开关调节器设计中的频率补偿(二)

合集下载

CPU电源电路设计系列6:DC-DCBuck变换器电压(精)

CPU电源电路设计系列6:DC-DCBuck变换器电压(精)

CPU电源电路设计系列6:DC-DC Buck变换器电压环补偿网络设计作者:郭奉凯陈嘉凯电源技术属于电力电子技术的范畴,是集电力变换、现代电子、自动控制等多学科于一体的边缘交叉技术,现今已广泛应用到工业、能源、交通、信息、航空、国防、教育、文化等领域。

电源技术的发展实际上是围绕着提高效率、提高性能、小型轻量化、安全可靠、消除电力公害、减少电磁干扰和电噪声的轨迹进行不懈研究,开关电源是整个电源技术中至关重要的部分,其中的PWM电源调整器的反馈补偿网络,是开关电源的重要研究课题,本文将针对PWM DC-DC Buck变换器电压环补偿网络设计做出了研究和应用举例。

一变换器模块介绍开关变换电路同步整流Buck变换器电压调节是一个单环系统,由三个基本模块组成:包括功率开关调节器,低通滤波网络和相位补偿网络。

补偿网络由电压采样电路,误差放大器,补偿电路元件组成。

它的物理过程描述为:当控制电路输出一个高电平后,功率开关管导通,主电路向输出电路提供能量;反之功率开关断开,停止向输入电源汲取能量。

图1 Buck调节器的三个基本模块为设置系统的增益和带宽,要写出系统的开环传递函数,根据电路功能,我们划分出3块,如图1,第一块包括PWM比较器到控制MOSFET输出,第二块是LC低通滤波器,根据输出电压,电流规范选定元器件之后,被动元件引起的相位滞后已经形成,第三块是根据以上两部分的传递函数,设计补偿电路,改变系统的增益和带宽,使系统有理想的相位裕度和带宽,达到系统稳定的要求。

二系统传递函数下面分别介绍三部分传递函数1.PWM比较器的工作过程,比较器的负相端接时钟电路发出的三角波或锯齿波信号www.powersystems.eetchina .com(R u t ,正相端为误差放大器发出的误差信号(c u t ,两个信号比较产生有占空比变化的PWM 波(d t ,由MOSFET的驱动向下一级推动 MOSFET 的导通和关断。

基于TOP222Y的单片开关电源的设计

基于TOP222Y的单片开关电源的设计

采用PWM控制器和MOSFET功率开关一体化的集成控制芯片是新一代开关电源设计的重要特点和趋势。

本文介绍了三端PWM/MOSFET二合一集成控制器件TOPSwitch 系列的工作原理及其在开关电源设计中的应用,同时也介绍了与TOPSwitch相匹配的高频功率变压器的设计。

其中, PWM控制器和变压器的设计是开关电源设计的关键。

在研究了单片开关电源的工作原理基础之上,采用TOP222Y芯片设计了输出为5V/2A 小功率单片式开关电源电路及高频变压器;并对电路中的一些元器件的参数进行了计算和选择。

该电路基本能满足设计的要求。

通过毕业设计,即巩固了所学的知识,又得到了一次实践的锻炼。

关键词:开关电源、脉宽调制、TOP222Y第一章序言 (1)1.1 开关电源的发展 (1)1.2 单片开关电源芯片及应用 (1)第二章单片开关电源工作原理 (3)2.1 开关电源的工作原理 (3)2.2 单片开关电源的工作原理 (4)第三章基于TOP222Y的单片开关电源的设计 (6)3.1 TOP222Y的工作原理 (6)3.2 基于TOP222Y芯片单端反激式开关电源的设计 (8)第四章单片开关电源电路的元件选择与参数计算 (11)4.1 整流滤波电路元件的选择 (11)4.2 PC817的内部结构及工作原理 (11)4.3 TL431的工作原理 (11)4.4 PC817光电耦合器与TL431外围器件参数计算 (12)4.5 TL431的取样电阻计算 (12)第五章高频变压器设计 (14)5.1 变压器的分类 (14)5.2 高频变压器的工作原理 (14)5.2 高频变压器设计方法 (14)5.3 高频变压器的绕制 (15)第六章总结 (17)第一章序言1.1 开关电源的发展开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。

