30°.∴BG=BE.∵∠ECD=90°,∠D=45°,∴∠DEC=∠D=45°.∴EC=CD.∴ED=EC.又ED=4,∴EC=2.∵DE∥AC,∴∠ECG=∠DEC=45°.∴∠GEC=∠GCE=45°.∴EG=CG.∴EC=GC,即2=GC.∴GC=2.在直角△BGE中,由勾股定理知BG2+EG2=BE2,即BG2+22=4BG2.∴BG=.∴BC=GC-GB=2-.【解析】(1)在直角△AFB中,利用勾股定理求得AF的长度;(2)如图,过点E作EG⊥AC于点G,构造等腰直角△EGC.在直角△EDC中,根据勾股定理求得EC的长度;然后在直角△EGC中,再次利用勾股定理求得GC的长度,在直角△EGB中,求得BG的长度,则BC=GC-GB.考查了勾股定理和含30度角的直角三角形.注意图中辅助线的作法,通过作辅助线,构造直角三角形,方可利用勾股定理求得相关线段的长度.17.【答案】-x-x-0 -1 --1 当x≥1时,y随x的增大而增大【解析】解:(1)化简函数解析式,当x<1时,y=(1-x)-2=-x-,当x≥1时,y=(x-1)-2=x-,故答案为-x-,x-.(2)当x<1时,y=(1-x)-2=-x-,当x=0时,y=-,当x=-1时,y=-1,故答案为0,-1.-,-1,函数图象如图所示:(3)观察图象可知:当x≥1时,y随x的增大而增大.故答案为:当x≥1时,y随x的增大而增大.(1)根据绝对值的性质化简即可.(2)利用描点法取点,画出图形即可.(3)观察图象解答即可(答案不唯一).本题考查一次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.18.【答案】4【解析】解:设购买x支钢笔,y支铅笔,z支签字笔,依题意,得:20x+8y+10z=122∴x==由题意可知x,y,z均为正整数∴当y=1,z=1时,x=5.2,不符合题意;当y=2,z=1时,x=4.8,不符合题意;当y=3,z=1时,x=4.4,不符合题意;当y=2,z=2时,由奇偶性可知,分子为奇数,不符合题意;当y=4,z=1时,x=4,符合题意.故答案为:4.设购买x支钢笔,y支铅笔,z支签字笔,根据他一共用了122元,列出方程,将x用含y和z的式子表示出来,分别对y和z取值验证,即可得解.本题考查了代数式变形在实际问题中的应用,根据题意正确列式并分类讨论,是解题的关键.19.【答案】【解析】解:∵AB=BD=4,∴∠BAE=∠BDE,∵CB⊥BD,∴∠DBE=∠CAB=90°,∴∠DEB=90°-∠D,∠CAE=90°-∠BAD,∴∠CAE=∠DEB,∵∠AEC=∠DEB,∴∠CAE=∠CEA,∴AC=EC,∵BE=1,∴BC=AC+1,∵AC2+AB2=BC2,∴AC2+42=(AC+1)2,∴AC=,故答案为:.根据等腰三角形的性质得到∠BAE=∠BDE,根据等式的性质得到∠CAE=∠DEB,求得AC=EC,根据勾股定理列方程即可得到结论.本题考查了直角三角形的性质,等腰三角形的性质,勾股定理,证得AC=CE是解题的关键.20.【答案】【解析】解:甲的速度为2700÷9=300(米/分钟),乙的初始速度为300×90%=270(米/分钟),乙到达A地时的时间为2700÷270=10(分钟),乙加速后的速度为270×(1+20%)=324(米/分钟).设乙从返回到相遇跑了t分钟,根据题意得:(300+324)t=2700-300×(10-9),解得:t=,∴他们在第二次相遇时距B地2700-300×()=(米),故答案为:.观察函数图象,可知甲用9分钟到达B地,由速度=路程÷时间可求出甲的速度,结合甲、乙速度间的关系可求出乙的初始速度及乙加速后的速度,利用时间=路程÷速度可求出乙到达A地时的时间,设乙从返回到第二次相遇跑了t分钟,根据题意列方程解答即可.本题考查了一次函数的应用以及一元一次方程的应用,通过解方程求出两人第二次相遇的时间是解题的关键.21.【答案】解:(1)原式=++12-1=9+3+12-1=23;(2)方程组整理为,②-①得4x=8,解得x=2,把x=2代入①得2-4y=-2,解得y=1,所以原方程组的解为.【解析】(1)根据二次根式的乘法法则和平方差公式计算;(2)先把方程组整理为,然后利用加减消元法解方程组.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了解二元一次方程组.22.【答案】解:(1)∵一次函数y=kx+b的图象经过点A(-2,1)、点B(1,).∴,解得:.∴这个一次函数的解析式为:y=x+2.(2)如图,∵在直线AB上存在点C,使S△ACO=S△ABO,∴C是线段AB的中点,或A是线段AC的三等分点,∵A(-2,1),B(1,).∴C(-,)或(-,);【解析】(1)根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C是线段AB的中点,或A是线段AC的三等分点,即可求得C的坐标.本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.23.【答案】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=-+4200(3000≤x≤5000).∵-<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600-3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.【解析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出W关于x的函数关系式.24.【答案】解:(1)由题意:(a+1)2+(1-4)2=52,解答a=3或-5.(2)求的最小值,相当于求点(x0,y0)到点(-4,4)和点(2,4)的距离和的最小值,观察图象可知最小值=6,此时-4≤x0≤2.(3)∵=,∴3y=4时,这个式子有最小值,最小值为3,∴+=+=+,求出+的最小值即可解决问题,求+,相当于求点(2x,3)到点(4,1)和点(0,0)的距离和的最小值,这个最小值==,∴原式的最小值=+3.【解析】(1)根据两点间距离公式构建方程即可解决问题.(2)求的最小值,相当于求点(x0,y0)到点(-4,4)和点(2,4)的距离和的最小值.(3)由=,推出3y=4时,这个式子有最小值,最小值为3,因为+=+=+,求出+的最小值即可解决问题.本题考查勾股定理,非负数的性质,两点间的距离公式,最短问题等知识,解题的关键是学会用转化的思想思考问题,学会利用数形结合的思想解决问题.25.【答案】解:(1)如图1中,∵△ABC和△ADE均为等腰直角三角形,∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,∴∠EAB=∠DAC,∴△DAC≌△EAB,∴CD=EB=,∠ACD=∠ABE,∵∠CFD=∠AFB,∴∠CDF=∠FAB=90°,∵DE=EB=CD=,∴BC===,∴AB=AC=BC=.(2)如图2中,延长AE交BC于J.∵DE=BE,DE=AE,∴AE=EB,∴∠EAB=∠EBA,∵∠DEA=45°=∠EAB+∠EBA,∵EF=BE,∠BAF=90°,∴∠EAB=∠EBA=∠EBC=22.5°,∴∠CAE=67.5°,∴∠CJA=180°-∠CAJ-∠ACJ=67.5°,∴∠CAJ=∠CJA,∴CA=CJ=CB,∵EG⊥AE,∴∠AEG=∠GEJ=90°,∴∠AGE=90°-22.5°=67.5°,∵∠AGE=∠EBG+∠GEB,∴∠BEG=45°=∠BEJ,∵BE=BE,∠EBJ=∠EBG,∴△EBJ≌△EBG(ASA),∴BG=BJ,∴BC=CJ+BJ=AB+BG.【解析】(1)只要证明△DAC≌△EAB,推出CD=EB,∠ACD=∠ABE,由∠CFD=∠AFB,推出∠CDF=∠FAB=90°,再求出CD、BD,利用勾股定理求出BC即可解决问题.(2)如图2中,延长AE交BC于J.想办法证明C=CJ,BJ=BG即可解决问题.本题考查等腰直角三角形的性质、全等三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.【答案】解:(1)由已知可得A(3,0),B(0,3),∵将直线l1向右平移2个单位得到直线L2,∴C(5,0),∴直线L2:y=-x+5,∴D(0,5);(2)过点A作AE⊥L2,∵AC=2,∠DCA=30°,∴AE=,∴MN=,∴BM+MN+NH的最小值即为BM++NH的最小值,作B点关于L2的对称点B',与L2的交点为F,过点F作FH⊥x轴,交于L1于N,过点N作MN⊥L2,则BM+MN+NH的最小值即为+FH;由作图可得,四边形FNMB'是平行四边形,∴B'M=FN,∵B与B'关于L2对称,∴BM=B'M,∴BM=FN,在Rt△BDF中,BF=,BD=2,∴∠DBF=30°,过点B作BG⊥FH,在Rt△BGF中,∠FBG=60°,BF=,∴GB=,FG=,∴F(,),在Rt△BNG中,∠GBN=30°,BG=,∴GN=,∴N(,),∴FH=,∴BM+MN+NH的最小值+;(3)由已知可知,AC⊥A'C,AC=A'C,∴A'(5,2),∵直线L1与直线L3垂直,∴直线L3:y=x+2-15,∵A(3,0),B(0,3),∴AB=6,设A'(m,m+2-15),则B'(m+3,m+5-15),①当A'B'=A'C时,A'C=6,∴36=+∴m=或m=,∴A'(,),A'(,);②当A'B'=B'C时,B'C=6,∴36=+,∴m=或m=;∴A'(,),A'(,);③当A'C=B'C时,+=+,∴m=5-;∴A'(5-,-);综上所述:A'(,),A'(,);A'(,),A'(,);A'(5-,-);).【解析】(1)求出直线L2:y=-x+5即可求出D;(2)求出两直线间距离MN=,作B点关于L2的对称点B',与L2的交点为F,过点F 作FH⊥x轴,交于L1于N,过点N作MN⊥L2,则BM+MN+NH的最小值即为+FH;过点B作BG⊥FH,在Rt△BGF中,∠FBG=60°,BF=,求出F(,);在Rt△BNG 中,∠GBN=30°,BG=,求出N(,),则可求FH=,即可德奥BM+MN+NH的最小值+;(3)由已知可知,AC⊥A'C,AC=A'C,求得A'(5,2),再由直线L1与直线L3垂直,可求直线L3:y=x+2-15,设A'(m,m+2-15),则B'(m+3,m+5-15),①当A'B'=A'C时,A'C=6,所以36=+;②当A'B'=B'C时,B'C=6,所以36=+,③当A'C=B'C时,+=+,分别求出m即可.本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,利用轴对称构造平行四边形,将所求线段和的最小转化为求FH的长,同时结合等腰三角形的性质解题是关键.。
2019-2020学年重庆市南岸区八年级(上)期中数学试卷(含解析)

