八年级期中考试数学试题
人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是()A .1B .2C .3D .83.下面的多边形中,内角和与外角和相等的是()A .B .C .D .4.在ABC 中,若一个内角等于另外两个角的差,则()A .必有一个角等于30°B .必有一个角等于45︒C .必有一个角等于60︒D .必有一个角等于90︒5.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为()A .2a +2b -2cB .2a +2bC .2cD .06.如图,已知MB ND =,MBA NDC ∠=∠,添加下列条件仍不能判定ABM CDN ≌的是A .M N ∠=∠B .AM CN =C .AB CD =D .//AM CN7.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是()A .15°B .30°C .45°D .60°8.如图,2AB =,6BC AE ==,7CE CF ==,8BF =,则四边形ABDE 与CDF 面积的比值是()A .1B .34C .23D .129.如图所示,在ABC 中,5AB AC ==,F 是BC 边上任意一一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=()A .2B .4C .6D .810.如图,在ABC △中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;②BD DF AD +=;③CE DE ⊥;④BDE ACE S S =△△,其中正确的有()A .①②B .①③C .①②③D .①②③④11.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长是()A .13cmB .16cmC .19cmD .22cm12.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别是D ,E ,AD ,CE 交于点H .已知4EH EB ==,6AE =,则CH 的长为()A .1B .2C .35D .53二、填空题13.如图,ABC 与A B C '''V 关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45A ∠=︒,30A ∠=︒,则12∠+∠=______.15.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为19cm ,△ABD 的周长为13cm ,则AE 的长为______.16.设三角形的三个内角分别为α、β、γ,且a βγ≥≥,2αγ=,则β的最大值与最小值的和是___.三、解答题17.尺规作图,保留作图痕迹,不写作法.(1)作△ABC 中∠B 的平分线;(2)作△ABC 边BC 上的高.18.如图所示,在平面直角坐标系中,ABC △的三个顶点的坐标分别为()3,2A -,()1,3B -,()2,1C .(1)在图中作出与ABC △关于x 轴对称的111A B C △;(2)点1A 的坐标是______,ABC S =。
八年级数学试卷期中带答案

考试时间:90分钟满分:100分一、选择题(每题4分,共40分)1. 下列数中,绝对值最小的是()A. -3B. 0C. 3D. -52. 已知a=2,b=-3,则a²+b²的值为()A. 1B. 5C. 13D. 93. 如果x²-4x+4=0,那么x的值为()A. 2B. -2C. 4D. -44. 在直角坐标系中,点P(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 非等腰梯形6. 如果一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 28cmC. 30cmD. 32cm7. 已知a、b、c是三角形的三边,且a+b>c,b+c>a,a+c>b,那么下列结论正确的是()A. a=b=cB. a、b、c构成直角三角形C. a、b、c构成等腰三角形D. a、b、c构成等边三角形8. 在一次数学竞赛中,甲、乙、丙三名同学的成绩分别为90分、85分、88分,那么他们的平均成绩是()A. 87分B. 89分C. 90分D. 91分9. 一个等腰直角三角形的斜边长为5cm,那么这个三角形的面积是()A. 6.25cm²B. 12.5cm²C. 25cm²D. 10cm²10. 下列函数中,y与x成一次函数关系的是()A. y=x²+1B. y=2x-3C. y=√xD. y=x³+2二、填空题(每题5分,共50分)11. 若|a|=5,则a=______。