原边(PSR)控制高精度恒压恒流PWM控制器

原边(PSR)控制高精度恒压恒流PWM控制器

原边(PSR)控制高精度恒压/恒流PWM控制器概述NF2910是一种高性能离线式PWM控制器,主要用于中小功率AC/DC充电器和适配器中。

它工作于原边采样和调节,可省除极间光耦和WL431,其恒压和恒流控制特性说明如下图。

最大输出功率可达18W。

在恒流控制时,其电流和输出功率的设定可由CS脚上的传感电阻Rs来调节;在恒压控制时,利用混合工作模式可以获得高效率和高性能。

另外,利用内部的导线压降补偿功能可以得到良好的负载调整特性。

在恒流模式重负载工作条件下,器件工作在PFM模式,中负载和轻负载,器件可工作在PWM模式和降频模式。

NF2910具有电源软启动控制和多种带自动恢复的有效保护,它包含逐周期电流限制,VDD过压保护,VDD箝位和欠压保护等。

另外,NF2910还有优良的EMI 性能和频率抖动控制特性,使用NF2910可获得高精确的恒压恒流特性。

图1 恒压恒流CC/CV曲线特点■ 外围电路简单■ 在通常AC输入条件下,恒压CV调节5%,恒流CC调节5%■ 原边采样和调节,无需光耦和WL431■ 可程控CV恒和CC恒流调节■ 可设定恒流和输出功率■ 内建次级恒流控制和原边反馈■ 内建合适的峰值电流调节■ 内建原边电感补偿■ 可程控线压降补偿■ 开机软启动■ 内置MOS开关管■ 内置前沿消隐电路(LEB)■ 可逐周期电流限制■ 带有回差的欠压锁定(UVLO)■ VDD过压保护(OVP)■ VDD箝位保护功能应用中小功率AC/DC 离线式开关电源 ■ 手机充电器 锂电池充器池■ DV数码相机充电器 ■ 小功率适配器■ PC、TV 等电器的辅助电源 ■ 线性调节器/替代RCC 变换器 ■ 恒流LED 照明 封装形式:DIP8典型应用一般信息引脚图DIP8封装引脚说明Nb极限值项目 数值VDD电压 -0.3到VDD箝位电压VDD齐纳管箝位连续电流 10mACOMP电压 -0.3到7VCS输入电压 -0.3到7VINV输入电压 -0.3到7V最大工作结温Tj 150℃最小/最大贮存温度 -55到150℃引脚温度(焊锡,10秒) 260℃内置MOS管耐压值 600V引脚说明脚号 脚名 I/O 说明1 CS I 电流采样输入2 VDD P 电源脚3 GND P 地4 COMP I CV环路补偿5 INV I 连接反映输出的辅助绕组反馈电压的外接分压电阻,PWM占空周期由1脚电流采样信号和EA放大器输出电压决定。

基于LM5175的Buck-Boost车用开关电源设计

基于LM5175的Buck-Boost车用开关电源设计

基于LM5175的Buck-Boost车用开关电源设计周鹏飞;钟再敏【摘要】针对一款应用于新能源汽车的电机驱动控制器,设计了一种基于TI公司的电源芯片LM5175的4开关Buck-Boost开关电源.根据车载情况对电源的要求确定输入输出电压范围、电流范围、开关频率,进而选择合理的输入输出电容、电感、MOSFET等元器件,完成了电源芯片外围电路的搭建.绘制开关电源系统的伯德图对开关电源的工作稳定性进行分析,优化开关频率等参数.通过相同负载不同输入电压和相同输入电压不同负载的两组实验验证,开关电源可稳定输出目标电压以及开关电源效率.【期刊名称】《电子科技》【年(卷),期】2016(029)002【总页数】5页(P129-133)【关键词】LM5175;开关电源;Buck-Boost【作者】周鹏飞;钟再敏【作者单位】同济大学汽车学院,上海201804;同济大学汽车学院,上海201804【正文语种】中文【中图分类】TM564开关电源是利用电子技术,控制半导体功率器件的通断时间,将电源的一种形态转化成另一形态且维持稳定输出的一种电源[1]。

现代电子系统均需要电源,开关电源作为电源的一种,广泛应用于军工、科研、通讯等领域[2],在汽车系统中,开关电源的应用环境更加恶劣,车上的干扰源较多,例如继电器等,车上的功率器件工作时,发热较为严重。