2019-2020学年重庆市南岸区八年级(上)期中数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.下列实数中是无理数的是()A.B.(π﹣1)0C.2 D.2.点P(2,﹣3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)3.一次函数y=x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,数轴上点N表示的数可能是()A.B.C.D.5.下面哪个点在函数y=x﹣1的图象上()A.(3,1)B.(﹣3,1)C.(﹣3,0)D.(3,0)6.下列运算正确的是()A.=±4 B.=3C.=﹣1 D.=﹣17.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)8.在一次函数y=kx+b中,k>0,且b<0,则它的大致图象是()A.B.C.D.9.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)10.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限11.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.12.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为()A.B.3 C.5 D.二、填空题(每小题4分,共24分)13.5的平方根是.14.函数y=的自变量x的取值范围是.15.如果点P(a,﹣2)在第四象限,那么点Q(﹣a,4)所在的象限是第象限.16.由方程组可得y与x之间的关系是.17.若有两条线段,长度是1cm和2cm,第三条线段为时,才能组成一个直角三角形.18.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为.三、解答题(共78分)19.(10分)计算:(1)(+1)()+(2)(+)×﹣4 20.(10分)解方程:(1)2(x+1)2=8(2)3(2x﹣1)3=﹣8121.(10分)解方程组:(1)(2)22.(10分)实数a、b在数轴上的位置如图所示,请化简:﹣+﹣23.(10分)如图,已知A(0,4),B(﹣2,2),C(3,0)(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1、B1、C1的坐标;(3)求△A1B1C1的面积.24.(10分)某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是(填①或②),月租费是元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.25.(10分)如图,C为线段BD上的一个动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC.已知AB =5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问:点C满足什么条件时,AC+CE的值最小?求出这个最小值.(3)根据(2)中的规律和结论,请构图求出代数式的最小值.26.(8分)如图,过A(8,0)、B(0,8)两点的直线y1与直线y2=x+2交于点C.直线y2与x 轴、y轴分别交于点D和点E.(1)动点M从A点出发沿AB运动,运动的速度是每秒1个单位长度:当点M运动到B点时停止运动,设M 运动时间为t秒,△ADM的面积为S;求S与t的函数关系式;(2)在y轴上是否存在点P,使△ACP为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.1.【解答】解:(π﹣1)0,2,是有理数,是无理数,故选:A.2.【解答】解:点P(2,﹣3)关于y轴的对称点的坐标是(﹣2,﹣3),故选:B.3.【解答】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+6经过一、二、三象限,不经过第四象限.故选:D.4.【解答】解:∵N在2和3之间,∴<N<,∴可排除A;∴可排除C、D.故选:B.5.【解答】解:A、将(3,1)代入解析式y=x﹣1得,×3﹣1≠1,故本选项错误;B、将(﹣3,1)代入解析式y=x﹣1得,×(﹣3)﹣1≠1,故本选项错误;C、将(﹣3,0)代入解析式y=x﹣1得,×(﹣3)﹣1≠2,故本选项错误;D、将(3,0)代入解析式y=x﹣2得,×3﹣1=0,故本选项正确;故选:D.6.【解答】解:(A)原式=4,故选项A错误;(B)原式==,故选项B错误;(D)原式=6,故选项D错误;故选:C.7.【解答】解:如图所示:可得“炮”是原点,则“兵”位于点:(﹣3,1).故选:C.8.【解答】解:∵一次函数y=kx+b中,k>0,且b<0,∴函数图象经过一、三、四象限.故选:A.9.【解答】解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∴点的坐标为(﹣3,5).故选:D.10.【解答】解:A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;B、当x=﹣1时,y=﹣k+k=0,此选项正确;C、当k>0时,y随x的增大而增大,此选项正确;D、不能确定l经过第一、二、三象限,此选项错误;故选:D.11.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:,故选:C.12.【解答】解:∵AB=12,BC=5,∴AD=5,根据折叠可得:AD=A′D=5,设AE=x,则A′E=x,BE=12﹣x,解得:x=.故选:A.13.【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥6.15.【解答】解:∵点P(a,﹣2)在第四象限,∴a>0,∴点Q(﹣a,4)所在的象限是第二象限.故答案为:二.16.【解答】解:,②﹣①×2得:y﹣2x=3,故答案为:y﹣2x=817.【解答】解:若第三条线段为斜边,则第三条线段的长为=cm;则第三条线段的长为=cm.∴第三条线段为cm或cm时,才能组成一个直角三角形.18.【解答】解:如图,连接AC.∵()2+()2=()2,即AC2+BC2=AB2,∴∠ABC=45°.故答案为:45°.19.【解答】解:(1)原式=3﹣1+2=2+2;=4+3﹣2=4+.20.【解答】解:(1)2(x+1)2=8,(x+1)2=4,解得:x=1或x=﹣3;(8x﹣1)3=﹣27,解得:x=﹣1.21.【解答】解:(1),①+②×3得:14x=10,把x=代入②得:y=,(2)方程组整理得:,②×3﹣①得:y=3,把y=3代入②得:x=2,则方程组的解为.22.【解答】解:由数轴可得:a+b>0,a﹣b<0,a<0原式=a+b﹣(b﹣a)﹣a+b=a+b.23.【解答】解:(1)如图所示:△A1B1C1即为所求:(2)A1、B1、C1的坐标分别为(0,﹣6),(﹣2,﹣2),(3,0);S=3×5﹣(2×2+3×5+3×4)=724.【解答】解:(1)①;30;(2)设y1=k1x+30,y2=k3x,由题意得:将(500,80),(500,100)分别代入即可:∴k1=0.1,∴k3=0.2(3)当通讯时间相同时y1=y2,得8.2x=0.1x+30,解得x=300;故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.25.【解答】解:(1)∵AC==,CE==,(2)当A、C、E三点共线时,AC+CE的值最小,∴DF=AB=5,∴AC+CE的最小值是10;设BC=x,则AE的长即为代数式的最小值.则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=7,即的最小值为13.26.【解答】解:(1)如图,针对于直线y2=x+2,令y=0,则x+2=4,∴D(﹣2,0),∴AD=8﹣(﹣2)=10,∴AB==16,∴MH∥OB,∴,∴MH=t,(2)设直线AB的解析式为y=kx+b,∴,∵直线y2=x+2交于点C,解得,,设P(0,m),∴AC2=(8﹣3)2+(0﹣6)2=100,AP2=64+m2,CP2=9+(m﹣5)2,∴①当AC=AP时,∴100=64+m2,∴P(0,﹣6)或(2,6),②当AC=CP时,∴AC2=CP2,∴m=5±,③当AP=CP时,AP5=CP2,∴m=,即:点P的坐标为(3,﹣6)或(0,6)或(0,5﹣)或(0,5+)或(7,).。
重庆市八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.如图图案不是轴对称图形的有()个.A. 2个B. 3个C. 4个D. 5个2.如果等腰三角形的两边长是10cm和5cm,那么它的周长为()A. 20cmB. 25cmC. 20cm或25cmD. 15cm3.如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为()A. 0B. 1C. 2D. 34.√16的平方根是()A. 4B. ±4C. 2D. ±25.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()A. 80∘B. 40∘C. 60∘D. 120∘6.下列各数中:π3,−0.3⋅,227,√25,√93,是无理数的有()A. 1个B. 2个C. 3个D. 4个7.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A. ∠B=∠E,BC=EFB. BC=EF,AC=DFC. ∠A=∠D,∠B=∠ED. ∠A=∠D,BC=EF8.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A. 750米B. 1000米C. 1500米D. 2000米9.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交AB于D,交BC于E,若BE=8cm,则AC的长为()A. 4cmB. 5cmC. 6cmD. 8cm10.如图所示,小亮数学书上的直角三角形的直角处被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,小亮画出这个三角形的依据是()A. HLB. SAS或AASC. ASAD. SSS11.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=2.5cm,点D到AB的距离为()A. 10cmB. 7.5cmC. 2.5cmD. 12.5cm12.下列语句中,正确的是()A. 一个实数的平方根有两个,它们互为相反数B. 负数没有立方根C. 一个实数的立方根不是正数就是负数D. 立方根是这个数本身的数共有三个二、填空题(本大题共8小题,共24.0分)13.使√2−x有意义的x的取值范围是______.14.一辆汽车的车牌号在水中的倒影是,那么它的实际车牌号是:______.15.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是______ .16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是______(填SSS,SAS,AAS,ASA中的一种).17.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B=______ 度.18.满足-√3<x<√23的整数x有______ .19.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= ______ .20.如图,AD和EF分别是△ABC中BC与AB垂直平分线,且BE+CE=20cm,则AB= ______ .三、解答题(本大题共8小题,共60.0分)21.计算:32×√4+12×√144−√10003______ .22.解方程(1)x3-125=0(2)x2-24=1.23.已知√x−2+|2y-x|=0,求x2+4y的立方根.24.如图所示,两条笔直的公路AO与BO相较于点O,村庄D和E在公路AO的两侧,现要在公路AO和BO之间修一个供水站P向D、E两村供水,使供水站P到两公路的距离相等,且到D、E两村的距离也相等.请你在图中画出P点的位置.25.如图,已知∠1=∠2,∠C=∠D,求证:OC=OD.26.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.27.如图,AD是等边三角形BC边上的高,以AD为边作等边三角形△ADE,连结BE.求证:BE⊥AE.28.如图,△DAC和△EBC均是等边三角形,A、C、B三点在一条直线上,AE、BD分别与CD、CE交于点M、N.现有如下结论:①AM=DN;②EM=BN;③∠CAM=∠CDN;④∠CME=∠CNB.(1)上述结论正确的有______ .(2)选出一个你认为正确的结论,并证明这个结论.你选的结论是:______ .证明:______ .答案和解析1.【答案】B【解析】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形不是轴对称图形;第四个图形不是轴对称图形;共3个图案不是轴对称图形;故选:B.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.【答案】B【解析】解:当腰为5cm时,5+5=10,不能构成三角形,因此这种情况不成立.当腰为10cm时,10-5<10<10+5,能构成三角形;此时等腰三角形的周长为10+10+5=25cm.故选:B.题目给出等腰三角形有两条边长为10cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.