射频电路设计技术第六章资料
无线电技术中的射频电路设计技术

无线电技术中的射频电路设计技术在无线电通信领域中,射频电路设计是至关重要的一环,因为射频电路设计直接决定了无线电信号的质量和传输距离。
因此,研究和掌握射频电路设计技术,对于无线电技术的发展和应用具有重要意义。
射频电路设计技术是一种纵向整合的技术,它涉及到无线电通信的多个领域,包括:无线电频率、信噪比、电路参数和电压等。
在射频电路设计中需要考虑的问题是如何将信号从一个系统传输到另一个系统,而无损地传输这些信号并提供高品质的信号传输特性。
下面将从射频电路设计的基础知识、射频电路设计的流程、射频电路设计的工具以及射频电路设计中具体的技术应用进行讲述。
一、射频电路设计的基础知识1.无线电频率射频电路设计中最基本的知识点就是无线电频率。
在无线电通信中,无线电信号需要在一个特定的频率范围内传输,而这个频率范围就是无线电频率范围。
因此,在射频电路设计中需要考虑在何种频率范围内传输无线电信号。
2.电路参数电路参数在射频电路设计中非常重要,因为不同的电路参数对射频电路的传输特性有所不同。
在射频电路设计中,需要对电路参数进行合理的选择和优化,以便实现所需要的传输特性。
3.信噪比信噪比是射频电路设计的另一个重要的概念,它用于描述信号质量和噪声水平之间的关系。
在射频电路设计中,需要考虑如何优化信噪比以提高信号传输的质量。
4.功率放大器在射频电路设计中,功率放大器是一个非常重要的部件,因为它能够增加信号的功率,使得信号能够在更远的距离传输。
在射频电路设计中,需要考虑如何选择和设计功率放大器以获得所需的信号传输特性。
二、射频电路设计的流程射频电路设计的流程往往包含以下四个步骤:1.需求分析需求分析是射频电路设计的第一步,它主要涉及到了解客户要求和目标,将其转化为技术规格书,以便于项目进一步开展。
2.电路设计电路设计是射频电路设计的核心步骤。
在电路设计中,需要考虑信号传输的频率范围、信号功率、信噪比等因素,从而选择合适的电路结构和元件,设计电路并进行分析和仿真。
(完整版)射频电路设计

目录
1、 引言 2、 传输线分析 3、 Smith圆图 4、 单端口网络和多端口网络 5、 射频滤波器设计 6、 有源射频元件 7、 有源射频电路器件模型 8、 匹配网络和偏置网络 9、 射频晶体管放大器设计 10、振荡器和混频器
4
第1章 引 言
回顾由低频到高频电路的演变过程,并从物理的角度引出 和揭示采用新技术去设计、优化此类电路的必要性。
在多数情况下导体的μr=1, 故趋肤厚度随着频率的升高迅速 降低。
2a 高电流密度 低电流密度
电流方向
Jz /Jz0
-a
ar
Jz /Jz0
δ,mm
1
0.9 0.8 0.7
σCu=64.516×106S/m Al σAl=40.0×106S/m
0.6 0.5
AuσAu=48.544×106S/m
0.4
线圈半径:r = 50mil=1.27mm(1英寸=1000㏕) 20
线圈长度:l =50mil=1.27mm 邻匝线距:d= l /N≈3.6×10-4m
105
实际电感
104
理想电感
Z ,Ω
根据空气芯螺旋管电感公式: 103
L r 20N 2 61.4nH
102
l
由1.14式,平板间距等于匝距,
• 在第5章“滤波器设计”中研究特定的阻抗对频率响应的一般 开发策略,简述以分立元件和分布元件为基础的滤波器理论。
• 第8章将深入研究“匹配网络和偏置网络”的实现。 • 第9章介绍“射频晶体管放大器设计”中有关增益、线性度、
噪声和稳定度等指标。 • 第10章讨论“振荡器和混频器”设计的基本原理。
9
1.2 量纲和单位
0.23~1GHz 130~30cm
射频电路理论与技术-Lectrue 6(定向耦合器等)

Z0
Z1
ZL
图2.50 单节四分之一匹配变换器。
4
南京理工大学通信工程系
向匹配端看去的输入阻抗是