12. 在直角坐标系中,点A(-3,4)关于x轴的对称点是______。
13. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是______cm。
辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。
3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。
若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。
10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。
11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。
江西省赣州市章贡区2023-2024学年八年级上学期期中考试数学试卷(含解析)

2023—2024学年第一学期期中考试八年级数学试题说明:1.本试题卷共有六个大题,23个小题,满分120分,考试时间为120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题6小题,每小题3分,共18分)1. 下列体育图标是轴对称图形的是( )A. B.C. D.答案:A解析:解:A、沿一条直线折叠,直线两旁的部分能够互相重合,故此选项是轴对称图形,符合题意;B、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;C、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;D、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;故选:A.2. 下列长度的三条线段,能组成三角形的是()A. 1,6,7B. 2,5,8C. 3,4,5D. 5,5,10答案:C解析:解:A、∵,∴不能构成三角形,不符合题意;B、∵,∴不能构成三角形,不符合题意;C、∵,∴能构成三角形,符合题意;D、∵,∴不能构成三角形,不符合题意;故选C.3. 要求画的边AB上的高.下列画法中,正确的是()A. B. C.D.答案:C解析:A中AD是边BC上面的高,故不符合题意;B中不符合三角形高的作图,故不符合题意;C中CD是AB边上的高,故符合题意;D中BD是AC边上的高,故不符合题意;故选C.4. 如图,在中,是高,是中线,若,,则的长为()A. 1B.C. 2D. 4答案:C解析:解:∵,,即,∴∵是中线,即点是的中点,∴,故选:C.5. 已知.下面是“作一个角等于已知角,即作”的尺规作图痕迹.该尺规作图的依据是()A. B. C. D.答案:B解析:解:由题意可知,“作一个角等于已知角,即作”的尺规作图的依据是,故选:B.6. 如图,C为线段上一动点(不与点A,E重合),在同侧分别作正三角形和正三角形,与交于点O,与交于点P,与交于点Q,连接.以下四个结论:①;②;③;④.其中正确的结论个数是()A. 1个B. 2个C. 3个D. 4个答案:D解析:解:①∵等边和和等边,∴,∴,在和中,,∴,∴;故①正确;③∵(已证),∴,∵(已证),∴,∴,在与中,,∴,∴;故③正确;②∵,∴,∴是等边三角形,∴,∴,∴;故②正确;④∵,∴,∵等边,∴,∴,∴,∴.故④正确;综上所述,正确的结论是①②③④.故选:D.二、填空题(本大题6小题,每小题3分,共18分)7. 在平面直角坐标系中,关于x轴对称的点的坐标为______.答案:解析:解:关于x轴对称的点的坐标为,故答案为:.8. 如图,一块三角形玻璃板破裂成①,②,③三块,现需要买另一块同样大小的一块三角形玻璃,为了方便,只需带第______块碎片比较好.答案:③解析:解:由图可知,带③去可以利用“角边角”得到与原三角形全等的三角形.故答案为:③.9. 正五边形的一个外角的大小为__________度.答案:72解析:解:正五边形的一个外角的度数为:,故答案为:72.10. 将一副直角三角板如图放置,使含角的三角板的短直角边和含角的三角板的一条直角边重合,则______度.答案:75解析:解:如图,,∴(对顶角相等),故答案为:75.11. 如图,在中,,是的平分线,于点E,.则的面积为______.答案:9解析:解:如图,过点D作于点F,∵是的平分线,,,∴,∴的面积为.故答案为:912. 