此题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.【答案】C【解析】解:∵AB=AC,∴∠B=∠C,又BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形的对应边相等),∴∠AEB=∠ADC,∴△ABE≌△ACD(AAS).故选C.根据AB=AC,得∠B=∠C,再由BD=CE,得△ABD≌△ACE,进一步推得△ABE≌△ACD本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.4.【答案】D【解析】解:=4,4的平方根是±2.故选:D.先化简=4,然后求4的平方根.本题考查平方根的求法,关键是知道先化简.5.【答案】C【解析】解:∵∠A=80°,∠B=40°,∴∠C=180°-∠A-∠B=60°,∵△ABC≌△DEF,∴∠F=∠C=60°,故选C.根据三角形内角和定理求出∠C,根据全等三角形性质推出∠F=∠C,即可得出答案.本题考查了三角形内角和定理,全等三角形性质的应用,主要考查学生的推理能力,难度不大.6.【答案】B【解析】解:,是无理数;-是无限循环小数,是有理数;是分数,是有理数;=5,是整数,是有理数.故选B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.7.【答案】D【解析】解:(1)在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故A正确;(2)在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);故B正确;(3)在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误;故选D.分别对各选项中给出条件证明△ABC≌△DEF,进行一一验证即可解题.本题考查了全等三角形的判定,常用判定三角形全等方法有SSS,SAS,ASA,AAS,本题中对各选项进行验证是解题的关键.8.【答案】B【解析】解:作A关于CD的对称点A′,连接A′B,交CD于M,∴CA′=AC,∵AC=DB,∴CA′=BD,由分析可知,点M为饮水处,∵AC⊥CD,BD⊥CD,∴∠ACD=∠A′CD=∠BDC=90°,又∵∠A′MC=∠BMD,在△CA′M和△DBM中,,∴△CA′M≌△DBM(AAS),∴A′M=BM,CM=DM,即M为CD中点,∴AM=BM=A′M=500,所以最短距离为2AM=2×500=1000米,故选B.如图,连接B和A关于CD对称的对称点,交CD于M,因此从A到M再到B 点为最短距离.本题涉及最短路径问题和全等三角形的知识,难度一般.9.【答案】A【解析】解:∵DE是线段AB的垂直平分线,∴AD=DB=8cm,∴∠DAE=∠B=15°,∴∠ADC=∠DAE+∠B=30°,∵∠ACB=90°,∴AC=AD=4cm.故选A.由线段AB的垂直平分线DE交BC于D,交AB于E,E为垂足,根据线段垂直平分线的性质,可求得DB=AD,继而求得∠DAE=∠B=15°,则可求得∠ADC 的度数,然后由含30°的直角三角形的性质,求得答案.此题考查了线段垂直平分线的性质以及含30°的直角三角形的性质.注意求得∠ADC=30°是关键.10.【答案】C【解析】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选C.根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.11.【答案】B【解析】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=BC-BD=7.5,即点D到AB的距离为7.5cm.故选B.过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.12.【答案】D【解析】解:A、一个非负数的平方根有一个或两个,其中0的平方根是0,故选项A错误;B、负数有立方根,故选项B错误,C、一个数的立方根不是正数可能是负数,还可能是0,故选项C错误,D、立方根是这个数本身的数共有三个,0,1,-1,故D正确.故选D.A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据立方根的定义即可判定.本题主要考查平方根和立方根的知识点,比较简单.13.【答案】x≤2【解析】解:由题意得:2-x≥0,解得:x≤2.故答案为:x≤2.根据二次根式的被开方数为非负数即可得出答案.本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数.14.【答案】MT9527【解析】解:实际车牌号是:MT9527.故答案为:MT9527.关于倒影,相应的数字应看成是关于倒影下边某条水平的线对称.本题考查了镜面反射的性质;解决本题的关键是得到对称轴,进而得到相应数字.15.【答案】(-3,4)【解析】解:∵点P关于x轴对称的点是(3,-4),则P点的坐标是(3,4).∴点P关于y轴对称的点的坐标是(-3,4)关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.这一类题目是需要识记的基础题.能够结合平面直角坐标系和对称的性质进行记忆.16.【答案】SSS【解析】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.利用全等三角形的判定方法判断即可.此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.17.【答案】72【解析】解:∵∠E=36°,AE∥DC,∴∠E=∠BCD=36°,∵CD平分∠ACB,∴∠ACB=72°;∵AB=AC,∴∠B=∠ACB=72°.先利用平行线的性质求出∠E=∠BCD=36°,再利用角平分线的性质和等边对等角计算.考查平行线及角平分线的有关性质.18.【答案】-1,0,1【解析】解:∵-2<-<-1,1<<2,∴满足-<x<的整数x有-1,0,1,故答案为:-1,0,1.先估算出-和的范围,即可得出答案.本题考查了估算无理数的大小,能估算出-和的范围是解此题的关键.19.【答案】11【解析】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.根据已知条件分清对应边,结合全的三角形的性质可得出答案.本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.20.【答案】20cm【解析】解:∵EF是线段AB的垂直平分线,∴AE=BE,∵BE+CE=20cm,∴AE+CE=AC=20cm,∵AD是线段BC的垂直平分线,∴AB=AC=20cm.故答案为20cm.先由EF是线段AB的垂直平分线得出AE=BE,代入BE+CE=20cm,得到AE+CE=AC=20cm,再由AD是线段BC的垂直平分线,得出AB=AC=20cm.本题考查了线段垂直平分线的性质:线段垂直平分线上的任意一点到线段两端点的距离相等.得出AC=20cm是解题的关键.21.【答案】=-1【解析】解:原式=×2+×12-10=3+6-10=-1.故答案为:=-1.先根据数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.22.【答案】解:(1)移项得:x3=125.两边直接立方得:x=5,∴方程的解为:x=5;(2)移项得:x2=25.两边直接开平方得:x=±5,∴方程的解为:x1=5,x2=-5,【解析】(1)经过观察,发现将常数项移到方程的右边后等式两边可以直接开立方即可.(2)经过观察,发现将常数项移到方程的右边后等式两边可以直接开平方方即可.此题主要考查了立方根和平方根的知识,可利用数的开方直接求解的方程形式有:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.23.【答案】解:∵√x−2+|2y-x|=0,∴x-2=0,2y-x=0,∴x=2,y=1,∴x2+4y=8,∴x2+4y的立方根是2.【解析】先根据非负数的性质求出x、y的值,再求出x2+4y的立方根即可.本题考查的是非负数的性质及立方根的定义,能根据非负数的性质求出x、y 的值是解答此题的关键.24.【答案】解:如图所示,点P即为所求.【解析】根据P到两公路的距离相等,且到D、E两村的距离也相等,先作∠AOB的平分线,再作线段ED的垂直平分线,两线的交点P就是所求的点.此题主要考查了角平分线、线段垂直平分线的性质的应用以及作法,解决问题的关键是熟练掌握角平分线、线段垂直平分线的基本作图方法.解题时要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.25.【答案】证明:在△ABC与△BAD中,{∠1=∠2∠C=∠D AB=BA,∴△ABC≌△BAD(AAS).∴AD=BC,∵∠1=∠2,∴AO=BO,∴AD-AO=BC-BO,即OC=OD.【解析】首先利用AAS判定△ABC≌△BAD,再根据全等三角形的对应边相等求得AD=BC,再由∠1=∠2,可得AO=BO,从而求得OC=OD.本题主要考查三角形全等的判定方法及等腰三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.本题比较简单,做题时要找准对应关系.26.【答案】解:∵ED是线段BC的垂直平分线,∴BE=CE,∴BE+AE=CE+AE=AC=9cm,∵△ABE的周长为16cm,∴AB=16-(BE+AE)=16-9=7cm.【解析】先根据线段垂直平分线的性质求出BE+AE的长,再根据△ABE的周长为16cm,即可求出AB的长.本题比较简单,应用的知识点为:线段垂直平分线上的点到线段两端的距离相等.27.【答案】解:∵△ABC与△ADE是等边三角形,∴AE=AD,AB=AC,∠BAC=∠DAE=60°,∴∠EAB=∠DAC,在△AEB与△ADC中,{AE=AD∠EAB=∠DAC AB=AC,∴△AEB≌△ADC,∴∠AEB=∠ADC,∵AD是等边三角形BC边上的高,∴∠ADC=90°,∴∠AEB=90°,∴BE⊥AE.【解析】根据等边三角形的性质得到AE=AD,AB=AC,∠BAC=∠DAE=60°,于是得到∠EAB=∠DAC,推出△AEB≌△ADC,得到∠AEB=∠ADC=90°,即可得到结论.本题考查了全等三角形的判定和性质,等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.28.【答案】①②③④;③;∵△DAC和△EBC均是等边三角形,∴AC=CD,∠ACD=∠BCE=60°,CE=CB,∵A、C、B三点在一条直线上,∴∠DCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,在△ACE和△DCB中,∵{AC=CD∠ACE=∠DCB EC=BC∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN,【解析】解:(1)上述结论正确的有:①②③④;故答案为:①②③④;(2)选③,证明:∵△DAC和△EBC均是等边三角形,∴AC=CD,∠ACD=∠BCE=60°,CE=CB,∵A、C、B三点在一条直线上,∴∠DCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,在△ACE和△DCB中,∵,∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN,所以③正确;选①,证明:在△ACM和△DCN中,∵,∴△ACM≌△DCN(ASA),∴AM=DN,所以①正确;选②,证明:∵△ACE≌△DCB,∴∠MEC=∠NBC,在△MCE和△NCB中,∵,∴△MCE≌△NCB(ASA),∴EM=BN,∠CME=∠CNB.所以②和④都正确.(1)4个选项都正确;(2)证明△ACE≌△DCB,得∠CAM=∠CDN,证明△ACM≌△DCN得:AM=DN,再证明△MCE≌△NCB(ASA),得EM=BN,∠CME=∠CNB.本题考查了三角形全等的性质和判定、等边三角形的性质,是常考题型,此类题变化多样,熟练掌握等边三角形的性质是关键,利用等边三角形的性质得出三角形全等的条件即可得出结论.。
2019-2020学年重庆八中八年级(上)期中数学试卷(含解析)