因此,车用开关电源工作时,要有较好的抗干扰、耐高温的特性[3],并可稳定输出电压。

本文介绍了一种基于LM5175的电源芯片的Buck-Boost的开关电源。

此开关电源的设计目标:输入电压8~18 V;输出电压为15 V;输出电流为3 A。

根据电源的要求进行相关的数学计算,确定开关频率,选择合理的输入输出电容、电感、MOSFET等元器件[4],搭建好电源芯片的外围电路,并绘制伯德图对此开关电源的稳定性进行分析,优化工作频率等参数,最后进行实验验证此开关电源可稳定输出目标电压以及开关电源效率。

LM2596全中文资料

LM2596全中文资料

LM2596 开关电压调节器LM2596开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性。

固定输出版本有3.3V、5V、12V,可调版本可以输出小于37V的各种电压。

该器件内部集成频率补偿和固定频率发生器,开关频率为150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件。

由于该器件只需4个外接元件,可以使用通用的标准电感,这更优化了LM2596的使用,极大地简化了开关电源电路的设计。

其封装形式包括标准的5脚TO-220封装(DIP)和5脚TO-263表贴封装(SMD)。

该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80μA的待机电流,实现外部断电;具有自我保护电路(一个两级降频限流保护和一个在异常情况下断电的过温完全保护电路)特点※ 3.3V、5V、12V的固定电压输出和可调电压输出※可调输出电压范围1.2V~37V±4%※输出线性好且负载可调节※输出电流可高达3A※输入电压可高达40V※采用150KHz的内部振荡频率,属于第二代开关电压调节器,功耗小、效率高※低功耗待机模式,I Q的典型值为80μA※TTL断电能力※具有过热保护和限流保护功能※封装形式:TO-220(T)和TO-263(S)※外围电路简单,仅需4个外接元件,且使用容易购买的标准电感应用领域※高效率降压调节器※单片开关电压调节器※正、负电压转换器典型应用(固定输出)LM2596□-5.0管脚图极限参数名称范围单位最大电源电压 45 V脚输入电压-0.3~25 V“反馈”脚电压 -0.3~25 V到地的输出电压(静态) -1 V功耗由内部限定 --储存温度 -65~150℃静电释放(人体放电1) 2000 V气流焊(60秒) 215 ℃ TO-263红外线焊接(10秒) 245 ℃ 焊接时的管脚温度TO-220 波峰焊/电烙铁焊接(10秒)260℃最高结温 150 ℃温度范围 -40~125℃工 作条 件电源电压 4.5~40 V注1:人体放电模式相当于一个100PF 的电容通过一个1.5K 的电阻向每个管脚放电。

lm2596中文资料

lm2596中文资料

VIN=25V,VOUT =3V, ILOAD=3A
η
效率
VIN=25V,VOUT =15V,ILOAD=3A
电气特性(所有输出)
典型值(2) 极限值(3)
单位
12.0
88 1.230
73 90
11.52/11.40 12.48/12.60
V V(min) V(max) %
1.193/1.180 1.267/1.280
2000
V
气流焊(60 秒)
215

焊接时的管脚
TO-263
温度
红外线焊接(10 秒)
245

TO-220
波峰焊/电烙铁焊接(10 秒)
260

最高结温
150

工 作条 件
温度范围 电源电压
-40~125

4.5~40
V
注 1:人体放电模式相当于一个 100PF 的电容通过一个 1.5K 的电阻向每个管脚放电。
电气特性
说明:标准字体对应的项目适合于 TJ=25℃时,带下划线的粗斜体字对应的项目适合于整个温度范围; 系统参量(4) 测试电路见图 1
符号
参量
条件
典型值(2)
极限值(3)
单位
LM2596□—3.3 (见注 14)
VOUT
输出电压
3.3 4.75V≤VIN≤40V,
0.2A≤ILOAD≤3A
η
效率
A(max)
50
μA(max)
2 30
mA mA(max)
5 10
mA mA(max)
80
μA
200/250
μA(max) ˏ