若,,,D为坐标平面内不和C重合的一点,且与全等,则D 点坐标为______.答案:或或解析:解:如图,∵,与全等,∴关于x轴对称的点满足条件,∵,,∴D点坐标或也满足条件,故答案为:或或.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)一个多边形的内角和是它的外角和的3倍,求这个多边形的边数.(2)如图,,点B、F、C、E在同一条直线上,若,,求的长.答案:(1)8;(2)4解析:解:(1)设它的边数为n,,解得,答:它的边数为8.解:(2)∵,∴.∴,即.∵,,∴.∴.14. 已知a、b、c为△ABC三边长,且b、c满足+=0,a为方程|a﹣3|=2 的解,求△ABC 的周长.答案:17解析:(b-5)2+=0,∴,解得,∵a为方程|a-3|=2的解,∴a=5或1,当a=1,b=5,c=7时,1+5<7,不能组成三角形,故a=1不合题意;∴a=5,∴△ABC的周长=5+5+7=17,15. 如图,已知,.求证:.答案:证明见解析.解析:证明:在和中,,.16. 在中,,的垂直平分线交于点D,交于点E.(1)求证:是等腰三角形;(2)若,的周长为,求的周长.答案:(1)见解析(2)小问1解析:解:∵的垂直平分线交于点D,∴,∴是等腰三角形;小问2解析:解:∵的垂直平分线交于点D,,∴,∵的周长为,∴,∴的周长.17. 如图,三角形ABC与三角形DEF关于直线l对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l.答案:详见解析.解析:图①中,过点A和BC,EF的交点作直线l;图②中,过BC,EF延长线的交点和AC,DF延长线的交点作直线l.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,在图中建立平面直角坐标系,使与关于y轴对称,点B的坐标为.(1)在图中画出平面直角坐标系;(2)①写出点B关于x轴的对称点的坐标;②画出关于x轴对称的图形,其中点A的对称点是,点C的对称点是.答案:(1)见解析(2)①.②见解析小问1解析:解:如图.小问2解析:解:①∵点B的坐标为∴;②如图.19. 如图,,于点E,于点F,.(1)求证:;(2)求证:.答案:(1)见解析(2)见解析小问1解析:∵,∴.即,∵,且,∴.小问2解析:∵,∴,∴.20. 如图,在.(1)求证:;(2)分别以点A,C为圆心,长为半径作弧,两弧交于点D(点D在的左侧),连接.求的面积.答案:(1)见解析(2)16小问1解析:在中,∵,∴.∵,∴.∴;小问2解析:过点D作的延长线于点E,由作图得,,∴为等边三角形,∴,∴,∴,在中,∵,,∴,∴的面积.五、解答题(本大题共2小题,每小题9分,共18分)21. 我们定义:如图1,在四边形中,如果,,对角线平分,我们称这种四边形为“分角对补四边形”.(1)特例感知:如图1,在“分角对补四边形” 中,当时,根据教材中一个重要性质直接可得,这个性质是______;(填序号)①垂线段最短:②垂直平分线的性质;③角平分线的性质;④三角形内角和定理(2)猜想论证:如图2,当为任意角时,猜想与的数量关系,并给予证明;(3)探究应用:如图3,在等腰中,,平分,求证:.答案:(1)③(2),见解析(3)见解析小问1解析:解:∵平分,,,∴,∴根据角平分线的性质定理可知,故答案为:③;小问2解析:解:,理由如下:如图2中,作交延长线于点E,于点F,∵平分,,,∴,∵,,∴,∵,∴,∴;小问3解析:证明:如图3,在上截取,连接,∵,,∴,∵平分,∴,∵,∴,即,由(2)结论得,∵,∴,∴,∴,∴.22. 如图,是经过顶点C的一条直线,,E,F分别是直线上两点,且.(1)若直线经过的内部,且E,F在射线CD上.①如图1,若,证明②如图2,若,请添加一个关于α与关系的条件,使①中的结论仍然成立,并说明理由.(2)如图3,若直线经过的外部,,请提出关于,三条线段数量关系的合理猜想,并简述理由.答案:(1)①见解析;②时,①中的结论仍然成立,理由见解析(2),理由见解析小问1解析:①∵,∴,∴,在和中,∴,∴;②时,①中的结论仍然成立,理由如下:,∴,∴,在和中∴,∴;小问2解析:解:,证明:∵,∴,∴,在和中,∴,∴,∵,∴.六、解答题(本大题共12分)23. 课本再现:我们知道:三角形三个内角的和等于,利用它我们可以推出结论:三角形的外角等于与它不相邻的两个内角的和.定理证明:(1)为证明此定理,小红同学画好了图形(如图1),写好了“已知”和“求证”,请你完成证明过程经,已知:如图1,是的一个外角.求证:.知识应用:(2)如图2,在中,,点D在BC边上,交AC于点F,,求的度数.(3)如图3,直线与直线相交于点O,夹角为锐角,点B在直线上且在点O右侧,点C在直线上且在直线上方,点A在直线上且在点O左侧运动,点E在射线CO上运动(不与点C、O重合).当时,平分,平分交直线于点G,求的度数.答案:(1)见解析;(2);(3)或解析:解:定理证明:(1)如图1中,∵,,∴.知识应用:(2)如图2中,∵,∴,∵,∴;(3)①当点E在点O的上方时,如图3-1:∵,∴,∵平分,平分,∴,,由三角形外角的性质可得:,,∴,∴,即.②当点E在点O的下方时,如图3-2:由题意知,,,,,,综上所述,或.。