2019-2020学年重庆八中八年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题4分,共40分)1.下列算式中,正确的是()A.3=3 B.C.D.=32.下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:33.下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个4.如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0 B.x<1 C.0<x<1 D.x>15.若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)6.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm7.若方程组的解中x与y互为相反数,则m的值为()A.﹣2 B.﹣1 C.0 D.18.如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6 B.3 C.2 D.129.有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5 B.C.9D.6二、填空题(每小题4分,共12分)11.直角三角形的两条直角边长分别是3cm、4cm,则斜边长是cm.12.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.13.已知实数x,y满足y=+2,则(y﹣x)2011的值为.三、解答题(共48分)14.(8分)(1)(2)15.(10分)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠FAB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.16.(10分)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=,当x≥1时,y=.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;x ……y ……(3)观察函数图象,请写出该函数的一条性质:.17.(10分)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.18.(10分)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10 25 60015 30 750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?B卷(50分)一、选填题(每小题4分,共20分)19.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)20.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15 B.12 C.7.5 D.621.半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔支.22.如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.23.A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.二、解答题(共30分)24.(10分)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.25.(8分)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.26.(12分)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH的最小值及此时点N 的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.1.【解答】解:A、原式=2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=3﹣3+2=5﹣2,所以C选项正确;D、原式==,所以D选项错误.故选:C.2.【解答】解:A、3+4=7≠5,利用勾股定理逆定理判定△ABC不为直角三角形,故此选项符合题意;B、42+43=52,根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠C=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=30°,∠B=60°,∠C=90°,可判定△ABC不是直角三角形,故此选项不合题意.故选:A.3.【解答】解:①﹣m=12,不是整式方程,不符合题意;②y=z+2,是二元一次方程,符合题意;③=1,不是整式方程,不符合题意;④mn=7,是二元二次方程,不符合题意;故选:A.4.【解答】解:当x<1时,kx+2>x+b,即不等式kx+2>x+b的解集为x<1.故选:B.5.【解答】解:∵A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),∴m+2n=5,2m﹣n=﹣5,∴P(m,n)的坐标是(﹣8,3).故选:C.6.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB=∠CBD.,∴AE=BC=9cm,AB=CD=12cm.∴AB2=63.BE2=AE2+AB2=81+144=225,故选:D.7.【解答】解:根据题意得:,解得:,解得:m=0,故选:C.8.【解答】解:27﹣(27﹣)=(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,6÷2=3(厘米).故选:B.9.【解答】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.10.【解答】解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴(AC+BC)2=(8)2,即AC2+2AC×BC+BC6=405,∴AC×BC=90,∴CD===6;故选:D.11.【解答】解:∵直角三角形的两条直角边长分别是3cm、4cm,则∴斜边长=cm,故答案为:512.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣6=1,解得:m=﹣2或2,则m=﹣2.故答案为:﹣2.13.【解答】解:∵与都有意义,∴x=3,则y=2,故答案为:﹣1.14.【解答】解:(1)原式=++12﹣1=2+3+12﹣1(2)方程组整理为,②﹣①得4x=8,解得x=2,把x=3代入①得2﹣4y=﹣2,解得y=1,所以原方程组的解为.15.【解答】(1)解:如图,直角△AFB中,∠FAB=90°,AB=2,BF=4.由勾股定理知,AF===2;∵∠F=30°,∴BG=BE.∴∠DEC=∠D=45°.∴ED=EC.∴EC=2.∴∠ECG=∠DEC=45°.∴EG=CG.∴GC=2.∴BG=.∴BC=GC﹣GB=2﹣.16.【解答】解:(1)化简函数解析式,当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x≥1时,y=(x ﹣1)﹣2=x﹣,故答案为﹣x﹣,x﹣.当x=0时,y=﹣,故答案为0,﹣1.﹣,﹣7,故答案为:当x≥1时,y随x的增大而增大.17.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、点B(1,).∴,解得:.(2)如图,∵C在直线AB上,且S△ACO=S△ABO,∵A(﹣2,1),B(1,).∴C(﹣,)或(﹣,);18.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∴W的值随x值的增大而减小,3000÷10=300(束),答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.19.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(6,1),P2(2,0),P3(6,﹣1),P4(4,0),P5(5,1),…,∵17=4×4+1,故选:A.20.【解答】解:长方形ABCD中,AB=CD=3,AD=9,∠C=90°根据翻折可知:设AE=A′E=x,则DE=9﹣x,(4﹣x)2=x2+32,解得x=4,∴S△DEF=DE•CD=×5×3=7.5(cm8).故选:C.21.【解答】解:设购买x支钢笔,y支铅笔,z支签字笔,依题意,得:20x+8y+10z=122由题意可知x,y,z均为正整数当y=2,z=1时,x=4.8,不符合题意;当y=2,z=4时,由奇偶性可知,分子为奇数,不符合题意;故答案为:4.22.【解答】解:∵AB=BD=4,∴∠BAE=∠BDE,∴∠DBE=∠CAB=90°,∴∠CAE=∠DEB,∴∠CAE=∠CEA,∵BE=1,∵AC2+AB2=BC2,∴AC=,故答案为:.23.【解答】解:甲的速度为2700÷9=300(米/分钟),乙的初始速度为300×90%=270(米/分钟),乙加速后的速度为270×(1+20%)=324(米/分钟).根据题意得:(300+324)t=2700﹣300×(10﹣9),∴他们在第二次相遇时距B地2700﹣300×()=(米),故答案为:.24.【解答】解:(1)由题意:(a+1)2+(7﹣4)2=52,解答a=3或﹣5.(3)∵=,∴+=+,求+,相当于求点(2x,3)到点(4,1)和点(0,7)的距离和的最小值,这个最小值==,∴原式的最小值=+3.25.【解答】解:(1)如图1中,∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,∴△DAC≌△EAB,∵∠CFD=∠AFB,∵DE=EB=CD=,∴AB=AC=BC=.∴AE=EB,∵∠DEA=45°=∠EAB+∠EBA,∴∠EAB=∠EBA=∠EBC=22.5°,∴∠CJA=180°﹣∠CAJ﹣∠ACJ=67.5°,∴CA=CJ=CB,∴∠AEG=∠GEJ=90°,∵∠AGE=∠EBG+∠GEB,∵BE=BE,∠EBJ=∠EBG,∴BG=BJ,∴BC=CJ+BJ=AB+BG.26.【解答】解:(1)由已知可得A(3,0),B(0,5),∵将直线l1向右平移2个单位得到直线L2,∴直线L2:y=﹣x+5,(2)过点A作AE⊥L2,∴AE=,∴BM+MN+NH的最小值即为BM++NH的最小值,则BM+MN+NH的最小值即为+FH;∴B'M=FN,∴BM=B'M,在Rt△BDF中,BF=,BD=2,过点B作BG⊥FH,∴GB=,FG=,在Rt△BNG中,∠GBN=30°,BG=,∴N(,),∴BM+MN+NH的最小值+;∴A'(4,2),∴直线L3:y=x+2﹣15,∴AB=6,①当A'B'=A'C时,A'C=6,∴m=或m=,②当A'B'=B'C时,B'C=6,∴m=或m=;③当A'C=B'C时,∴m=4﹣;综上所述:A'(,),A'(,);A'(,),A'(,);A'(5﹣,﹣);).。
重庆市2019-2020学年八年级上学期期中数学试题(II)卷