uc2844的补偿电路

uc2844的补偿电路

uc2844的补偿电路1.引言1.1 概述概述部分的内容可以简要介绍UC2844和补偿电路的基本概念。

UC2844是一种常用的开关控制器芯片,用于开关电源的设计。

它具有高效、稳定的特点,可以在不同的电源应用中提供可靠的电压输出。

补偿电路是UC2844工作中的一个重要组成部分。

在开关电源中,当负载发生变化或者输入电压波动时,输出电压常常会出现瞬间或持久的波动,这会引起输出的不稳定,甚至导致电源损坏。

为了增加系统的稳定性,需要使用补偿电路来为UC2844提供反馈信号,调整开关控制信号,使得输出电压更加稳定。

补偿电路通过检测输出电压的变化,根据误差信号调整UC2844的控制信号。

它可以根据负载变化和输入电压的波动,自动调整开关频率和占空比,使得输出电压能够保持在设定值附近。

补偿电路能够减小输出电压的纹波和峰峰值,并提高系统的响应速度和稳定性。

本文将详细介绍UC2844的工作原理以及补偿电路的作用。

我们将探讨补偿电路对UC2844的影响,并提出优化方向,以进一步提高开关电源的性能和稳定性。

1.2文章结构文章结构部分的内容可以是这样的:文章结构:本文主要分为引言、正文和结论三个部分。

引言部分介绍了文章的背景和目的,说明了为什么要研究uc2844的补偿电路。

正文部分包括了uc2844的工作原理和补偿电路的作用两个方面的内容,详细介绍了它们的具体情况和特点。

结论部分则总结了补偿电路对uc2844的影响和优化方向,给出了进一步研究和改进的建议。

通过这样的结构安排,读者能够全面了解uc2844的补偿电路的重要性和应用前景,并为相关领域的研究提供有益的指导。

1.3 目的目的:本文的目的是探讨uc2844补偿电路的作用及其对uc2844稳定性的影响,旨在帮助读者更加深入地理解uc2844补偿电路的工作原理,了解其在电路设计中的重要性,以及如何优化补偿电路以提高uc2844的性能。

通过具体分析uc2844的工作原理和补偿电路的作用,我们将揭示补偿电路在保持uc2844稳定工作的过程中所起到的关键作用。

lm2596中文资料

lm2596中文资料

VFB
反馈电压
0.2A≤ILOAD≤3A
VOUT 调为 3V, 电路图见图 1
η
效率
VIN=25V,VOUT =3V, ILOAD=3A
VIN=25V,VOUT =15V,ILOAD=3A
电气特性(所有输出)
典型值(2) 极限值(3)
单位
12.0
88 1.230
73 90
11.52/11.40 12.48/12.60
特点
※ 3.3V、5V、12V 的固定电压输出和可调电压输出 ※ 可调输出电压范围 1.2V~37V±4% ※ 输出线性好且负载可调节 ※ 输出电流可高达 3A ※ 输入电压可高达 40V ※ 采用 150KHz 的内部振荡频率,属于第二代开关电压调节器,功耗小、效率高 ※ 低功耗待机模式,IQ 的典型值为 80μA ※ TTL 断电能力 ※ 具有过热保护和限流保护功能 ※ 封装形式:TO-220(T)和 TO-263(S) ※ 外围电路简单,仅需 4 个外接元件, 且使用容易购买的标准电感

TO-263 封装(S)尺寸图
单位:英寸/毫米
TO-220 封装(T)尺寸图
单位:英寸/毫米

设计步骤及实例
固定输出调节器的设计步骤
条件:VOUT=3.3(或 5 、或 12)V , VIN(max)为最大直流输入电压, ILOAD(max)为最大负载电流 步骤: 1. 电感的选择(L1) A. 要根据图 4、图 5 和图 6 所示的数据选择电感的适当值(分别对应输出电压为 3.3V、5V 和 12V),对于所有的
符号
参量
器件参数
Ib
反馈偏置电流
fO
振荡器频率
VSAT
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关调节器设计中的频率补偿(二)作者:Nigel Smith
便携式电源业务开发经理
德州仪器公司
在该系列文章的第一部分中,我们探讨了开关转换器的正向通道。