上海市闵行区2024—-2025学年上学期八年级期中数学试题(无答案)

2024学年第一学期期中考试八年级数学试卷(考试时间:90分钟满分100分)题号一二三(19-22)四(23-24)五(25)总分分值1824321610100得分一、选择题:(本大题共6题,每题3分,满分18分)1)ABCD2的一个有理化因式是( )AB .CD3.下列等式正确的是( )A .BCD4.方程的根是()A .,B.,C .,D .,5.下列说法正确的是()A .等腰三角形两腰上的中线一定相等B .方程一定无实数根(a 为任意实数)C .在同一平面内垂直于同一条直线的两条直线可能有交点D .两边及一个角对应相等的两个三角形一定全等6.在平面直角坐标系中,,,,点D 是平面直角坐标系内任意一点,若以A 、B 、D 为顶点的三角形与全等(点D 与点C 不重合),那么符合要求的点D 的个数有( )A .2个B .3个C .4个D .5个二、填空题:(本大题共12题,每题2分,满分24分)7有意义的实数x 的取值范围是____________.8____________.1+1-+=132=3.14π=-÷+=-(2)(3)6x x -+=12x =23x =-12x =-23x =14x =-23x =14x =23x =-2x a =-(0,4)A (3,0)B (0,2)C -ACB △)0x >=9中是最简二次根式的有____________个.10.方程的根是____________.11.已知关于x 的一元二次方程有两个相等的实数根,那么m 的值为____________.12的解集是____________.13.在实数范围内分解因式:____________.14.已知一个一元二次方程有一个根是1,且它的一次项系数是,写出一个符合要求的方程:____________.15.已知当时,二次三项式的值是5,那么当时,这个二次三项式的值是____________.16.2024年10月1日,某高速路检票口车流量约500万辆次,10月2日该高速路检票口的车流量减少.假设从3日、4日车流量有所增加且增长率相同,预计10月4日该高速路检票口车流量达到648万辆次,设10月3日、4日车流量的增长率为x ,那么可列方程为____________.17.定义一种运算,对于任意角和,,已知,的值是____________.18.如图,在四边形中,联结、.已知,,,的面积是____________.三、简答题:(本大题共4题,满分32分)19.(本题满分10分,其中每小题各5分)(1)计算:(2)计算:20.(本题满分10分,其中每小题各5分)(1)解方程:;(2)用配方法解方程:.21.(本题满分6分)212x x =-230x x m -+-=12x ->23x x --=3-2x =22x x a -+2x =-10%αβtan tan tan()1tan tan αβαβαβ++=-⋅tan 451︒=tan 60︒=tan105tan15︒⋅︒ABCD AC BD DBC DBA DAC ∠=∠=∠90BCA ∠=︒6AC =AB CB =+ADC △-+÷22(29)(6)x x -=-22410x x +-=已知:,求代数式的值.22.(本题满分6分)已知m 、n 为实数,且,求的值.四、解答题:(本大题共2题,满分16分)23.(本题共2小题,其中第(1)小题4分,第(2)小题4分,满分8分)如图,在中,点D 是边的中点,联结,且.E 是边上任意一点(不与点A 、C 重合),过点B 作,点F 落在的延长线上.(1)求证:;(2)联结,当时,求证:.24.(本题共2小题,其中第(1)小题3分,第(2)小题5分,满分8分)如图,()是一张周长为36厘米的长方形纸片,设长方形纸片的长为x 厘米,将纸片的四个角各剪下一个边长为2厘米的正方形.(1)如果剪去四个角剩下的纸片的面积为,请用含有x 的式子表示(结果要求化简);(2)如图,沿虚线将剪去四个角剩下的纸片折成一个无盖的长方体纸盒,如果所得的长方体纸盒的体积是48立方厘米,求的长.五、综合题;(本大题共1题,满分10分)25.