重庆市2019-2020学年八年级上学期期中数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是A.55°B.60°C.65°D.70°2 . 下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3 . (2017•赤峰)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°4 . 如图所示,某同学不小心把一块三角形的玻璃仪器打碎成三块,现要去玻璃店配制一块完全一样的,那么最省事的办法是带()去.A.1B.2C.3D.1,2,35 . 如图所示,在和均为等腰直角三角形,其中,点、、在一条直线上.点是的中点,连接,,.下列结论:①;②;③;④.其中,结论正确的个数是()A.1个B.2个C.3个D.4个6 . 如图,△ABC中,MP和NQ分别垂直平分AB和AC,若∠PAQ=40°,则∠BAC的度数是()A.140°B.110°C.100°D.70°7 . 如图,小华剪了两条宽为的纸条,交叉叠放在一起,且它们较小的交角为,则它们重叠部分的面积为()A.1B.2C.D.8 . 如果一个正多边形的内角和是这个正多边形外角和的2倍,那么这个正多边形是()A.等边三角形B.正四边形C.正六边形D.正八边形9 . 已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.10 . 如图,在△和△中,90°,.有以下结论:①;②平分;③平分.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题11 . 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是____________°.12 . 等腰三角形的腰长是6,则底边长a的取值范围是________13 . 如图,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=_______.14 . 如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,且S△DEF=1,则S△ABC的值为_____.15 . 过十五边形的一个顶点可以作________________ 条对角线.16 . 如图所示,BD、AC相交于点O,若OA=OD,用“SAS”证明△AOB△DOC,还需___________.17 . 点P在第四象限内,点P到x轴的距离为2,到y轴的距离为3,则点P关于y轴的对称点的坐标为______________.18 . 如果△ABC与△A'B'C'关于直线l对称,且∠A=50°,∠B'=70°,那么∠C'=______.三、解答题19 . 如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B不重合.(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;(2)点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系(直接写出答案);(3)如图②,当点P在线段AB的延长线上运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系,并说明理由。
2019-2020学年重庆一中八年级(上)期中数学试卷 -(含答案解析)

2019-2020学年重庆一中八年级(上)期中数学试卷一、选择题(本大题共12小题,共48.0分)1.在−π3、√−83、√2、0.21、(√2)0中无理数的个数是()A. 1个B. 2个C. 3个D. 4个2.若点A(m+2,2m−5)在y轴上,则点A的坐标是()A. (0,−9)B. (2.5,0)C. (2.5,−9)D. (−9,0)3.函数y=1√2x−1的自变量x的取值范围是()A. x≤12B. x≥12C. x<12D. x>124.下列各图给出了变量x与y之间的对应关系,其中y是x的函数的是()A. B.C. D.5.甲、乙两班分别有10名选手参加学校健美操比赛,两班参赛选手身高的方差分别为 1.5,,则下列说法正确的是()A. 甲班选手比乙班选手身高整齐B. 乙班选手比甲班选手身高整齐C. 甲、乙两班选手身高一样整齐D. 无法确定哪班选手身高更整齐6.如图,在△ABC中,AB=AC=3,BC=2,点M是BC的中点,MN⊥AC于点N,则MN等于()A. √23B. √33C. 2√23D. 4√237. 现有20元和50元的人民币共9张,共值270元,设20元人民币有x 张,50元人民币有y 张,则可列方程组为( )A. {x +y =950x +20y =270B. {x +y =920x +50y =270 C. {x +y =27050x +20y =9 D. {x +y =27020x +50y =9 8. 估计√32×√12+√20的运算结果应在( ) A. 6到7之间 B. 7到8之间C. 8到9之间D. 9到10之间 9. 二元一次方程组{2x +y =5k 2x −y =7k 的解满足方程13x −2y =5,那么k 的值为( )A. 35B. 53C. −5D. 110. 已知直线y =−3x +b 经过点A(1,y 1)和点B(−2,y 2),则y 1与y 2的大小关系是( )A. y 1>y 2B. y 1<y 2C. y 1=y 2D. 不能确定11. 如图,A 1(1,0),A 2(1,1),A 3(−1,1),A 4(−1,−1),A 5(2,−1),…,按此规律,点A 2019的坐标为( )A. (504,504)B. (505,−504)C. (505,505)D. (−505,505)12. 如图所示,在Rt △ABC 中,∠C =90°,AC =8,BC =6,按图中所示方法,将△BCD 沿BD 折叠,使点C 落在边AB 上的点C′处,则折痕BD 的长为( )A. 3√2B. 3√3C. 3√5D. 5√3二、填空题(本大题共6小题,共24.0分)13. 计算√12−√27=______.14. 已知关于x 的函数y =(n −3)x +9−n 2是正比例函数,则n =____.15. 已知一次函数y =ax +b (a ≠ 0)和y =kx (k ≠ 0)图象交点坐标为(−4,−2),则二元一次方程组{y −ax =b,y −kx =0.的解是 . 16. 已知直线y =(m −3)x −3m +1不经过第一象限,则m 的取值范围是______________ 17. 甲、乙两人分别从相距2380米的A ,B 两地出发,相向而行,甲先出发5分钟,乙再出发.在整个行走过程中,甲、乙两人均保持匀速行走,两人相遇后,依然按照原速度原方向继续行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则当乙到达A 地时,甲与B 地的距离是______米.18. 甲、乙、丙三种物品,若购甲3个、乙5个、丙1个共付15.5元;若购甲4个、乙7个、丙1个共付19.5元,则甲、乙、丙各买3个共需____元.三、计算题(本大题共1小题,共10.0分)19. (1)计算|−2|+(3−π)0+√−273(2)解不等式组{3(x +1)>x −1x+92>2x四、解答题(本大题共7小题,共68.0分)20. 2016年深圳宝安国际马拉松赛于12月4日上午8:00在宝安区政府南大门鸣枪开炮,我区某校为了了解学生对本次马拉松赛的关注程度和锻炼情况,随机调查了部分学生每周跑步的时间,绘制成如下两幅不完整的统计图如图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)抽查学生跑步时间的众数是______小时,中位数是______小时;(3)抽查学生跑步时间的平均数是______小时.21.探究函数y=12|x−1|−2的图像和性质,小明根据学习函数的经验,对函数y=12|x−1|−2的图像进行了研究,下面是小明的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=_______,当x≥1时,y=_________;(2)根据(1)的结果,补全函数y=12|x−1|−2的图像;(3)观察函数图像,请写出该函数的一条性质:________________________.22.如图,一次函数y=kx+b的图象经过点A(4,0),直线y=−3x+3与x轴交于点B,与y轴交于点D,且两直线交于点C(2,m).(1)求m的值及一次函数的解析式;(2)求△ACD的面积.23.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).24.从下列题目中,任选其一,写一篇数学作文,字数控制在1000字以内.(1)“无理数”学习之我见;(2)“边边角”为何不能判定两三角形全等;(3)浅述四边形“家族成员”的关系;(4)数学考后小结;(5)“学用杯”竞赛宗旨之一是“提高中学生运用数学知识解决实际问题的能力”,口号是“到生活中学数学,在生活中用数学”,自拟题目,谈谈你在生活中是如何运用数学的.25.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD.26.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.-------- 答案与解析 --------1.答案:B解析:【分析】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:−π、√2是无理数,3故选:B.2.答案:A解析:【分析】此题主要考查了点的坐标,正确得出m的值是解题关键.直接利用y轴上横坐标为0,进而得出m的值即可得出答案.【解答】解:∵点A(m+2,2m−5)在y轴上,∴m+2=0,解得:m=−2,故2m−5=−9,故点A的坐标为:(0,−9).故选:A.3.答案:D解析:【分析】本题主要考查的是函数自变量的取值范围,二次根式的概念,分式值为零和分式有意义的条件的有关知识.由题意得到2x−1>0,求解即可.【解答】解:由题意得2x−1>0,.解得:x>12故选D.4.答案:D解析:【分析】主要考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量,根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:∵对于x 的每一个取值,y 都有唯一确定的值,A 、对于x 的每一个取值,y 都有两个值,故A 错误;B 、对于x 的每一个取值,y 都有两个值,故B 错误;C 、对于x 的每一个取值,y 都有两个值,故C 错误;D 、对于x 的每一个取值,y 都有唯一确定的值,故D 正确;故选D .5.答案:A解析:【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S 甲2=1.5,S 乙2=2.5,∴S 甲2<S 乙2=2.5,则甲班选手比乙班选手身高更整齐.故选A .6.答案:C解析:【分析】本题考查腰三角形的三线合一,勾股定理和三角形的面积.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.连接AM ,根据等腰三角形三线合一的性质得到AM ⊥BC ,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长.【解得】解:连接AM ,∵AB =AC ,点M 为BC 中点,∴AM ⊥CM(三线合一),BM =CM ,∵AB =AC =3,BC =2,∴BM =CM =1,在Rt △ABM 中,AB =3,BM =1,∴根据勾股定理得:AM =2√2,又S △AMC =12MN ⋅AC =12AM ⋅MC ,∴MN =AM·CM AC =2√2×13=2√23. 故选C .7.答案:B解析:【分析】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组. 根据题意,可以列出相应的二元一次方程组,本题得以解决.【详解】解:由题意可得,{x +y =920x +50y =270, 故选B .8.答案:C解析:【分析】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.先进行二次根式的运算,然后再进行估算.【解答】解:∵√32×√12+√20=4+√20,而4<√20<5, ∴原式运算的结果在8到9之间;故选:C .9.答案:B解析:【分析】此题考查了二元一次方程组的解,以及二元一次方程,熟练掌握方程组的解法与方程的解是解本题的关键.将k 看做已知数表示出x 与y ,代入已知方程即可求出k 的值.【解答】解:{2x +y =5k ①2x −y =7k ②, ①+②得:4x =12k ,即x =3k ,①−②得:2y =−2k ,即y =−k , 将x =3k ,y =−k 代入13x −2y =5得:k +2k =5,解得:k =53.故选B10.答案:B解析:【分析】本题考查一次函数的图象性质,关键是根据当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.根据k=−3<0,y将随x的增大而减小,得出y1与y2的大小关系.【解答】解:∵k=−3<0,∴y将随x的增大而减小,∵1>−2,∴y1<y2.