Z in Z1 Z L jZ1t Z1 jZ L t
l
(2.76)
Z0
Z1
ZL
式中,t tan l tan 在设计频率f0处, l 2 于是反射系数为
Z in Z 0 Z1 Z L Z 0 jt Z12 Z 0 Z L Z in Z 0 Z1 Z L Z 0 jt Z12 Z 0 Z L
所以,在 =m 处,带宽低端的频率是
fm
由式(2.82)可得到相对带宽为
2 m f 0
2f 4 f 2 f 0 f m 2 m 2 m f0 f0 f0 2 Z0ZL m 2 arccos 2 Z Z 1 L 0 m 4
(2.83)
8
南京理工大学通信工程系
相对带宽通常表示为百分数 100f /f0 %。 注意,当ZL接近Z0时(小失配负载),变换器的带宽增加了。 上面的结果只对TEM传输线严格有效。 当用非TEM传输线(诸如波导)时,传播常数不再是频率的线性函数, 而且波阻抗也与频率有关。这些因素使得非TEM传输线的一般特性复杂 了。 在上面的分析中,忽略的另一因素是,当传输线的尺寸有阶跃变化时,与 该不连续性相联系的电抗的影响。这通常可对匹配长度做小的调整来补偿 该电抗的影响。
13
南京理工大学通信工程系
The theory of small reflections
I. Single-Section Transformer
The partial reflection and transmission coefficients are
射频电路理论与设计(第2版)-PPT-第6章

《射频电路理论与设计(第2版)》
(2)带宽。任何一个网络都只能在单一频率上实现匹
配,欲展宽带宽,电路设计要在简单性、带宽以及造 价之间有所权衡。 (3)可实现性。可实现性既要考虑生产工艺的可实现 性,又要考虑尺寸要求的可实现性。 (4)可调ຫໍສະໝຸດ 性。变化的负载需要可调整的匹配网络。
《射频电路理论与设计(第2版)》
图6.2 负载位于归一化单位电导圆内时 L形匹配的圆图图解
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
2. 负载位于1+jx圆(归一化单位电 阻圆)内
图6.4 负载位于归一化单位电阻圆
《射频电路理论与设计(第2版)》
3. 负载位于1+jx圆和1+jb圆外
图6.5 负载位于归一化单位电阻和电导圆外时 L形匹配的圆图图解
《射频电路理论与设计(第2版)》
6.1
匹配网络的目的及选择方法
集总参数元件电路的匹配网络设计
6.2
6.3
分布参数元件电路的匹配网络设计
6.4
混合参数元件电路的匹配网络设计
《射频电路理论与设计(第2版)》
6.1 匹配网络的目的及选择方法
1. 匹配网络的目的
匹配包括两个方面,一个是传输线与负载之间的 匹配;一个是信源与负载之间的共轭匹配。传输线与负 载之间的匹配,是使传输线无反射、线上载行波或尽量 接近行波的一种技术措施。
载与传输线间L形
匹配网络共有8种 组合,如图6.1所 示。 图6.1 8种负载与传输线间L形匹配网络
《射频电路理论与设计(第2版)》
双元件负载匹配网络采用图6.1中的哪种形式,取 决于归一化负载阻抗在史密斯圆图上的位置。有3种可能 性,下面分别加以讨论。
电子与计算机工程中的射频电路设计技术

电子与计算机工程中的射频电路设计技术在当今高度数字化和信息化的时代,电子与计算机工程领域中的射频电路设计技术正发挥着愈发关键的作用。
从我们日常使用的手机、无线网络,到卫星通信、雷达系统等,射频电路设计技术的身影无处不在。
它如同一个无形的纽带,将信息在空间中高效、准确地传递。
射频电路设计的首要任务是理解射频信号的特性。
射频信号具有高频、短波长的特点,这使得它们在传输过程中容易受到各种因素的影响,如衰减、反射、干扰等。
为了确保信号的质量和稳定性,设计师需要深入研究这些特性,并在设计中采取相应的措施来应对。