(本题满分10分,第(1)小题3分,第(2)小题4分,第(3)小题3分)如图,在中,已知,,点A 在上,,,a =b =a ab b ++2222()(2)15m n m n ++-=22m n +ABC △AB CD AD CD =AC //BF AC ED AC BC ⊥CF 90CDE ∠=︒BF CF AC +=ABCD AD AB >AD 1S 1S AD ABC △90BAC ∠=︒AB AC =DE 90BDA ∠=︒90AEC ∠=︒点H 是边上的一个动点.(1)求证:;(2)如图①,当点H 是边的中点时,联结、,求的度数;(3)如图②,联结、,当,且时,设,请用含x 的代数式表示的度数.图①图②BC AD CE =BC DH HE HDE ∠AH HE AH HE ⊥CH CE =ABD x ∠=︒BAH ∠。
八年级数学期中考试试卷

一、选择题(每题4分,共20分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -√32. 已知a,b是实数,且a+b=0,那么a和b的关系是()A. a=bB. a=-bC. a和b不相等D. a和b相等或互为相反数3. 在下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²4. 如果等腰三角形的底边长为4cm,腰长为6cm,那么这个三角形的周长是()A. 10cmB. 12cmC. 16cmD. 20cm5. 下列函数中,图象为一条直线的是()A. y = 2x + 3B. y = x² - 1C. y = 3/xD. y = 2√x二、填空题(每题5分,共25分)6. 已知一个数的平方是25,那么这个数是______或______。
7. 如果|a| = 5,那么a的取值范围是______。
8. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的度数是______。
9. 已知等边三角形的边长为a,那么它的周长是______。
10. 函数y = 2x - 3的图象是一条直线,且斜率为______。
三、解答题(共55分)11. (10分)计算下列各式的值:(1)(-3)² - 2×(-3)×2 + 2²(2)√(49 - 14√3)12. (10分)解下列方程:(1)2x - 3 = 7(2)3(x + 2) - 2x = 513. (10分)已知等腰三角形ABC的底边AB=6cm,腰AC=8cm,求这个三角形的面积。
四川省成都市七中育才学校2024-2025学年八年级上学期11月期中考试数学试题

四川省成都市七中育才学校2024-2025学年八年级上学期11月期中考试数学试题一、单选题1.16的平方根是()A .4B .4±C .2D .2±2.下列数中,2.134,0,117-,π无理数的个数是()A .1个B .2个C .3个D .4个3.下列各组数据中的三个数作为三角形的边长,能构成直角三角形的是()A .2,3,4B .6,8,10C .9,12,13D .8,24,254.下列计算正确的是()A B .2-=C 4=D 4=5.下列二次根式中,属于最简二次根式的是()A BC D 6.点()3,2A m -在第二象限的角平分线上,则m 的值为()A .5B .5-C .1D .1-7.下列说法中正确的是()A .点()2,3P -在第四象限B .两个无理数的和还是无理数C .8-没有立方根D .平方根等于本身的数是0或18.在第三象限内,点(),P m n 到x 轴距离为5,到y 轴的距离为2,则点P 坐标为()A .()5,2B .()2,5C .()2,5--D .()5,2--二、填空题9.若()23232a a x y --+=是关于x ,y 的二元一次方程,则a =.10.满足1<<x 的整数x 是.11.如图所示的是一个圆柱,底面圆的周长是12cm ,高是5cm ,现在要从圆柱上点A 沿表面把一条彩带绕到点B ,则彩带最短需要cm .12.已知点A 坐标()2,3-,在点A 左侧有一点B 坐标(),3m ,若4AB =,则m =.13.如图,在Rt ABC △中,90BAC ∠=︒,按以下步骤作图:①分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连接AD .若16AB =,10AD =,则AC 的长为.三、解答题14.(1)计算:()12202412--+--.(2)解方程组231045x y x y +=⎧⎨+=⎩15.已知21a +的算术平方根是24=,c 3的整数部分.(1)求a ,b ,c 的值.