故选:B.11.答案:D解析:【分析】本题主要考查了图形规律问题,熟练这个知识是解题的关键,据题意可得除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3,确定相应的象限,由此确定要求的点在第二象限,即可得到答案.【解答】解:由题可知,第一象限的点:A2、A6、A10…角标除以4余数为2;第二象限的点:A3、A7、A11…角标除以4余数为3;第三象限的点:A4、A8、A12…角标除以4余数为0;第四象限的点:A5、A9、A13…角标除以4余数为1;由上规律可知:2019÷4=504…3,∴点A2019在第二象限,∴点A2019的坐标(−505,505).故选D.12.答案:C解析:解:∵∠C=90°,AC=8,BC=6,∴AB=10.根据折叠的性质,BC=BC′,CD=DC′,∠C=∠AC′D=90°.∴AC′=10−6=4.在△AC′D中,设DC′=x,则AD=8−x,根据勾股定理得(8−x)2=x2+42.解得x=3.∴CD =3.∴BD =√CD 2+BC 2=√32+62=3√5.故选:C .根据勾股定理易求AB =10.根据折叠的性质有BC =BC′,CD =DC′,∠C =∠AC′D =90°.在△AC′D 中,设DC′=x ,则AD =8−x ,AC′=10−6=4.根据勾股定理可求x.在△BCD 中,运用勾股定理求BD .本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.13.答案:−√3解析:解:原式=2√3−3√3=−√3.故答案为:−√3.直接化简二次根式进而计算得出答案.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.答案:−3解析:【分析】本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y =kx 的定义条件是:k 为常数且k ≠0,自变量次数为1.根据正比例函数:正比例函数y =kx 的定义条件是:k 为常数且k ≠0,可得答案.【解答】解:函数y =(n −3)x +9−n 2是正比例函数,得9−n 2=0且n −3≠0,解得n =−3.故答案为−3.15.答案:{x =−4y =−2解析:【分析】本题考查了一次函数与二元一次方程组的联系.由图可知:两个一次函数的交点坐标为(−4,−2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵函数y =ax +b 和y =kx 的图象交于点P(−4,−2),∴点P(−4,−2),满足二元一次方程组{y −ax =b y −kx =0; ∴方程组的解是{x =−4y =−2. 故答案为{x =−4y =−2. 16.答案:13≤m ≤3解析:【分析】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.根据直线y=(m−3)x−3m+1,图象在坐标平面内的位置关系先确定m的取值范围,从而求解.【解答】解:由直线y=(m−3)x−3m+1不经过第一象限,则经过第二、四象限或第二、三、四象限或三、四象限,∴有{m−3≤0−3m+1≤0,解得:13≤m≤3,故答案为13≤m≤3.17.答案:40解析:【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.根据题意和函数图象中的数据可以求得甲乙的速度从而可以求得乙到达A地时用的时间,进一步求得甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380−2080)÷5=60米/分,乙的速度为:(2080−910)÷(14−5)−60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,则乙到达A地时,甲与A地相距的路程是:60×(34+5)=2340米,则当乙到达A地时,甲与B地的距离是2380−2340=40米.故答案为40.18.答案:22.5解析:【分析】本题考查了三元一次方程组的应用,关键是根据题意设出未知数,列出方程组,注意要把x,y,z以整体形式出现.先设甲、乙、丙各买1个分别需x元,y元,z元,根据购甲3个、乙5个、丙1个共付15.5元;若购甲4个、乙7个、丙1个共付19.5元,列出方程组,求出x+y+z的值,再求3x+ 3y+3z即可.【解答】解:设甲、乙、丙各买1个分别需x元,y元,z元,根据题意,得:{3x+5y+z=15.5①4x+7y+z=19.5②,①×3−②×2得:x+y+z=7.5,方程两边乘以3,得3x+3y+3z=22.5.则甲、乙、丙各买3个共需22.5元.19.答案:解:(1)|−2|+(3−π)0+√−273=2+1−3=0;(2){3(x +1)>x −1①x +92>2x② 解不等式①,得:x >−2;解不等式②,得:x <3;所以此不等式组的解集为:−2<x <3.解析:(1)本题涉及绝对值、零指数幂、三次根式化简3个考点,根据实数的运算法则求得计算结果;(2)求出两个不等式的解集,求其公共解.此题主要考查了实数的运算和不等式组的解法,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.答案:(1)补全图形如下:(2)4;4;(3)3.7.解析:解:(1)被抽查的学生数为30÷30%=100人,则4小时的人数为100−10−30−20=40,补全图形如下:(2)由条形图知,众数为4小时,中位数为4小时,故答案为:4,4;(3)抽查学生跑步时间的平均数是1100×(2×10+3×30+4×40+5×20)=3.7(小时),(1)根据时间为3小时的人数及其百分比可得总人数,再减去其余3组人数得出4小时的人数即可补全图形;(2)根据众数和中位数的定义可得;(3)根据平均数的定义解答即可.本题主要考查条形统计图和众数、中位数、平均数,根据条形统计图得出所需信息及掌握众数、中位数、平均数是解题的关键.21.答案:解:(1)−12x−32;12x−52(2)当x<1时,y=−12x−32过点(0,−32),(−3,0),函数y=12|x−1|−2的图象如下图所示:(3)由图象可知,当x<1时,y随x的增大而减小.解析:【分析】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.(1)根据题目中的函数解析式,可以分别写出x≥1和x<1时的函数解析式;(2)根据(1)中的结果,可以在坐标系中画出函数y=12|x−1|−2的图象;(3)根据(1)中的函数图象,可以写出函数y=12|x−1|−2的一条性质,本题答案不唯一,只要符合题意即可;【解答】解:(1)当x<1时,y=12|x−1|−2=−12(x−1)−2=−12x−32,当x≥1时,y=12|x−1|−2=12(x−1)−2=12x−52,故答案为:−12x−32,12x−52;(2)见答案;(3)见答案.22.答案:解:(1)把C(2,m)代入y =−3x +3得m =−3×2+3=−3;把A(4,0),C(2,−3)代入y =kx +b 得{4k +b =02k +b =−3, 解得{k =32b =−6. 所以一次函数的解析式为y =32x −6;(2)对于y =−3x +3,令y =0,则x =1,则B(1,0);令x =0,则y =3,则D(0,3).则AB =4−1=3,则S △ACD =S △ABD +S △ABC =12×3×3+12×3×3=9.解析:本题考查了两直线平行或相交的问题:直线y =k 1x +b 1(k 1≠0)和直线y =k 2x +b 2(k 2≠0)平行,则k 1=k 2;若直线y =k 1x +b 1(k 1≠0)和直线y =k 2x +b 2(k 2≠0)相交,则交点坐标满足两函数的解析式。
重庆市2019-2020年度八年级上学期期中数学试题A卷

重庆市2019-2020年度八年级上学期期中数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列语句中不是命题的有()⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放.A.1个B.2个C.3个D.4个2 . 如图,BE、CF都是△ABC的角平分线,且∠A=400∠BDC是()A.500B.1000C.1100D.12003 . 下列说法正确的是()A.三角形的中线、角平分线和高都是线段;B.若三条线段的长、、满足,则以、、为边一定能组成三角形;C.三角形的外角大于它的任何一个内角;D.三角形的外角和是.4 . 如下图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车在途中停留了0.5小时;②汽车行驶3小时后离出发地最远;③汽车共行驶了120千米;④汽车返回时的速度是80千米/小时.其中正确的说法共有()A.1个B.2个C.3个D.4个5 . 如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6B.8C.10D.126 . 在平面直角坐标系中,点在()A.第一象限B.第二象限C.轴D.轴7 . 方程ax2+bx+c=0(a<0)有两个实根,则这两个实根的大小关系是()A.≥B.>C.≤D.<8 . 用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.9 . 若点A关于x轴的对称点为(-2,3),则点A关于y轴的对称点为()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)10 . 若一次函数y=kx+b中,kb>0,则它的图象可能大致为()A.B.C.D.二、填空题11 . “等边对等角”的逆命题是.12 . 已知点A(y+a,2)和点B(y-3,b+4)关于x轴对称,则=_______.13 . 函数中,自变量的取值范围是__________.14 . 如图所示,△ ABC中,AB =" AD" = DC,∠BAD = 40°,则∠C =.三、解答题15 . 某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)品牌进价(元/件)售价(元/件)A5080B406516 . 已知一次函数y=kx+b的图象经过点(﹣2,﹣4),且与正比例函数的图象相交于点(4,a),求:(1)a的值;(2)k、b的值;(3)画出这两个函数图象,并求出它们与y轴相交得到的三角形的面积.17 . 下面是“作三角形一边上的高”的尺规作图过程.已知:△ABA.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.18 . 一次函数与的图像都经过点A(-3,2),且与y轴分别交于点B、C.(1)求这两个一次函数的解析式;(2)求△ABC的面积.19 . 已知y + 2 与x - 1成正比例,且x = 3时y = 4 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年重庆八中八年级(上)期中数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.(4分)(2019秋•沙坪坝区校级期中)下列算式中,正确的是()A.3=3B.C.D.=32.(4分)(2019秋•沙坪坝区校级期中)下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:33.(4分)(2019秋•沙坪坝区校级期中)下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个4.(4分)(2019春•南关区期中)如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0B.x<1C.0<x<1D.x>15.(4分)(2019秋•沙坪坝区校级期中)若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)6.(4分)(2019秋•沙坪坝区校级期中)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm7.(4分)(2019秋•沙坪坝区校级期中)若方程组的解中x与y互为相反数,则m的值为()A.﹣2B.﹣1C.0D.18.