在射频电路设计中,元器件的选择至关重要。
例如,电容器和电感器在射频电路中的性能表现与在低频电路中截然不同。
在高频情况下,寄生参数(如寄生电容、寄生电感)会对电路性能产生显著影响。
因此,需要选择具有低寄生参数、高自谐振频率的电容器和电感器。
放大器是射频电路中的核心组件之一。
它的作用是增强信号的功率,以补偿在传输过程中的损耗。
在设计射频放大器时,不仅要考虑增益、带宽等参数,还要关注噪声系数、线性度等指标。
低噪声系数能够确保信号在放大过程中引入较少的噪声,而良好的线性度则可以保证信号在大信号输入时不会产生严重的失真。
滤波器在射频电路中用于筛选出特定频率范围内的信号,抑制不需要的频率成分。
常见的射频滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
它们的设计需要综合考虑截止频率、带宽、插入损耗、回波损耗等参数,以满足系统的性能要求。
阻抗匹配是射频电路设计中的一个重要环节。
当信号在不同的电路组件或传输线之间传输时,如果阻抗不匹配,就会导致信号反射,从而降低功率传输效率和信号质量。
通过合理的设计匹配网络,可以实现源阻抗、负载阻抗和传输线阻抗之间的匹配,减少反射,提高系统性能。
在射频电路的布局和布线方面,也有许多需要注意的地方。
由于射频信号的高频特性,微小的寄生参数都可能对电路性能产生较大影响。
因此,在布局时应尽量缩短元器件之间的连线,减小信号路径的长度;同时,要合理安排元器件的位置,避免相互之间的干扰。
《射频放大器的设计》PPT课件

k
1
S11
2
S22
2
2
1
2 S12 S21
且
S11 S22 S12 S21 1
放大器的稳定措施:
1.通常在输入、输出回路中增设阻尼电阻 (串联或并联);
2.选合适参数的放大器件; 3.选择合理的工作点; 4.正确选择组成谐振电路的L/C值关系
(串联:L高,Q高;并联:C高,Q高)。
第六章 射频放大器的设计
6.1 射频放大器的特性指标和基本构成
1. RF放大器的基本构成:
2.特性指标
(1) 增益:
• : 转换功率增益
GT负载吸收的功率 信号源共 Nhomakorabea匹配时的输入功率
(1 L 2 ) S21 2 (1 S 2 ) (1 S11S )(1 S22L ) S21 S12 L S
3.微带放大器电路形式
• 实际各线长:
L1 l1 g
L2 l2 g
L3 l3 g L4 l4 g
另外,其它匹配形式:S11(或S22)先消去对应阻抗的虚部,
再将剩下的实部经
线转换成Z0值。
g
4
4.偏置注入网络:
(1)若微带线匹配网络应用短路短截线,则可以直 接将直流偏置从短路线的交流短路点注入。
感谢下 载
(2)若微带线匹配网络中不应用短路短截线, 则直流偏置必须经过 短路线注入。
g
4
6.3宽带RF放大器
• 1.频率补偿匹配:
• 原理:在放大器的输入或输出端口引入适当的 失配,用于补偿S参数的频率特性。
• 方法:
•
(1)输入端选频匹配,并且匹配网络的Q
值较小,带相对较宽;同时,输出端口采用纯电
射频电路设计6

| o u t | |
S 22 S D 1 S 11 S
| | S 2 2
S 12 S 21 S 1 S11 S
| 1
|ΓL|<1 |ΓS|<1
绝对稳定条件1
若|S11|<1和|S22|<1,绝对稳定条件可表述为: 1)稳定性判定圆必须完全落在单位圆|ГS|=1和|ГL|=1之外。如下图所示。
小信号放大器设计
小信号放大器的等效电路
一个典型的小信号放大器的等效电路如下图所示。用VS及ZS表示信号源,散 射参量为S的二端口网络表示微波晶体管,ZL为负载。 ГS ГL b1’ a1 b2 a2’ ZS Pinc PL [S] ZL VS ~ a1’ b1 a2 b2’ Гin Гout 为了更好分析功率关系,一般用信号波源bS及源反射系数ГS来表示信号源,它 们与VS及ZS的关系为:
先考察晶体管的输出端口,将相关参量写为复数形式
S 11 S 11 jS 11 , S 22 S 22 jR 22 , D D
R I R I R
jD , L L j L
I R
I
使|Γin|=1的输出端口参数ΓL的取值可由
in
S11 L D 1 S 22 L
放大器输入端口功率关系
放大器输入端口的入射功率Pinc为:
Pinc=
a1 2
2
=
b1
'
2
2
b1’
ГS
a1 [S] b1 b2
ГL PL
a2
a2’ ZL Гout b 2’
因为b1’=bS+ГSa1’, a1’=Гin b1’, 所以上式可写为: 2 Pinc=
1 2
全国苏科版初中信息技术九年级全册第六单元第1节1《射频》教学设计

学生的素质层次对课程学习也有影响。九年级学生需要增强信息社会责任意识,认识到射频技术对社会发展和个人生活的影响。因此,教师需要通过案例分析和实际应用等方式,帮助学生增强信息社会责任意识,提高学习效果。
2. 点评作业:教师对学生的作业进行点评,及时反馈学生的学习效果。点评时,教师应给予学生鼓励和肯定,同时指出学生的不足之处,给出改进的建议。教师可以针对学生的作业,提出以下点评内容:
- 作业完成质量:检查学生是否正确理解和掌握了射频技术的基本概念、原理和应用,作业中的表述是否清晰、准确。
- 答题准确率:检查学生是否能够准确回答课后作业中的问题,答案是否符合题意。
- 视频资源:观看《射频技术入门》教学视频,掌握射频技术的基本概念和原理。
- 案例分析:研究射频技术在无线通信、广播、雷达等领域的应用案例,了解射频技术在实际生活中的应用。
- 实践操作:尝试制作简单的射频电路,如射频振荡器、射频接收器等,亲身体验射频技术的实际应用。
2. 拓展要求:
- 鼓励学生利用课后时间进行自主学习和拓展,加深对射频技术原理和应用的理解。
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的射频基本概念、原理和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 噪声与 非线性失真
• 评价一个射频系统性能的优劣时,有两 个很重要的指标: (1)噪声系数 (2)非线性失真 当一个系统处于小信号工作时,其许多 性能指标都与噪声有关;当信号增大时, 二极管和晶体管都存在非线性失真。
6.1 噪 声 系 数
• 噪声系数定义为输入信噪功率比(SNR)i Si / Ni 与输出信噪功率比 (SNR)o So / No 的比值:
6.4 交 调 失 真
• 在由各种有源器件构成的线性放大器中, 由于有源器件的特性是非线性的,在放 大过程中总会产生各种各样的失真。 • 讨论有源器件非线性特性对线性放大器 的影响,可分为两种不同的情况: 一是电路输入端只有一个有用信号输入 时; 二是输入端除有用信号外,还输入一个 或多个信号的情况。
• 这些组合频率分量形成对有用信号的干 扰。这些干扰并不是由两输入信号的谐 波产生,而是由这两个输入信号的相互 调制(相乘)引起的,所以称为互相调 制失真,又称为互调失真。
• 可在下面两个指标中选一个来衡量放大 器的互调失真程度: (1)互调失真比 (2)三阶互调截点
• 5.三阶互调截点 若忽略增益压缩,则基波分量幅度为 , a1V 互调失真比 IMR定义为在输入信号幅度 为V时,三阶互调分量的幅度与基波幅 3 度之比: a3V 3
• 6.估计IIP3的几种方法 (1)求IIP3的一种方法是通过瞬态模拟, 使两个幅值相等频率近似相同的正弦输 入信号驱动该放大器。当输入幅值改变 时计算交调,并比较输出频谱中的三次 相互调制乘积项及基波项。 (2)采用功率级数两个系数的比可计算 出三阶交调的简单表达式,并且可推导 出另一种适合于手工计算的方法。