(2)求42a b c +-的立方根.16.在正方形网格中,每个小正方形的边长为1,如图所示建立平面直角坐标系,在ABC V 中,点()4,5A -,()1,3B -,()3,1C -.(1)若点H 与点A 关于x 轴对称,则点H 的坐标是______;(2)作出ABC V 关于y 轴对称的图形DEF ;(点A 对应点为点D ,点B 对应点为点E ,点C 对应点为点F )(3)连接BD ,BF ,求BDF V 的面积.17.四川的人民渠(利民渠、幸福渠、官渠堰)是都江堰扩灌工程之一,也是四川省建成的第一座大型水利工程,有“巴蜀新春第一渠”之称.现为扩建开挖某段干渠,如图,欲从干渠某处A 向C 地、D 地、B 地分流(点C ,D ,B 位于同一条直线上),修三条笔直的支渠AC ,AD ,AB ,且AC BC ⊥;再从D 地修了一条笔直的水渠DH 与支渠AB 在点H 处连接,且水渠DH 和支渠AB 互相垂直,已知6km AC =,10km AB =,5km BD =.(1)求支渠AD 的长度.(结果保留根号)(2)若修水渠DH 每千米的费用是0.7万元,那么修完水渠DH 需要多少万元?18.如图1,平面直角坐标系中有矩形OABC ,点A 坐标为()0,a ,点C 坐标为(),0c ,点D 在OC 边上,13OD =,点P 在OA 边上,将矩形OABC 沿直线PD 翻折,点O 落在AB 边上的点E 处.若实数a ,c 满足120a -=.(1)点B 的坐标为______,点E 的坐标为______;(2)如图2,若点M 从点D 出发以每秒2个单位的速度沿折线D C B E →→→的方向匀速运动,当M 与点E 重合时运动停止;设点M 的运动时间为t 秒,以点D 、E 、M 为顶点的三角形的面积记为S ,请用含t 的式子表示S ;(3)在(2)的条件下,当DEM △为等腰三角形时,请直接写出点M 的坐标.四、填空题19.已知8b =+,则a b -为.20.若方程组31331x y a x y a +=+⎧⎨+=-⎩的解满足1x y +=,则a 的值为.21.如图,在ABC V 中,CD AB ⊥于点D ,E 在AD 上,连接CE ,AE CE =.若6AD =,5BC =,3BD =,则DE 长为.22.学习了平面直角坐标系后,初二(1)班的同学组成了数学课外小组,为学校的一块空地设计植树方案如下:第k 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2k ≥时,1111255k k k k x x k k y y --=+⎧⎪--⎨⎡⎤⎡⎤=+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎩,其中[]a 表示非负实数a 的整数部分,例如:[]2.62=,[]0.50=.按此方案,第6棵树种植点6P 为;第2024棵树种植点2024P 为.23.如图,在ABC V 中,45ABC ∠=︒,75BAC ∠=︒,2AC =,点E 与点D 分别在射线BC 与射线AD 上,且AD BE =,则AE BD +的最小值为,AE ED +的最小值为.五、解答题24.如图,正方形ABCD 中,2AB =,数轴上点A 表示的数为3,以点A 为圆心,AC 为半径作圆,与数轴相交于点E 和F ,点E 表示的数记为x ,点F 表示的数记为y ;(1)x =______,y =______;(2)化简求值:223x xy y ++;(3)若1a x=,求265a a -+的值.25.给出如下定义:在平面直角坐标系xOy 中,已知平面内一定点(),A a b ,若对于一点(),P c d ,有点T 与点(),P c a d '+关于点A 对称,即A 为线段P T '的中点,则称点T 为点P 关于点A 的完美对称点.例如:若已知定点()1,0A ,则对于点()1,1P ,有()2,1P ',因为点P '与点T 关于点A 对称,则可得P 关于A 的完美对称点()0,1T -.(1)若定点()1,0A ,点()4,0P -,则P 关于点A 的完美对称点T 的坐标为______;(2)在(1)的条件下,若点()1,3C ,在直线CT 上有一点M 使得12TOM TOC S S =△△,求点M 的坐标;(3)已知定点(),0A m ,对任意的点(),1P n n +关于定点A 的完美对称点为T .①T 的坐标为______,②连接PT ,若PT 的最小值为m 的值为______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级期中考试数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 以下列各组线段的长为边,能组成三角形的是()