(4分)(2019秋•沙坪坝区校级期中)如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6B.3C.2D.129.(4分)(2019秋•沙坪坝区校级期中)有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm 10.(4分)(2019秋•沙坪坝区校级期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5B.C.9D.6二、填空题:(本大题3个小题,每小题4分,共12分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(2019秋•沛县期中)直角三角形的两条直角边长分别是3cm、4cm,则斜边长是cm.12.(4分)(2020春•丛台区校级期中)函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.13.(4分)(2019秋•沙坪坝区校级期中)已知实数x,y满足y=+2,则(y ﹣x)2011的值为.三、解答题:(本大题共5小题,14题8分,15,16,17,18各10分,共48分)14.(8分)(2019秋•沙坪坝区校级期中)(1)(2)15.(10分)(2019秋•沙坪坝区校级期中)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠F AB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.16.(10分)(2019秋•沙坪坝区校级期中)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=,当x≥1时,y=.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;(3)观察函数图象,请写出该函数的一条性质:.17.(10分)(2019秋•沙坪坝区校级期中)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.18.(10分)(2019秋•沙坪坝区校级期中)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?四、选填题(本大题共5小题,每小题4分,共20分)请将每小题的答案直接填在答题卡中对应的横线上、19.(4分)(2020春•韩城市期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)20.(4分)(2019秋•沙坪坝区校级期中)如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15B.12C.7.5D.621.(4分)(2019秋•沙坪坝区校级期中)半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔支.22.(4分)(2019秋•沙坪坝区校级期中)如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.23.(4分)(2019秋•沙坪坝区校级期中)A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.五、解答题:(本大题共三小题,24题10分、25题8分,26题12分,共30分)24.(10分)(2019秋•沙坪坝区校级期中)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.25.(8分)(2019秋•沙坪坝区校级期中)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.26.(12分)(2019秋•沙坪坝区校级期中)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH 的最小值及此时点N的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.2019-2020学年重庆八中八年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.(4分)(2019秋•沙坪坝区校级期中)下列算式中,正确的是()A.3=3B.C.D.=3【分析】根据二次根式的加减法对A、B进行判断;根据完全平方公式对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=3﹣2+2=5﹣2,所以C选项正确;D、原式==,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.(4分)(2019秋•沙坪坝区校级期中)下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:3【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、3+4=7≠5,利用勾股定理逆定理判定△ABC不为直角三角形,故此选项符合题意;B、32+42=52,根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠C=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=30°,∠B=60°,∠C=90°,可判定△ABC不是直角三角形,故此选项不合题意.故选:A.【点评】此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(4分)(2019秋•沙坪坝区校级期中)下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个【分析】利用二元一次方程的定义判断即可.【解答】解:①﹣m=12,不是整式方程,不符合题意;②y=z+1,是二元一次方程,符合题意;③=1,不是整式方程,不符合题意;④mn=7,是二元二次方程,不符合题意;⑤x+y=6z,是三元一次方程,不符合题意,故选:A.【点评】此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.4.(4分)(2019春•南关区期中)如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0B.x<1C.0<x<1D.x>1【分析】观察函数图象得到当x<1时,函数y1=kx+2的图象都在y2=x+b的图象上方,所以不等式kx+2>x+b的解集为x<1;【解答】解:当x<1时,kx+2>x+b,即不等式kx+2>x+b的解集为x<1.故选:B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.5.(4分)(2019秋•沙坪坝区校级期中)若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.直接利用关于x轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),∴m+2n=5,2m﹣n=﹣5,解得m=﹣1,n=3,∴P(m,n)的坐标是(﹣1,3).故选:C.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.6.(4分)(2019秋•沙坪坝区校级期中)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm【分析】根据正方形的性质就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB =∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE的值,进而得出结论.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC=9cm,AB=CD=12cm.∴AE2=81,CD2=144.∴AB2=63.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=81+144=225,∴BE=15.故选:D.【点评】本题考查的是勾股定理,正方形的性质的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.7.(4分)(2019秋•沙坪坝区校级期中)若方程组的解中x与y互为相反数,则m的值为()A.﹣2B.﹣1C.0D.1【分析】根据x与y互为相反数,得到x=﹣y,代入方程组第一个方程求出y的值,进而求出x的值,确定出m的值即可.【解答】解:根据题意得:,解得:,代入得:3(m+1)+3=6,解得:m=0,故选:C.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.(4分)(2019秋•沙坪坝区校级期中)如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6B.3C.2D.12【分析】首先得出杯子内筷子的长度,再根据勾股定理求得圆柱形水杯的直径,即可求出底面半径.【解答】解:27﹣(27﹣)=(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,=6(厘米),6÷2=3(厘米).故底面半径为3厘米.故选:B.【点评】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长度是解决问题的关键.9.(4分)(2019秋•沙坪坝区校级期中)有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm【分析】根据勾股定理即可得到结论.【解答】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.【点评】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.10.(4分)(2019秋•沙坪坝区校级期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB 于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5B.C.9D.6【分析】由已知条件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面积即可得出答案.【解答】解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405﹣225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.【点评】本题考查了勾股定理,三角形的面积公式,完全平方公式,三角形的周长的计算,熟记直角三角形的性质是解题的关键.二、填空题:(本大题3个小题,每小题4分,共12分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(2019秋•沛县期中)直角三角形的两条直角边长分别是3cm、4cm,则斜边长是5cm.【分析】根据勾股定理解答即可.【解答】解:∵直角三角形的两条直角边长分别是3cm、4cm,则∴斜边长=cm,故答案为:5【点评】此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.12.(4分)(2020春•丛台区校级期中)函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.【点评】本题主要考查了一次函数的定义,难度不大,注意基础概念的掌握.13.(4分)(2019秋•沙坪坝区校级期中)已知实数x,y满足y=+2,则(y ﹣x)2011的值为﹣1.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵与都有意义,∴x=3,则y=2,故(y﹣x)2011=﹣1.故答案为:﹣1.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.三、解答题:(本大题共5小题,14题8分,15,16,17,18各10分,共48分)14.