在该第二部分(即最后一部分)中,我们将要探讨的是在环路处于关闭状态且全部电路被补偿时的反馈通道。

第二部分:反馈通道补偿
一旦正向通道的增益和相位响应为已知,那么就可以设计出误差放大器的响应。

频率补偿的主要目的是为了确保:(a) 足够的相位裕度(通常大于 45°);及 (b) 一个足够的增益裕度(通常大于 10 dB)。

除此以外,环路增益还应该通过单位增益 (unity),斜率为 -20dB/decade。

在将频率补偿设计出来以前,必须选择一个合适的交叉频率f c。

高交叉频率的开关转换器可以对运行状态的变化迅速地做出响应,因此一般为较好的选择;但是,采样原理限制了可以使用的最大交叉频率。

在实践中,f c 一般位于 1/10 和1/6 f sw之间,但是,如果该频率上误差放大器的开环路增益不足,那么则可能要进一步减小f c。

可以从其 Bode 曲线中选择理想的交叉频率、增益、相位和f c处正向通道的斜率。

通过对两者进行比较,现在可以很容易地获得所要求的增益、相位和f c处补偿误差放大器的斜率。

通常使用的三种补偿方案为类型I、类型 II和类型 III(见图1)。

类型 I 通常不用于开关调节器电路,这里将不作讨论。

图1、常用的补偿电路及其响应
类型 II 补偿在源端 (origin) 具有一个极点(以获得高 DC 增益),以及一个额外的零点和极点。

其产生的频率响应包含一个介于零点和极点的偏平区域。

类型II 补偿一般被用于那些在交叉频率上输出滤波器具有一个单极点衰减的应用中。

通过确保交叉频率出现在误差放大器响应偏平部分的区域,可以获得f c上理想的 -20dB/decade 衰减。

表1、一个类型 II 补偿电路的相位变化
表2、一个类型 III 补偿电路的相位变化
除了一个源端极点以外,类型 III 补偿还包含了两个零点和两个极点。

其产生的响应包括一个高频率时增加的增益区域和一个相关中间频率范围的+20dB/decade 斜率。

类型 III 补偿通常用于对那些交叉频率上输出滤波器具有一个双极点的电路进行补偿。

这样做就需要确保交叉频率出现在误差放大器+20dB/decade斜率以上的中间区域;误差放大器和输出滤波器斜率的综合作用就可以得到理想的 -20dB/decade 响应。

补偿电路中极点和零点的相对位置决定了发生在f c处的整体相位升压。

因此,通过将极点和零点放置在合适的位置,即可以获得理想的相位裕度。

有许多方法可以达到这种效果。

方法之一是使用两个因数K1和K2来考虑低频率零点和高频率极点位置,如下所示:
通过计算K1和K2的相关值,可以很容易地由表 1 和表 2 确定f c 处的相位升压。

f c处类型 II 补偿电路的增益相当于零点上的增益 AV。

类型 III 补偿在f c处具有一个以 dB 为单位的增益,其可由以下方程式计算得出:
其中,AV1 为第二个零点处的增益,单位为分贝。

对一个开关转换器进行补偿的一般程序现在可以被简化为:
z生成正向通道 Bode 曲线
z选取合适的交叉频率。

根据经验,f c应该位于 1/10 和 1/6 开关频率之间,但是,如果在该频率上误差放大器的开环路增益不足,则可能需要将其减少。

确定交叉频率上的正向通道增益和相位。

z根据f c上正向通道增益的斜率,确定需要类型 II 还是类型 III 补偿。

如果f c 上的正向通道斜率为 -20dB/decade,那么就应该使用类型 II 补偿;如果斜率为-40dB/decade,则必须使用类型 III。

z将补偿电路的零点放置在输出滤波器转折频率 (break frequency) 以下大约一个八度,并且计算出 K1 的值。

这种方法相对保守,但通过确保相位保持在 0° 以上f c以下,可以避免条件稳定性的可能性。

z确定f c 上必需的误差放大器增益,并计算出零点上必需的误差放大器增益。

z计算出通过补偿电路的最大相位滞后,并使用表 2 或表3,计算出达到该相位滞后的K2的最小值。

计算出补偿电路极点使用的频率。

z在需要达到这种响应的补偿电路中,计算出单个组件的值。

图 2 显示了正向通道、误差放大器和使用类型 III 补偿的开关转换器整体响应的典型Bode 曲线。

图2、系统 Bode 曲线
每一位工程师都有自己喜好的频率补偿方法,而且在实践中使用一些迭代方法通常是必需的,但是,本文中的上述方法为那些缺乏经验的工程师们提供了一个较好的切入点,以构建一款具有足够高性能的稳定电路。

相关文档
最新文档