A.1cm、2cm、3cm B.1dm、5cm、6cm C.1dm、3cm、3cm D.2cm、4cm、7cm
2 . 下列轴对称图形中,对称轴条数最少的是()
A.等边三角形B.正方形C.正六边形D.圆
3 . 如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD 的度数是()
A.64°B.62°C.58°D.52°
4 . 如图,在中,,AD是的外角的平分线,,则()
D.
A.
B.C.
5 . 在下列各图的△ABC中,正确画出AC边上的高的图形是()
A.B.
C.D.
6 . 一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()
A.7B.8C.6D.5
7 . 如图,矩形的四个顶点分别在菱形的四条边上,,将分别沿折叠,当重叠部分为菱形且面积是菱形面积的时,则为()
A.
B.2
C.
D.4 8 . 下列图案中是轴对称图形的有()
A.1个B.2个C.3个D.4个
9 . 如图,中分别平分则的度数为()
A.B.C.D.
10 . 如图,已知直线AB∥CD,∠C=115º,∠A=45º,那么∠E的度数为()
A.70ºB.80ºC.90ºD.100º
二、填空题
11 . 如图,∠C=∠D=90º,添加一个条件:______________ (写出一个条件即可),可使Rt△ABC 与Rt△ABD
全等.
12 . 在Rt△ABC中,∠C=90°,∠A=30°,BC=2,则AC=_______ .
13 . 如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.
14 . 如图,长方形ABCD中,AB=6,BC=2,直线l是长方形ABCD的一条对称轴,且分别与AD,BC交于点E,F,若直线l上的动点P,使得△PAB和△PBC均为等腰三角形.则动点P的个数有_______个.
15 . △ABC中,∠C=90°,∠A∶∠B=1∶2,则∠A=___度.
16 . 等边三角形的边长为2,则它的高是_____,面积是_____.
三、解答题
17 . 在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点
A.
(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;
(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;
(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.
18 . 如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.
(1)求证:△ABF≌△EDA;
(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.
19 . 在图1到图3中,点是正方形对角线中点,为直角三角形,,正方形保持不动,沿射线向右平移,平移过程中点始终在射线上,且保持垂直于直线
点,垂直于直线于点.
(1)如图1,当点与点重合时,与的数量关系为______;
(2)如图2,当在线段上时,猜想与有怎样的数量关系与位置关系?并对你的猜想结果给予证明;
(3)如图3,当点在延长线上时,与的数量关系为______;位置关系为_________.
20 . 作图题:
(1)为进一步打造“宜居北京”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉到广场的两个入口,的距离相等,且到广场管理处的距离等于和之间距离的一半,,,的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)
(2)如图,两条公路和相交于点,在的内部有工厂和,现要修建一个货站,使货站到两条公路,的距离相等,且到两工厂,的距离相等,用尺规作出货站的位
置.(要求:不写作法,保留作图痕迹,必须用铅笔作图)
21 . 如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).
(1)请画出△ABC关于直线l对称的△A1B1C1;
(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.
22 . 如图,矩形中,,,为上一点,将沿翻折至,与
相交于点,与相交于点,且.
(1)求证:;
(2)求的长度.。