(8分)(2019秋•沙坪坝区校级期中)(1)(2)【分析】(1)根据二次根式的乘法法则和平方差公式计算;(2)先把方程组整理为,然后利用加减消元法解方程组.【解答】解:(1)原式=++12﹣1=9+3+12﹣1=23;(2)方程组整理为,②﹣①得4x=8,解得x=2,把x=2代入①得2﹣4y=﹣2,解得y=1,所以原方程组的解为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了解二元一次方程组.15.(10分)(2019秋•沙坪坝区校级期中)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠F AB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.【分析】(1)在直角△AFB中,利用勾股定理求得AF的长度;(2)如图,过点E作EG⊥AC于点G,构造等腰直角△EGC.在直角△EDC中,根据勾股定理求得EC的长度;然后在直角△EGC中,再次利用勾股定理求得GC的长度,在直角△EGB中,求得BG的长度,则BC=GC﹣GB.【解答】(1)解:如图,直角△AFB中,∠F AB=90°,AB=2,BF=4.由勾股定理知,AF===2;(2)解:如图,过点E作EG⊥AC于点G,则AF∥EG.∵∠F=30°,∴∠BEG=30°.∴BG=BE.∵∠ECD=90°,∠D=45°,∴∠DEC=∠D=45°.∴EC=CD.∴ED=EC.又ED=4,∴EC=2.∵DE∥AC,∴∠ECG=∠DEC=45°.∴∠GEC=∠GCE=45°.∴EG=CG.∴EC=GC,即2=GC.∴GC=2.在直角△BGE中,由勾股定理知BG2+EG2=BE2,即BG2+22=4BG2.∴BG=.∴BC=GC﹣GB=2﹣.【点评】考查了勾股定理和含30度角的直角三角形.注意图中辅助线的作法,通过作辅助线,构造直角三角形,方可利用勾股定理求得相关线段的长度.16.(10分)(2019秋•沙坪坝区校级期中)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=﹣x﹣,当x≥1时,y=x﹣.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;(3)观察函数图象,请写出该函数的一条性质:当x≥1时,y随x的增大而增大.【分析】(1)根据绝对值的性质化简即可.(2)利用描点法取点,画出图形即可.(3)观察图象解答即可(答案不唯一).【解答】解:(1)化简函数解析式,当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x≥1时,y=(x﹣1)﹣2=x﹣,故答案为﹣x﹣,x﹣.(2)当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x=0时,y=﹣,当x=﹣1时,y=﹣1,故答案为0,﹣1.﹣,﹣1,函数图象如图所示:(3)观察图象可知:当x≥1时,y随x的增大而增大.故答案为:当x≥1时,y随x的增大而增大.【点评】本题考查一次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.(10分)(2019秋•沙坪坝区校级期中)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.【分析】(1)根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C是线段AB的中点,或A是线段AC的三等分点,且C点在A点的左侧,即可求得C的坐标.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、点B(1,).∴,解得:.∴这个一次函数的解析式为:y=x+2.(2)如图,∵C在直线AB上,且S△ACO=S△ABO,∴C是线段AB的中点,或A是线段AC的三等分点,且C点在A点的左侧,∵A(﹣2,1),B(1,).∴C(﹣,)或(﹣,);【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.18.(10分)(2019秋•沙坪坝区校级期中)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?【分析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n 分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∵﹣<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600﹣3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.【点评】本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出W关于x 的函数关系式.四、选填题(本大题共5小题,每小题4分,共20分)请将每小题的答案直接填在答题卡中对应的横线上、19.(4分)(2020春•韩城市期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,根据该规律即可得出结论.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.【点评】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.20.(4分)(2019秋•沙坪坝区校级期中)如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15B.12C.7.5D.6【分析】根据翻折变换可得AE=A′E,∠A′=∠C=90°,即可利用勾股定理求得DE 的长,进而求解.【解答】解:长方形ABCD中,AB=CD=3,AD=9,∠C=90°根据翻折可知:∠A′=∠C=90°,A′D=DC=3,A′E=AE,设AE=A′E=x,则DE=9﹣x,在Rt△A′ED中,根据勾股定理,得(9﹣x)2=x2+32,解得x=4,∴DE=9﹣x=5,∴S△DEF=DE•CD=×5×3=7.5(cm2).故选:C.【点评】本题考查了翻折变换、三角形的面积、矩形的性质,解决本题的关键是利用翻折的性质.21.(4分)(2019秋•沙坪坝区校级期中)半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔4支.【分析】设购买x支钢笔,y支铅笔,z支签字笔,根据他一共用了122元,列出方程,将x用含y和z的式子表示出来,分别对y和z取值验证,即可得解.【解答】解:设购买x支钢笔,y支铅笔,z支签字笔,依题意,得:20x+8y+10z=122∴x==由题意可知x,y,z均为正整数∴当y=1,z=1时,x=5.2,不符合题意;当y=2,z=1时,x=4.8,不符合题意;当y=3,z=1时,x=4.4,不符合题意;当y=2,z=2时,由奇偶性可知,分子为奇数,不符合题意;当y=4,z=1时,x=4,符合题意.故答案为:4.【点评】本题考查了代数式变形在实际问题中的应用,根据题意正确列式并分类讨论,是解题的关键.22.(4分)(2019秋•沙坪坝区校级期中)如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.【分析】根据等腰三角形的性质得到∠BAE=∠BDE,根据等式的性质得到∠CAE=∠DEB,求得AC=EC,根据勾股定理列方程即可得到结论.【解答】解:∵AB=BD=4,∴∠BAE=∠BDE,∵CB⊥BD,∴∠DBE=∠CAB=90°,∴∠DEB=90°﹣∠D,∠CAE=90°﹣∠BAD,∴∠CAE=∠DEB,∵∠AEC=∠DEB,∴∠CAE=∠CEA,∴AC=EC,∵BE=1,∴BC=AC+1,∵AC2+AB2=BC2,∴AC2+42=(AC+1)2,∴AC=,故答案为:.【点评】本题考查了直角三角形的性质,等腰三角形的性质,勾股定理,证得AC=CE 是解题的关键.23.(4分)(2019秋•沙坪坝区校级期中)A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.【分析】观察函数图象,可知甲用9分钟到达B地,由速度=路程÷时间可求出甲的速度,结合甲、乙速度间的关系可求出乙的初始速度及乙加速后的速度,利用时间=路程÷速度可求出乙到达A地时的时间,设乙从返回到第二次相遇跑了t分钟,根据题意列方程解答即可.【解答】解:甲的速度为2700÷9=300(米/分钟),乙的初始速度为300×90%=270(米/分钟),乙到达A地时的时间为2700÷270=10(分钟),乙加速后的速度为270×(1+20%)=324(米/分钟).设乙从返回到相遇跑了t分钟,根据题意得:(300+324)t=2700﹣300×(10﹣9),解得:t=,∴他们在第二次相遇时距B地2700﹣300×()=(米),故答案为:.【点评】本题考查了一次函数的应用以及一元一次方程的应用,通过解方程求出两人第二次相遇的时间是解题的关键.五、解答题:(本大题共三小题,24题10分、25题8分,26题12分,共30分)24.(10分)(2019秋•沙坪坝区校级期中)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.【分析】(1)根据两点间距离公式构建方程即可解决问题.(2)求的最小值,相当于求点(x0,y0)到点(﹣4,4)和点(2,4)的距离和的最小值.(3)由=,推出3y=4时,这个式子有最小值,最小值为3,因为+=+=+,求出+的最小值即可解决问题.【解答】解:(1)由题意:(a+1)2+(1﹣4)2=52,解答a=3或﹣5.(2)求的最小值,相当于求点(x0,y0)到点(﹣4,4)和点(2,4)的距离和的最小值,观察图象可知最小值=6,此时﹣4≤x0≤2.(3)∵=,∴3y=4时,这个式子有最小值,最小值为3,∴+=+,求出+的最小值即可解决问题,求+,相当于求点(2x,3)到点(4,1)和点(0,0)的距离和的最小值,这个最小值==,∴原式的最小值=+3.【点评】本题考查勾股定理,非负数的性质,两点间的距离公式,最短问题等知识,解题的关键是学会用转化的思想思考问题,学会利用数形结合的思想解决问题.25.(8分)(2019秋•沙坪坝区校级期中)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.【分析】(1)只要证明△DAC≌△EAB,推出CD=EB,∠ACD=∠ABE,由∠CFD=∠AFB,推出∠CDF=∠F AB=90°,再求出CD、BD,利用勾股定理求出BC即可解决问题.(2)如图2中,延长AE交BC于J.想办法证明C=CJ,BJ=BG即可解决问题.【解答】解:(1)如图1中,∵△ABC和△ADE均为等腰直角三角形,∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,∴∠EAB=∠DAC,∴△DAC≌△EAB,∴CD=EB=,∠ACD=∠ABE,∵∠CFD=∠AFB,∴∠CDF=∠F AB=90°,∵DE=EB=CD=,∴BC===,∴AB=AC=BC=.(2)如图2中,延长AE交BC于J.∵DE=BE,DE=AE,∴AE=EB,∴∠EAB=∠EBA,∵∠DEA=45°=∠EAB+∠EBA,∵EF=BE,∠BAF=90°,∴∠EAB=∠EBA=∠EBC=22.5°,∴∠CAE=67.5°,∴∠CJA=180°﹣∠CAJ﹣∠ACJ=67.5°,∴∠CAJ=∠CJA,∴CA=CJ=CB,∵EG⊥AE,∴∠AEG=∠GEJ=90°,∴∠AGE=90°﹣22.5°=67.5°,∵∠AGE=∠EBG+∠GEB,∴∠BEG=45°=∠BEJ,∵BE=BE,∠EBJ=∠EBG,∴△EBJ≌△EBG(ASA),∴BG=BJ,∴BC=CJ+BJ=AB+BG.【点评】本题考查等腰直角三角形的性质、全等三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(12分)(2019秋•沙坪坝区校级期中)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH 的最小值及此时点N的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.。