P
• 则无杂散动态范围定义为:
DRf Pin, max Pin, min
• 由系统的基底噪声 Ft 和所要求的输出信 噪比(SNR)o, min可以求解出灵敏度,由系统 的三阶互调失真IIP3和基底噪声 Ft 可以 求解出 Pin, max。 • 用分贝形式表示动态范围:
1 DRf (dB) 2IIP3 (dBm) Ft (dBm) Ft (dBm) (SNR)o,min (dB) 3
6.2 噪 声 温 度
• 用等效噪声温度来描述系统噪声的实际 内涵是把系统内部噪声看做信号源内阻 在温度To所产生的热噪声功率,同时可 以把由天线引入的外部噪声也看做是由 信号源内阻处于另一温度Ti所产生的热 噪声功率,从而外部和内部噪声功率的 叠加也是等效温度相加。
6.2.1 噪声温度与 噪声系数的关系
• 可推导出噪声系数的计算式如下:
kT0 BG Pt Pt F 1 kT0 BG kT0 BG
Pt k ( F 1)T0 BG kTe BG
6.3 级联器件的噪声系数
• 射频信号经过滤波器、低噪声放大器、 混频器及中频放大器等单元模块的传输, 由于每个单元都有固有噪声,因而经传 输后都将使输入信噪比变差。 • 在更多级级联系统中,可以推导出总的 等效噪声温度和噪声系数分别是:
• 2.堵塞 如果电路输入的有用信号为弱信号,而 另一个是强干扰信号,则输出的有用信 号的基波电流分量为:
3 i a1V1 a3V1V22 (1 m cos t ) 2 cos 1t 2
当V1远大于V2时,由于a3小于零,因而 随着干扰信号的增大将导致跨导变小, 从而使输出信号电流变小,甚至趋于零, 这就称为堵塞。
增量增益的表达式: g (0) C1
g (V) C1 2C2V 3C3V 2
g (V) C1 2C2V 3C3V 将这最后三个系数代入求解IIP3的公式, 就可得到所希望的用三个增量增益表示 的IIP3的表达式:
2
4v g (0) IIP3 RS g (v) g (v) 2 g (0)
V1dB a1 0.145 a3
3 2 20lg a1 a3V1dB 20lg a1 1 dB 4
ቤተ መጻሕፍቲ ባይዱ
可见V1dB与器件类型和放大器工作点有关系。
6.4.2 输入端有两个以上 的信号
• 1.交调失真 设输入两个信号: vi (t ) V1 cos 1t V2 cos 2t 因此,除了产生谐波m1 和n 2 的分量之 外,还会产生很多组合频率 m1 n2 的 分量(m和n为含零的正整数),这就是 交调失真。
IMR 4 a1V
2
3 a3 2 V 4 a1
也可以表示为功率之比:
PIMR 13 3 a V 3 2 4 (IMR)2 1 (a1V ) 2 2
• 更常用“三阶截点IIP3”来说明三阶互调 失真的程度。三阶互调截点IIP3定义为 三阶互调功率与基波功率相等的点,此 点所对应的输入功率表示为IIP3,对输 出功率表示为OIP3(一般在放大器中常 用OIP3作参考,在混频器中常用IIP3 作参考)。
6.4.1 输入端仅有一个 有用信号
• 1.谐波分量 输入为有用余弦波信号: vi (t ) V cos i t
则输出电流为:
io (t ) a1V cos i t a2V 2 cos 2 i t a3V 3 cos3 i t
2 a2V 2 a V 3 3 3 2 a1V a3V cos i t cos 2i t a3V 3 cos3i t 2 4 2 4
3 2 2 i a1V1 a3V1V2 (1 m cos t ) cos 1t 2
• 4.互相调制 当两个频率十分接近的信号输入放大器 时,能落在放大器频带内的频率分量除 了基波之外,还可能有组合频率 22 1 和 21 2 ,这是因为它们比较靠近基波 分量所造成的。
3 3 3 io (t ) a1V V cos i t a1 a3V 2 vi (t ) 4 4
增益压缩定义及含义 如下图所示:
1 dB压缩点的计算
• 也可以通过计算来确定1 dB压缩点的输 入信号值 V1dB 。根据1 dB压缩点的定义, 可以写出下式: • 通过上式变换可以得到:
Te2 Te3 Te Te1 G1 G2
F2 1 F3 1 F F1 G1 G2
• 由以上分析,可知前面几级的噪声系数 对系统的影响较大。
• 为了降低级联系统的噪声系数,必须降 低第一、二级的噪声系数,并适当提高 其功率增益,以降低后面各级的噪声对 于系统的影响。 • 如果第一级没有增益,反而有损耗,对 降低系统的噪声系数不利,比如,在接 收机的天线和第一级低噪声放大器之间 接一无源有耗滤波器。
6.5 动 态 范 围
• 接收机(特别是移动的接收机)所接收 到的信号强弱是不固定的,通信系统的 有效性取决于它的动态范围,即高性能 的工作所能承受的信号变化范围。 • 动态范围的下限是灵敏度,它受到基波 噪声的限制。
• 动态范围的上限由最大可接收的信号失 真决定。
• 线性动态范围(linear dynamic range) 定义为:产生1 dB压缩点的输入信号电 平与灵敏度(或基底噪声)之比。 • 无杂散动态范围(Spurious-Free Dynamic Range,SFDR)既下限输入信 号为灵敏度 Pin, min (或下限为基底噪声F), t 输入信号的上限Pin, max规定为:此输入信号 在输出端引起的三阶互调失真分量(Po3) 折合到输入端,恰好等于基底噪声 Po3 G (既 Ft G , P 是功率增益)。
• 等效噪声温度和噪声系数是用两种不同 的方法来描述同一个系统的内部噪声特 性。两者之间关系式如下表示:
Te ( F 1)T0
• 对于一个无噪系统,由于F=1,即噪声系 数为0 dB,它的等效噪声温度也为零。
6.2.2 噪声温度的测试
• 等效噪声温度特别适用于描述那些噪声 系数接近于1的部件,因为等效噪声温度 对于这些部件的噪声性能提供了比较高 的分辨率。 • 噪声温度的测试电路如下图所示:
• 尽管输入是单一频率 i 的信号,通过非 线性器件,输出电流中不仅含有基波频 率 i 的分量,而且还出现了平均分量和 频率为N ( i N为正整数)的各次谐波分 量。 • 射频放大器一般都是频带放大器,这些 谐波由于离基波较远,一般都可以滤除, 因此谐波对放大器的影响不是很大。
• 2.增益压缩 当信号大到器件的高次项不能忽略时, 若只考虑到三次项,则基波信号电流为:
( SNR )i Si / N i F ( SNR )o So / N o
• 噪声系数用分贝表示如下:
NF 10lg F (dB)
• 可见,噪声系数表示信号通过系统后, 系统内部噪声引起信噪比恶化的程度。 有以下特性: (1)如果系统是无噪的,不管系统的增益 多大,输入的信号和噪声都同样被放大 相同倍数,而没有添加任何其他噪声, 因此输入、输出的信噪比相等,相应的 噪声系数为1。 (2)有噪系统的噪声系数均大于1,是因 为系统内部噪声增大了输出噪声,使得 输出信噪比减小。
2
• 7.多级级联的情况 两级放大器中三阶互调截点输入功率与各 级的关系是:
A12 1 1 1 IIP3 (IIP3 ) (IIP3 )2
对于三级或更多级,可以写出更为一般的 形式:
A12 ( A1 A2 )2 1 1 1 2 3 IIP3 (IIP3 ) (IIP3 ) (IIP3 )
• 3.交叉调制 如果放大器的输入端有较强的干扰信号 和相对较弱的有用信号,且干扰信号是 振幅调制信号,如:
v2 V2 (1 m cos t )cos 2t
分析求得输出有用信号的基波电流分量为: 表明干扰信号的幅度调制信息转移到了 有用信号的幅度上,如果有用信号也是 幅度调制信号,则通过幅度解调后将会 得到干扰信号,这就是交叉调制失真。
噪声温度的计算
• 通过以上测试平台可计算出噪声温度: